数学建模(教案)第一章--线性规划
线性规划教案

线性规划教案一、教学目标通过本教案的学习,学生将能够:1. 理解线性规划的基本概念和原理;2. 掌握线性规划的常见问题求解方法;3. 运用线性规划解决实际问题。
二、教学内容1. 线性规划的定义和基本概念;2. 线性规划模型的建立;3. 线性规划的图解法;4. 单纯形法求解线性规划问题;5. 整数规划的基本概念和求解方法;6. 线性规划在实际问题中的应用。
三、教学步骤第一步:导入1. 引入线性规划的概念和背景,让学生了解线性规划在现实生活中的应用;2. 引起学生对线性规划的兴趣,激发他们的学习动力。
第二步:讲解线性规划的基本概念和原理1. 介绍线性规划的定义和基本概念,如目标函数、约束条件、可行解等;2. 解释线性规划问题的普通形式,并通过实例进行说明。
第三步:讲解线性规划模型的建立1. 介绍线性规划模型的建立过程,包括确定决策变量、目标函数和约束条件;2. 通过实例演示线性规划模型的建立方法。
第四步:讲解线性规划的图解法1. 介绍线性规划的图解法,包括绘制目标函数的等高线图和约束条件的直线图;2. 演示如何通过图解法求解线性规划问题。
第五步:讲解单纯形法求解线性规划问题1. 介绍单纯形法的基本思想和步骤;2. 演示如何使用单纯形法求解线性规划问题。
第六步:讲解整数规划的基本概念和求解方法1. 介绍整数规划的定义和基本概念;2. 讲解整数规划问题的求解方法,包括分支定界法和割平面法。
第七步:讲解线性规划在实际问题中的应用1. 介绍线性规划在生产计划、资源分配、投资组合等领域的应用;2. 通过实例演示线性规划在实际问题中的求解过程。
四、教学方法1. 讲授法:通过讲解线性规划的基本概念和原理,匡助学生建立起对线性规划的整体认识;2. 演示法:通过实例演示线性规划的求解过程,让学生掌握具体的解题方法;3. 实践法:引导学生进行线性规划的实际问题求解,提高他们的应用能力。
五、教学评估1. 课堂练习:布置一些线性规划问题的练习题,让学生在课后进行解答;2. 作业评分:对学生的课堂练习和作业进行评分,及时反馈学生的学习情况。
数学建模 第一篇第一章

第一篇 线性规划模型及应用第一章 线性规划问题的数学模型及其解的性质§1-1-1线性规划问题的数学模型引例:某工厂生产某种型号的机床,每台机床上需要2.9米、2.1米和1.5米长的三种轴各一根,这些轴需要用同一种圆钢制作,圆钢的长度为7.4米。
如果要生产100台机床,应如何下料,才能使得用料最省?分析:对于每一根长为7.4米的圆钢,截成2.9米、2.1米和1.5米长的毛坯,可以有若干种下料方式,把它截成我们需要的长度,有以下8种下料方式(表1-1-1):表1-1-1 下料方式及每种方式毛坯的数目下料方式是从大到小、从长到短的顺序考虑的。
1.假若考虑只用3B 方式下料,需要用料100根;2.若采用木工师傅的下料方法:先下最长的、再下次长的、最后下短的(见表1-1-2):表1-1-2 木工师傅的下料情况的用料表动一下脑筋,就可以节约用料4根,降低成本。
但这仍然不是最好的下料方法。
3.如果要我们安排下料,暂不排除8种下料方式中的任何一种,通过建立数学模型(线性规划数学模型)进行求解,寻找最好的下料方案。
设用1B ,2B ,3B ,4B ,5B ,6B ,7B ,8B 方式下料的根数分别为87654321,,,,,,,x x x x x x x x ,则可以建立线性规划数学模型:⎪⎪⎩⎪⎪⎨⎧≥≥+++++≥++++≥++++++++++=0,,,,,,,10043231002321002..m in 8765432187643176532432187654321x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x S 用LINGO 10.0软件求解,程序如下: Min=x1+x2+x3+x4+x5+x6+x7+x8;2*x1+x2+x3+x4>=100;2*x2+x3+3*x5+2*x6+x7>=100;x1+x3+3*x4+2*x6+3*x7+4*x8>=100;根据输出结果,得:,20,4021==x x 90m in ,0,0,30,0,0,0876543=======S x x x x x x (最优解不唯一);或90m in ,0,0,0,0,30,0,50,1087654321=========S x x x x x x x x 。
数学建模之线性规划

第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134m ax x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选适当的决策变量,是我们建立有效模型的关键之一。
1.2 线性规划的Matlab 标准形式线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。
线性规划教案

线性规划教案一、教学目标通过本教案的学习,学生将能够:1. 理解线性规划的基本概念和原理;2. 掌握线性规划模型的建立和求解方法;3. 能够在实际问题中应用线性规划进行决策和优化。
二、教学重点1. 线性规划的基本概念和原理;2. 线性规划模型的建立和求解方法;3. 线性规划在实际问题中的应用。
三、教学难点线性规划模型的建立和求解方法。
四、教学过程1. 导入引入线性规划的概念和背景,与学生分享线性规划的应用案例,激发学生的学习兴趣。
2. 理论讲解(1)线性规划的基本概念- 线性规划的定义:线性规划是一种用于求解最优化问题的数学方法,其目标函数和约束条件都是线性的。
- 最优解的定义:线性规划的最优解是使目标函数达到最大(或最小)值的变量取值。
(2)线性规划模型的建立- 决策变量的定义:根据实际问题,确定需要优化的变量,表示为决策变量。
- 目标函数的定义:确定需要最大化(或最小化)的目标,在实际问题中通常是利润、成本等。
- 约束条件的定义:确定影响决策变量的限制条件,包括等式约束和不等式约束。
(3)线性规划模型的求解方法- 图形法:通过画出约束条件和目标函数所表示的直线或面,找到最优解所在的区域,从而确定最优解。
- 单纯形法:通过运用单纯形表格法,逐步迭代求解线性规划模型,直到得到最优解。
- 整数规划:当决策变量只能取整数值时,需要使用整数规划方法进行求解。
3. 实例演练选择一个简单的线性规划实例,带领学生一起完成模型的建立和求解过程,让学生通过实际操作,进一步理解线性规划的求解方法。
4. 拓展应用从实际生活或工作中的问题出发,引导学生运用线性规划进行决策和优化,培养学生的实际应用能力。
五、教学评价1. 在实例演练中,教师可以针对学生的解题过程和答案,进行实时评价,及时纠正错误。
2. 可以组织小组或个人探究性学习活动,让学生自主构建线性规划模型并求解,评价学生的表现和学习成果。
六、教学延伸可以引导学生进一步深入学习线性规划的应用方法、算法和模型扩展,培养学生在实际问题中的建模和求解能力。
线性规划教案

线性规划教案一、教案概述本教案旨在介绍线性规划的基本概念、解法和应用。
通过本教案的学习,学生将了解线性规划的定义、线性规划模型的建立以及常见的线性规划解法方法。
同时,本教案还将引导学生运用线性规划解决实际问题,提高学生的问题分析和解决能力。
二、教学目标1. 了解线性规划的基本概念和特点;2. 掌握线性规划模型的建立方法;3. 熟悉线性规划的常见解法方法;4. 能够运用线性规划解决实际问题;5. 提高学生的问题分析和解决能力。
三、教学内容1. 线性规划的介绍1.1 线性规划的定义和基本概念1.2 线性规划的应用领域1.3 线性规划的特点2. 线性规划模型的建立2.1 线性规划模型的基本要素2.2 线性规划模型的建立步骤2.3 线性规划模型的实例分析3. 线性规划的解法方法3.1 图形法3.2 单纯形法3.3 整数规划的解法方法4. 线性规划的应用案例4.1 生产计划问题4.2 运输问题4.3 投资问题四、教学过程1. 导入环节引入线性规划的概念,通过实际例子引起学生对线性规划的兴趣。
2. 知识讲解2.1 介绍线性规划的定义和基本概念,让学生了解线性规划的特点;2.2 分步讲解线性规划模型的建立方法,引导学生掌握建立线性规划模型的技巧;2.3 详细介绍线性规划的解法方法,包括图形法、单纯形法和整数规划的解法方法;2.4 分析线性规划的应用案例,让学生了解线性规划在实际问题中的应用。
3. 案例分析通过具体的案例分析,引导学生运用所学知识解决实际问题,加深对线性规划的理解和应用能力。
4. 总结归纳对本节课所学内容进行总结,引导学生归纳线性规划的基本概念、模型建立方法和解法方法。
五、教学资源1. 教材:线性规划教材(可根据实际情况选择教材)2. 多媒体设备:投影仪、电脑六、教学评估1. 课堂练习:布置一些线性规划的练习题,检验学生对所学知识的掌握情况;2. 课堂讨论:组织学生进行案例分析和问题解决的讨论,评估学生的问题分析和解决能力。
线性规划教案

线性规划教案一、引言线性规划是运筹学中的一种优化问题求解方法,它可以用来解决多种实际问题,如生产计划、资源分配、投资决策等。
本教案旨在介绍线性规划的基本概念、求解方法和应用案例,帮助学生理解和掌握线性规划的原理和应用。
二、教学目标1. 理解线性规划的基本概念,包括目标函数、约束条件、可行解等。
2. 掌握线性规划的求解方法,包括图形法、单纯形法等。
3. 能够应用线性规划解决实际问题,如生产计划、资源分配等。
4. 培养学生的逻辑思维能力和数学建模能力。
三、教学内容1. 线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
1.2 约束条件:线性规划的决策变量需要满足一系列线性等式或不等式,称为约束条件。
1.3 可行解:满足所有约束条件的解称为可行解。
2. 线性规划的图形法2.1 二元线性规划的图形解法:通过绘制目标函数和约束条件的图形,确定最优解的方法。
2.2 三元或多元线性规划的图形解法:通过绘制等高线图,确定最优解的方法。
3. 线性规划的单纯形法3.1 单纯形表格法:通过构造单纯形表格,通过迭代计算找到最优解的方法。
3.2 单纯形法的基本步骤:初始化、选择主元、计算新的单纯形表格、迭代计算等。
4. 线性规划的应用案例4.1 生产计划问题:如何安排生产计划,使得利润最大化。
4.2 资源分配问题:如何合理分配资源,满足各项需求。
4.3 投资决策问题:如何选择最佳投资组合,最大化收益。
(可以根据实际情况增加或修改案例内容)四、教学方法1. 讲授法:通过讲解线性规划的基本概念和求解方法,帮助学生理解和掌握知识点。
2. 实例演示法:通过具体的应用案例,演示线性规划的解题过程,培养学生的应用能力。
3. 讨论互动法:引导学生参与讨论,思考问题,提高学生的思维能力和合作能力。
4. 练习和作业:布置练习和作业,巩固学生的知识和技能。
五、教学评估1. 课堂表现:观察学生在课堂上的学习态度、参与度和表达能力。
数学建模 线性规划模型

数学建模教案-线性规划模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何合理地利用有限的人力、物力、财力等资源,以便得到最好的经济效果。
例1 若需在长为4000mm的圆钢上,截出长为698mm和518mm两种毛坯,问怎样截取才能使残料最少?初步分析可以先考虑两种“极端”的情况:(1)全部截出长为698mm的甲件,一共可截出EQ F(4000,698) »5件,残料长为510mm。
(2)全部截出长为518mm的乙件,一共可截出 E Q F(4000,518) »7件,残料长为374mm。
由此可以想到,若将 x个甲件和y 个乙件搭配起来下料,是否可能使残料减少?把截取条件数学化地表示出来就是:698 x + 518y £ 4000x ,y都是非负整数目标是使:z = EQ F(698x + 518y,4000) (材料利用率)尽可能地接近或等于1。
(尽可能地大)该问题可用数学模型表示为:目标函数: max z = EQ F(698x + 518y,4000)满足约束条件:698 x + 518y £ 4000 , (1)x ,y都是非负整数 . (2)例2 某工厂在计划期内要安排生产I 、II两种产品,已知生产单位产品所需的设备台数及A、B两种原料的消耗,如下表所示。
该工厂每生产一件产品I可获利 2 元,每生产一件产品II可获利 3 元,问应如何安排生产计划使工厂获利最多?这问题可以用以下的数学模型来描述:设 x 1, x 2分别表示在计划期内产品I、II的产量。
因为设备的有效台数为8 ,这是一个限制产量的条件,所以在确定I 、II的产量时,要考虑不超过设备的有效台数,即可用不等式表示为:x 1 + 2x 2£ 8 .同理,因原材料A 、B的限量,可以得到以下不等式:4 x 1£ 164 x 2£ 12.该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x1、x2以得到最大的利润。
第一节建模课教案模板范文

课程目标:1. 了解线性规划的基本概念和意义。
2. 学会识别和描述简单的线性规划问题。
3. 能够运用线性规划方法解决实际问题。
课时安排:2课时教学重点:1. 线性规划问题的定义和特点。
2. 线性规划问题的建模方法。
教学难点:1. 确定决策变量、目标函数和约束条件。
2. 将实际问题转化为线性规划模型。
教学准备:1. 多媒体课件2. 线性规划问题案例3. 练习题教学过程:第一课时一、导入1. 提问:什么是优化?为什么需要优化?2. 引入线性规划的概念,解释其意义。
二、基本概念讲解1. 线性规划的定义:在一定的约束条件下,寻求线性目标函数的最大值或最小值。
2. 线性规划的特点:决策变量为线性,目标函数和约束条件均为线性。
三、案例分析1. 展示一个简单的线性规划问题案例,如生产问题。
2. 分析案例中的决策变量、目标函数和约束条件。
四、建模方法介绍1. 确定决策变量:找出影响问题结果的因素,并将其作为决策变量。
2. 确定目标函数:根据问题要求,构建线性目标函数。
3. 确定约束条件:分析问题限制条件,构建线性不等式或等式。
五、课堂练习1. 学生分组,根据提供的案例进行线性规划建模。
2. 每组汇报建模过程和结果。
第二课时一、回顾与总结1. 回顾线性规划的基本概念和建模方法。
2. 总结本节课所学内容。
二、巩固练习1. 展示更多线性规划问题案例,要求学生独立完成建模。
2. 学生之间互相讨论,共同解决问题。
三、拓展与应用1. 引导学生思考如何将线性规划应用于实际生活中。
2. 学生分享自己发现的应用案例。
四、课堂小结1. 强调线性规划在实际问题中的应用价值。
2. 鼓励学生在今后的学习中继续探索线性规划的应用。
五、课后作业1. 完成课后练习题,巩固所学知识。
2. 选择一个感兴趣的线性规划问题,进行深入研究和建模。
教学反思:本节课通过讲解线性规划的基本概念和建模方法,使学生初步掌握了线性规划问题的解决思路。
在教学过程中,要注意引导学生积极参与讨论,培养学生的实际操作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134m ax x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
上述即为一规划问题数学模型的三个要素。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选取适当的决策变量,是我们建立有效模型的关键之一。
1.2 线性规划的Matlab 标准形式线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。
为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为b Ax xc xT ≤ that such min其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ⨯矩阵。
例如线性规划b Ax xc xT ≥ that such max的Matlab 标准型为b Ax xc xT -≤-- that such min1.3 线性规划问题的解的概念一般线性规划问题的标准型为∑==nj jj x c z 1min(3)∑==≤nj ij ij mi b x a 1,,2,1 s.t.Λ(4)可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。
可行域所有可行解构成的集合称为问题的可行域,记为R。
1.4 线性规划的图解法图解法简单直观,有助于了解线性规划问题求解的基本原理。
我们先应用图解法来求解例1。
如上图所示,阴影区域即为LP问题的可行域R。
对于每一固定的值z,使目标函数值等于z的点构成的直线称为目标函数等位线,当z变动时,我们得到一族平行直线。
让等位线沿目标函数值减小的方向移动,直到等位线与可行域有交点的最后位置,此时的交点(一个或多个)即为LP的最优解。
对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。
不难看出,本例的最优解为T*=,最优目标值x)6,2(26z。
*=从上面的图解过程可以看出并不难证明以下断言:(1)可行域R可能会出现多种情况。
R可能是空集也可能是非空集合,当R非空时,它必定是若干个半平面的交集(除非遇到空间维数的退化)。
R既可能是有界区域,也可能是无界区域。
(2)在R非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其目标函数值无界)。
(3)R非空且LP有有限最优解时,最优解可以唯一或有无穷多个。
(4)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域R 的“顶点”。
上述论断可以推广到一般的线性规划问题,区别只在于空间的维数。
在一般的n 维空间中,满足一线性等式∑==ni i i b x a 1的点集被称为一个超平面,而满足一线性不等式∑=≤n i i i b x a 1(或∑=≥ni i i b x a 1)的点集被称为一个半空间(其中),,(1n a a Λ为一n 维行向量,b 为一实数)。
有限个半空间的交集被称为多胞形,有界的多胞形又被称为多面体。
易见,线性规划的可行域必为多胞形(为统一起见,空集Φ也被视为多胞形)。
在一般n 维空间中,要直接得出多胞形“顶点”概念还有一些困难。
二维空间中的顶点可以看成为边界直线的交点,但这一几何概念的推广在一般n 维空间中的几何意义并不十分直观。
为此,我们将采用另一途径来定义它。
定义1 称n 维空间中的区域R 为一凸集,若R x x ∈∀21,及)1,0(∈∀λ,有R x x ∈-+21)1(λλ。
定义2 设R 为n 维空间中的一个凸集,R 中的点x 被称为R 的一个极点,若不存在R x x ∈21、及)1,0(∈λ,使得21)1(x x x λλ-+=。
定义1 说明凸集中任意两点的连线必在此凸集中;而定义2 说明,若x 是凸集R 的一个极点,则x 不能位于R 中任意两点的连线上。
不难证明,多胞形必为凸集。
同样也不难证明,二维空间中可行域R 的顶点均为R 的极点(R 也没有其它的极点)。
1.5 求解线性规划的Matlab 解法单纯形法是求解线性规划问题的最常用、最有效的算法之一。
单纯形法是首先由George Dantzig 于1947年提出的,近60年来,虽有许多变形体已被开发,但却保持着同样的基本观念。
由于有如下结论:若线性规划问题有有限最优解,则一定有某个最优解是可行区域的一个极点。
基于此,单纯形法的基本思路是:先找出可行域的一个极点,据一定规则判断其是否最优;若否,则转换到与之相邻的另一极点,并使目标函数值更优;如此下去,直到找到某一最优解为止。
这里我们不再详细介绍单纯形法,有兴趣的读者可以参看其它线性规划书籍。
下面我们介绍线性规划的Matlab 解法。
Matlab5.3中线性规划的标准型为b Ax xc T x≤ such thatmin 基本函数形式为linprog(c,A,b),它的返回值是向量x 的值。
还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X 0,OPTIONS) 这里fval 返回目标函数的值,Aeq 和beq 对应等式约束beq x Aeq =*,LB 和UB 分别是变量x 的下界和上界,0x 是x 的初始值,OPTIONS是控制参数。
例2 求解下列线性规划问题 321532m ax x x x z -+=⎪⎩⎪⎨⎧≥≥+-=++0,,10527321321321x x x x x x x x x 解 (i )编写M 文件 c=[2;3;-5];a=[-2,5,-1]; b=-10; aeq=[1,1,1]; beq=7;x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x(ii )将M 文件存盘,并命名为example1.m 。
(iii )在Matlab 指令窗运行example1即可得所求结果。
例3 求解线性规划问题 32132 m in x x x z ++=⎪⎩⎪⎨⎧≥≥+≥++0,,62382432121321x x x x x x x x 解 编写Matlab 程序如下: c=[2;3;1];a=[1,4,2;3,2,0]; b=[8;6];[x,y]=linprog(c,-a,-b,[],[],zeros(3,1))1.6 可以转化为线性规划的问题很多看起来不是线性规划的问题也可以通过变换变成线性规划问题来解决。
如: 例4 问题为bAx x x x n ≤+++ t.s.||||||min 21Λ其中T n x x x ][1Λ=,A 和b 为相应维数的矩阵和向量。
要把上面的问题变换成线性规划问题,只要注意到事实:对任意的i x ,存在0,>i i v u 满足i i i v u x -=,i i i v u x +=|| 事实上,我们只要取2||i i i x x u +=,2||ii i x x v -=就可以满足上面的条件。
这样,记T n u u u ][1Λ=,T n v v v ][1Λ=,从而我们可以把上面的问题变成∑=+ni i iv u1)(min⎩⎨⎧≥≤-0,)( t.s.v u bv u A§2 运输问题(产销平衡)例5 某商品有m 个产地、n 个销地,各产地的产量分别为m a a ,,1Λ,各销地的需求量分别为n b b ,,1Λ。
若该商品由i 产地运到j销地的单位运价为ij c ,问应该如何调运才能使总运费最省?解:引入变量ij x ,其取值为由i 产地运往j 销地的该商品数量,数学模型为∑∑==m i nj ijij xc 11mins.t. ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥====∑∑==0,,2,1,,,1,11ij mi j ij nj i ij x n j b x m i a x ΛΛ显然是一个线性规划问题,当然可以用单纯形法求解。
对产销平衡的运输问题,由于有以下关系式存在:∑∑∑∑∑∑=======⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=mi i nj n j m i ij mi n j ij j a x x b 111111 其约束条件的系数矩阵相当特殊,可用比较简单的计算方法,习惯上称为表上作业法(由康托洛维奇和希奇柯克两人独立地提出,简称康—希表上作业法)。
表上作业法是单纯形法在求解运输问题时的一种简化方法,其求解工作在运输表上进行逐步迭代如下:先按某一规则找出一个初始解(初始调运方案);再对现行解作最优性判断;若这个解不是最优的,就在运输表上对它进行调整改进,得一新解;再判断,再改进,直到得到最优解。
§3 指派问题(又称分配问题Assignment Problem )3.1 指派问题的数学模型例6 拟分配n 人去干n 项工作,每人干且仅干一项工作,若分配第i 人去干第j 项工作,需花费ij c 单位时间,问应如何分配工作才能使工人花费的总时间最少?容易看出,要给出一个指派问题的实例,只需给出矩阵)(ij c C =,C 被称为指派问题的系数矩阵。