1.9 陶瓷材料的晶体相结构

合集下载

陶瓷材料的晶体结构

陶瓷材料的晶体结构

主要特征
8.63
无方向性,高配位数,
7.94
低温不导电,高温离子
7.20
导电
6.90
1.37 1.68 3.87 3.11
1.63 1.11 0.931 0.852
方向性,低配位数,纯 金属低温导电率很小
陶瓷无材方料向的性,化高学配键位?数,
密度高,导电性高,塑 性好
0.020 0.078
低熔点、沸点压缩系数 大,保留分子性质
原子对价电子的束缚强弱。
Company Logo
陶瓷的晶体结构
First ionization energies as a function of atomic number
C原子的电离能(eV) I1: 11.260 I2: 24.383 I3: 47.887 I4: 64.492 I5: 392.077 I6: 489.981
0.52 0.30

结合力高于无氢键分子
Company Logo
陶瓷的晶体结构
2.1 离子晶体的结构规则—鲍林规则
陶瓷化合物的结合键:离子键与共价键混合。 金属正离子与非金属离子组成的化合物通常不是纯粹的 离子化合物,性质不能只用离子键来解释。
离子键的比例取决于组成元素的电负性差,电负性相差 越大,离子键比例越高。
鲍林给电负性下的定义为“电负性是元素的原子在化合物中吸 引电子能力的标度”。
元素电负性数值越大,表示其原子在化合物中吸引电子的能力 越强;反之,电负性数值越小,相应原子在化合物中吸引电子 的能力越弱(稀有气体原子除外)。
Company Logo
陶瓷的晶体结构
2.1 离子晶体的结构规则—鲍林规则 原子负电性的概念:
Si

陶瓷材料的显微结构

陶瓷材料的显微结构

相同蠕变条件下:1300℃,250MPa,100h YL-a(晶界宽度1nm); YL-b(晶界宽度2.5nm) YL-b的蠕变量为YL-a的2.4倍
(3)重烧结Si3N4
反应烧结+更高温度烧结
低温氮化后,经1atmN2 压 力,1850℃,2h,室温抗 折强度550MPa
Si3N4烧结温度高,接近其挥发分解温度(1890℃); 常压下,提高烧成温度增加致密度比较困难; 发展了一种新工艺———气氛加压烧结工艺; 提高了烧成温度,抑制了烧成过程中的挥发与分解,制备出性能 优良的陶瓷材料
温度↑,陶瓷的强度↓ 高温破坏:广泛分布的显微结构 损伤的积累过程;
室温破坏:已经存在的裂纹的突 然破坏所致。
高温下损伤的形成与材料承受蠕变或蠕 变破坏的能力有关。 与高温强度有关的重要因素— 晶界相
I. 烧结助剂如MgO等与Si3N4中的SiO2 杂质 反应形成硅酸盐液相; II. 冷却过程中,这些促进烧结致密的液相形 成玻璃相驻留在晶界上,形成一层薄的非 晶态层(约1nm); III.材料在高温下(高于晶界玻璃相的转变温 度)受力时,由于蠕变裂纹的生长而破坏; IV.晶界玻璃相成为物质的快速传递区,导致 蠕变孔穴的迅速形成; V. 网状裂纹扩展并最终相互连接,导致材料 完全破坏。
他形晶:较迟结晶的晶体,在受抑制情况下生长发育,形成晶 形很不完整的晶体。
97瓷中刚玉半自形晶结构 莫来石陶瓷中莫来石 1、自形晶;2、半自形晶;3、他形晶 日用陶瓷中石英晶体受到熔 陶瓷自形晶的结构 蚀后呈他形晶结构
多晶体的晶形
§4.1 陶瓷显微结构类型
瓷 坯 中 晶 质 和 非 晶 质 的 含 量 全晶质 主 晶 相 的 晶 粒 尺 度
低温氮化后,经15atmN2 压 力,1950℃,2h,室温强度 750MPa,硬度HRA91~92

陶瓷材料的结构与性能分析

陶瓷材料的结构与性能分析

陶瓷材料的结构与性能分析陶瓷材料是一类广泛应用于建筑、电子、航空等领域的材料,具有优异的物理和化学性质。

而想要深入了解陶瓷材料的性能表现,首先必须对其结构进行分析。

一、结晶结构陶瓷材料主要由氧化物组成,常见的有硅酸盐、氮化硅、氧化铝等。

在陶瓷材料中,原子或离子按照一定的几何排列方式组成结晶结构。

例如,硅酸盐陶瓷中的硅离子和氧离子以正方形或三角形的排列方式拼接成网络结构。

而氮化硅陶瓷则由氮离子和硅离子按照边长相等的正六边形排列形成具有大空隙的结构。

结晶结构的不同会导致陶瓷材料的性能差异,如硬度、热传导性等。

二、晶粒大小晶粒大小是陶瓷材料表面性能的重要指标之一。

晶粒的尺寸越小,材料的强度和硬度往往越高,因为小晶粒内部的晶界相对较多,在晶界上形成了许多阻碍位错运动的障碍点,从而提高了材料的抗变形能力。

因此,控制陶瓷材料的晶粒尺寸,对提高其力学性能具有重要意义。

三、杂质含量陶瓷材料中的杂质含量对其性能影响举足轻重。

杂质的存在会破坏材料的完整晶体结构,从而导致性能的下降。

例如,陶瓷材料中的铁、镉等金属离子会影响其电学性能,氮化硅材料中杂质的存在会导致其电阻率的变化。

因此,在制备陶瓷材料时,对原材料进行严格筛选和纯化,以及控制烧结工艺的条件,能够有效减少杂质含量,提高材料的性能。

四、孔洞结构孔洞是陶瓷材料中普遍存在的结构特征之一。

孔洞会影响材料的力学性能、热导率等。

例如,在陶瓷材料中,孔洞的存在可以减小材料的密度,从而提高其机械强度。

此外,孔洞还能影响热的传导、吸附等性质。

因此,对陶瓷材料的孔洞结构进行合理设计和控制,能够改善其性能,拓宽其应用范围。

五、晶界结构陶瓷材料中的晶界是由相邻晶粒之间的原子之间形成的。

晶界的存在会影响材料的力学性能、导电性能、疲劳寿命等。

在力学性能方面,晶界是位错移动的阻碍剂,增加了材料的塑性变形程度;在导电性能方面,晶界处存在能带偏移和电阻率增加现象,使材料的导电性能下降。

因此,控制晶界的结构,合理改善晶界的质量和数量,对提高陶瓷材料的性能至关重要。

陶瓷材料的晶体结构与应力分析

陶瓷材料的晶体结构与应力分析

陶瓷材料的晶体结构与应力分析一、介绍陶瓷材料是一类具有特殊结构和性质的无机非金属材料。

在陶瓷材料中,晶体结构的性质起着重要的作用。

本文将探讨陶瓷材料的晶体结构以及应力分析方面的内容。

二、陶瓷材料的晶体结构1. 颗粒晶体结构陶瓷材料中常见的晶体结构是颗粒状的结构。

这种结构由大量的微小晶体颗粒组成。

这些颗粒有特定的结构排列方式,形成陶瓷材料的整体结构。

2. 结晶晶体结构在其他一些陶瓷材料中,晶体结构呈现出明确的晶格结构。

晶格是由原子或离子组成的周期性结构。

晶体结构的稳定性与晶格的完整性密切相关。

3. 硅酸盐晶体结构硅酸盐是一种重要的陶瓷材料类型,其晶体结构含有硅和氧的化合物。

硅酸盐的晶体结构可以用于制造陶瓷工艺品、建筑材料等。

三、陶瓷材料的应力分析1. 内应力陶瓷材料在制备或使用过程中,会受到各种力的作用,从而产生内应力。

内应力可能导致陶瓷材料的破裂或变形。

对陶瓷材料的应力分析是为了预测和控制内应力的产生。

2. 热应力热应力是由于温度变化引起的。

在陶瓷材料的制备过程中,高温和冷却过程会导致温度的变化,从而产生热应力。

热应力是陶瓷材料中常见的一种应力形式。

3. 力学应力陶瓷材料在受到外力作用时,会产生力学应力。

力学应力的大小和方向与外力的大小和方向密切相关。

对陶瓷材料的力学应力进行分析有助于了解材料的强度和韧性。

四、工程应用陶瓷材料的晶体结构和应力分析在工程领域有着广泛的应用。

例如,在陶瓷制品的设计和开发过程中,通过对晶体结构的研究,可以改善材料的性能和品质。

同时,应力分析可以帮助工程师预测陶瓷材料在使用过程中可能产生的破裂和变形情况,从而设计更可靠的陶瓷产品。

五、结论陶瓷材料的晶体结构对其性能有重要影响。

对陶瓷材料的晶体结构进行研究可以改善材料的品质和性能。

同时,应力分析对于预测和控制陶瓷材料的破裂和变形具有重要意义。

通过合理的晶体结构设计和应力分析,可以提高陶瓷材料的可靠性和应用价值。

陶瓷材料的晶体结构与应力分析是一个复杂而有趣的课题。

陶瓷材料金相实验方法及实验结果

陶瓷材料金相实验方法及实验结果

陶瓷材料金相实验方法及实验结果1. 实验背景陶瓷材料是一种非金属无机材料,具有优良的高温、耐磨和绝缘等特性,广泛应用于工业和日常生活中。

为了进一步了解陶瓷材料的结构和性能,金相实验是一种有效的分析方法。

2. 实验目的本实验旨在探究陶瓷材料的金相特性,通过金相实验方法分析其晶体结构、组织形貌和热处理效果。

3. 实验步骤1. 样品制备:选择代表性的陶瓷材料样品,并使用压力机将其制备成标准试样。

2. 粗磨:将试样粘贴在研磨片上,使用粗砂纸进行表面研磨,以去除试样的表面污物和瑕疵。

3. 精磨:使用细砂纸进行试样的精细研磨,以获得光滑的试样表面。

4. 腐蚀:将试样浸泡在适当的腐蚀溶液中,根据试样的特性和需求选择适当的腐蚀时间和溶液。

5. 清洗:将腐蚀后的试样用去离子水进行清洗,以去除腐蚀剂和残留物。

6. 金相显微镜观察:将试样放置在金相显微镜下,使用合适的放大倍数观察试样的微观结构和组织形貌。

7. 热处理:根据需要,将试样进行适当的热处理,观察其显微组织的变化。

8. 显微组织分析:使用图像分析软件对金相显微镜下获得的图片进行分析,测量晶粒尺寸、相含量和相间距等参数。

4. 实验结果经过金相实验的分析,我们可以得到以下陶瓷材料的金相特性:1. 晶体结构:观察到陶瓷材料具有特定的晶体结构,例如体心立方结构、面心立方结构等。

2. 组织形貌:通过金相显微镜的观察,可以看到陶瓷材料的微观组织形貌,例如颗粒状、结晶状等。

3. 热处理效果:通过对热处理后的试样进行比较,可以观察到试样的显微组织发生了变化,例如晶粒尺寸的增大或减小。

5. 结论通过陶瓷材料的金相实验分析,我们可以更加深入地了解陶瓷材料的结构和性能。

金相实验方法为我们提供了一种可靠的手段,帮助我们分析陶瓷材料的晶体结构、组织形貌和热处理效果。

这些分析结果有助于优化陶瓷材料的制备工艺和提高材料性能。

注意:以上结果仅为示例,请根据具体实验数据和实际情况进行具体分析和总结。

陶瓷微观结构的其他相

陶瓷微观结构的其他相

陶瓷微观结构的其他相陶瓷是一种具有广泛应用领域的材料,其微观结构的研究对于优化材料的性能具有重要意义。

在陶瓷的微观结构中,存在着其他相,这些相对于主相(通常是陶瓷的基质)呈现出不同的特性和形态。

本文将深入探讨陶瓷微观结构中的其他相,并介绍它们对陶瓷材料性能的影响。

一、其他相的定义和分类在陶瓷微观结构中,除了基质相外,常常存在着一些其他相,它们可以是陶瓷材料中的化学成分或者晶体结构与基质不同的物质。

根据其形成原因和结构特征,可以将其他相分为溶解相、颗粒相和晶体相三类。

1. 溶解相溶解相指的是在陶瓷材料中以溶解状态存在的其他相,通常由于原料成分之间的相容性差异而形成。

这些相在陶瓷的烧结过程中会发生固相反应,影响着材料的致密度和晶粒尺寸分布等性能。

对于氧化铝基陶瓷材料,可能存在着氧化镁溶解相,其会影响材料的晶粒生长行为和力学性能。

2. 颗粒相颗粒相指的是在陶瓷材料中以颗粒形式存在的其他相,其颗粒尺寸通常比基质相大。

这些相的存在会影响到陶瓷材料的力学性能、导热性能以及化学稳定性等。

硅酸盐陶瓷中可能存在着含有ZrO2颗粒的二相结构,这些颗粒可以通过增加材料的韧性和抗磨损性能。

3. 晶体相晶体相指的是在陶瓷材料中以晶体结构形式存在的其他相,其晶体结构通常与基质相不同。

这些相的存在会影响陶瓷材料的晶格缺陷和晶粒生长行为等性能。

锆钛酸钾陶瓷材料中含有一定比例的刚玉相,其可以通过调节材料的介电性能和力学性能。

二、其他相对陶瓷材料性能的影响陶瓷微观结构中的其他相对于材料的性能具有重要影响,下面将从不同方面进行探讨。

1. 机械性能其他相的存在会影响陶瓷材料的力学性能,如硬度、韧性和抗磨损性能等。

其他相的加入可以增加陶瓷的韧性,使其能够承受更大的应力而不易破裂。

另其他相的存在也可能导致陶瓷材料的脆性增加,因为它们可能成为裂纹的起始点。

其他相的添加和控制对于优化材料的力学性能至关重要。

2. 导热性能其他相的热导率通常与基质相存在差异,因此其存在会对陶瓷材料的导热性能产生重要影响。

材料中的相结构

材料中的相结构

M2 Ti2H、Zr2H、Fe2N、Cr2N、V2N、Mn2C、 X V2C、Mo2C
h.c.p
TaC、TiC、ZrC、VC、ZrN、VN、TiN、ZrH、 f.c.c
MX TiH
TaH、NbH
b.c.c
WC、MoN
s.c
2、间隙化合物
• 半径比rX/rM>0.59时形成 • M构成复杂结构 • X规则地分布在间隙中。
15溶解度较大资料仅供参考104电子浓度ea100100uxxvae???价电子数元素11cuagau22bemgzncdhg33gaalin44sigesnpb55ppasbisb00feconirupdptirosee自由电子数aa原子数xx溶质原子浓度vv溶质原子价uu溶剂原子价资料仅供参考11临界电子浓度概念?对于一价金属的每种结构都存在一个极限电子浓度称为临界电子浓度
固溶体 特征:
CuZn
Cu5Zn8 CuZn3
Cu-Zn合金,随Zn﹪↑, e/a↑,结构依次变化。
Zn﹪→
电子化合物例表
电子浓度=21/14
b.c.c β相
复杂立方 β_Mn
h.c.p
CuZn
Cu3Ga* Cu5Sn Cu5Si* Ag3Al* AgZn*
AgCd*
AuZn
Cu5Si* Ag3Al*
• 具有金属键特征和明显的金属性质。
三、间隙相与间隙化合物(钢中主要的强化相)
由过渡族元素与原子半径小的H、C、N、B等非金属元 素形成的碳化物,氮化物,氢化物和硼化物等。
如:TiC、VC、Fe3C、Fe4N、Fe2N、Fe2B、FeB等。 结构特点:
• 由金属原子M构成骨架,非金属元素X在间隙处规则分布 。

陶瓷材料的结构.pptx

陶瓷材料的结构.pptx

综上所述,金
属材料的成分、 工艺、组织结构 和性能之间有着 密切的关系。
图2-11 两种晶粒大小不同的纯铁示意图
第12页/共35页
2.2 高分子材料的结构与性能
• 2.2.1 高分子材料的结构 • 1.大分子链的构成 • (1)化学组成 • 组成大分子链的化学元素,主要是碳、氢、氧,
另外还有氮、氯、氟、硼、硅、硫等,其中碳 是形成大分子链的主要元素。 • 大分子链根据组成元素不同可分为三类,即碳 链大分子、杂链大第13分页/共子35和页 元素链大分子。
2.晶面与晶向
图2-2 立方晶格中的一些晶面
第2页/共35页
3.金属晶体的类 (型1)体心立方晶格 (2)面心立方晶格 (3)密排六方晶格
图2-3 体心立方晶胞
图2-4 面心立方晶胞
第3页/共35页
图2-5 密排六方晶胞
2.1.2 金属的实际晶体结构
1.单晶体和多晶体
图2-6 单晶体和多晶体结构示意图
图2-20 蠕变前、后分子构象变化示意图 ●应力松弛 如图2-21所示。
图2-21 应力松弛过程中分子构象变化示意图
第22页/共35页
●滞后与内耗 高聚物受周期性载荷时,产生 伸-缩的循环应变,如图2-22所示。
图2-22 橡胶在一个承载周期中的应力-应变曲线
第23页/共35页

图2-23可以看出高聚物的变形特点。A点为 初始状态,B点为屈服点,C点为断裂点。
第25页/共35页
陶瓷的典型组织结构包括: 晶体相(莫来石和石英) 玻璃相 气相
1.晶体相
(1)硅酸盐
硅酸盐基本结构具有以下特点: ①构成硅酸盐的基本单元为硅氧四面 体结构,如图2-24所示; ②硅氧四面体只能通过共用顶角而相 互结合; ③ Si4+通过 O2-结合, Si—O—Si 的结合键在氧上的键角接近于145° ; ④稳定的硅酸盐结构中,硅氧四面体 采取最高空 间维数互相结合; ⑤硅氧四面体采取比较紧密的结构结 合; ⑥同一结构中硅氧四面体最多只相差 1个氧原子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
子,而形成阳离子Mg2+和阴离子O2-
• 可以是共价型的,价电子在很大程度上是共用的 ZnS是这类化合物的一个例子
2020/1/15
刘志勇 14949732@
7
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
AX型离子键结合陶瓷晶体
• AX化合物的特征 • A原子只被做为直接邻居的X原子所配位,X原子也只有A
2020/1/15
刘志勇 14949732@
11
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
离子键结合的陶瓷晶体结构
如Al2O 3及Cr2O3,α-Fe2O3,Ti2O3,V2O3的结构 • Al2O3又称刚玉,工业中运用广泛,如刀具,火花塞、金刚砂磨轮,耐
Cl-
2020/1/15
刘志勇 14949732@
10
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
AmXp型离子键结合的陶瓷晶体结构
• 并非所有的二元化合物都有相等的A原子和X原子 (离子)
• 如氟化钙(CaF2)型结构AX2的ZrO2及UO2, ThO2,CeO2以及Al2O3结构的Al2O3及Cr2O3,αFe2O3,Ti2O3,V2O3。CaF2型结构中A原子具有 面心立方点阵,X原子占据4个A原子之间的间隙 位置,相邻的X原子并不接触
酸泵和印刷线路的衬底的以及排气系统中催化剂支架的高温材料 Al2O3结构中O2-离子具有密排六方的结构,O2-位于密排六方的结点上, 为保持电荷平衡,三分之二的八面体间隙被Al3+离子占据 O2―与相邻的Al3+离子的原子间距很短,只有0.191nm,相互作用的键能 很高,因此熔点大于2000℃,硬度较高(莫氏硬度为9),能够抵抗大多 数的化学试剂腐蚀 Al2O3的低导电性和较高的热导率的结合使它能够用于各种电的用途中
1.16.1 离子键结合的陶瓷晶体结构
• 离子键结合的陶瓷晶体中,两种异号离子半径比值决定了 配位数,配位数直接影响晶体结构,如表所示
配位数 2 3 4 6 8
表 间隙 线性 三角形 四面体间隙 四面体间隙 立方体间隙
结构的配位数 半径比 0~0.15 0.155~0.225 0.225~0.414 0.414~0.732 0.732~1.00
原子作为第一邻居。所以A和X原子或离子是高度有序的 • 形成AX化合物时,使两种原子数目相等而且具有如上所
述的有序配位的三种方法(原型)
CN=8的CsCl型 CN=6的NaCl型 CN=4的ZnS型
2020/1/15
刘志勇 14949732@
8
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2020/1/15
刘志勇 14949732@
1
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
陶瓷材料的晶体相结构
• 比它们的相应组元包含更为复杂的原子配 位,陶瓷的晶体中没有大量自由电子,电 子通过共价键与相邻原子共有,或通过电 子转移而形成离子键,形成以离子键为主的 离子晶体(MgO,Al2O3)或共价键为主的 共价晶体(SiC,Si3N4)
2020/1/15
刘志勇 14949732@
6
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
AX型离子键结合陶瓷晶体结构
最简单的陶瓷化合物具有数量相等的金属原子和非金属原子 • 可以是离子型化合物 • 如MgO,其中两个电子从金属原子转移到非金属原
刘志勇 14949732@
9
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
离子键结合的陶瓷晶体结构---NaCl型
NaCl可以看成由两个面心立方点阵穿插而成的超点阵
将Na+和Cl-看成一个集合
体,即一个结点,此结构
Na+
则为FCC结构,单胞离子
数为4个Na+和4个Cl-
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
陶瓷材料的晶体相结构
• 陶瓷材料是金属元素和非金属元素的化合 而成的物相,如Al2O3,无机玻璃、粘土制 品,Pb(Zr、Ti)O3压电材料等,金属氧 化物是最常见的,有几百种化合物
陶瓷化合物在热和化学环境中比它的组元更 为稳定;如作为化合物的Al2O3就比单独的Al 和O更为稳定
2020/1/15
刘志勇 14949732@
5
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
离子键结合的陶瓷晶体结构
离子化合物结构与正常价化合物基本相同 结合键主要为离子键 有一定比例的共价键 有确定的成分,可用准确分子式表示
• 1.AX型陶瓷晶体 • 2.AmXp型陶瓷晶体 • 3.复杂化合物: a)AmBnXp型结构; b)固溶体 • 4.硅酸盐
2020/1/15
刘志勇 14949732@
2
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
陶瓷的晶体结构
陶瓷的晶体结构特征 • 晶体结构复杂,原子排列不紧密 • 配位数低 • 没有大量自由电子
• 晶体相是陶瓷基本相,决定陶瓷的力学、物理、化学性能
AX型离子键结合陶瓷晶体结构
CsCl具有简单立方的原子排列 NaCl、ZnS具有面心立方的排列
NaCl可以看成由两个面心立方点阵 穿插而成的超点阵,将Na+和Cl- 看成一个集合体,即一个结点, 此结构则为FCC结构,单胞离子 数为4个Na+和4个Cl-
CsCl(NaCl、ZnS)的原子排列
ቤተ መጻሕፍቲ ባይዱ
2020/1/15
陶瓷的键合方式决定着陶瓷的力学、物理、 化学性能,陶瓷比相应的金属或聚合物更 硬,对变形具有更大的抗力,而往往缺乏 塑性
某些陶瓷的介电性、半导体性和磁学特性对 设计或利用电子线路器件特别有用
2020/1/15
刘志勇 14949732@
4
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
陶瓷的晶体结构分类
• 离化子物键结合的陶瓷:MgO,ZrO2,CaO,Al2O3 等金属氧 • 共价键结合陶瓷:SiC,Si3N4,纯SiO2高温相
2020/1/15
刘志勇 14949732@
3
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
陶瓷材料
相关文档
最新文档