基于单片机的电阻炉炉温控制系统

合集下载

基于单片机的电阻炉炉温控制系统解析

基于单片机的电阻炉炉温控制系统解析
第1章引言.......................................................................................................................3
1.1课题背景及研究意义…………………………………………………….………3
随着工业技术的不断发展,传统的控制方式以不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于他主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。
结束语…………………………………………………………………………………....….35
致谢………………………………………………………………………………………….36
参考文献……………………………………………………………………….…………...37
附录1电路图……………………………………………………………………………..38
The design of temperature control system of the resi chip microcomputer
Abstract:Mainly with 51 series single chip microcomputer for the unit of nucleus heats to the control of The resistance furnace,the tallest temperature is 1000℃.And the temperature of keyboard input is constant,LEDdigitron displays the function of temperature point.

基于单片机的电阻炉温度控制系统设计

基于单片机的电阻炉温度控制系统设计

基于单片机的电阻炉温度控制系统设计一、引言电阻炉是一种广泛应用于工业生产中的加热设备,其温度控制的准确性对于工艺过程的稳定和产品质量的保证至关重要。

本文将基于单片机设计一个电阻炉温度控制系统,通过采集温度传感器的信号,用单片机控制加热器的工作状态,实现对电阻炉温度的精确控制。

二、系统结构设计本系统由四个模块组成:温度采集模块、温度控制模块、显示模块和控制模块。

1.温度采集模块:使用一个高精度的温度传感器,如PT100,将电阻炉内部的温度转化为电压信号。

该信号经过模拟转数字转换器(ADC)转换为数字信号,传输给单片机。

2.温度控制模块:根据温度采集模块传输的信号,单片机通过PID算法计算出控制值,并输出PWM信号控制加热器的工作状态。

PID算法可根据实际情况进行参数调整,以达到系统稳定的控制效果。

3.显示模块:采用数码管或液晶显示器显示当前电阻炉的温度值,方便操作员实时监测电阻炉的运行状态。

4.控制模块:可以通过按钮或者触摸屏等方式进行设定和调整控制参数,例如设定温度范围、PID参数调节等。

三、系统工作原理1.系统初始化:单片机启动后,进行相应的外设初始化和参数设定,包括温度采集模块的配置、PID参数的设定、显示模块的显示等。

2.温度采集与转换:通过温度传感器采集电阻炉内部的温度信号,将其转化为模拟电压信号。

利用ADC将模拟信号转换为数字信号,并传输给单片机进行处理。

3.PID算法计算:单片机根据采集到的温度值,通过PID算法计算出控制值。

PID控制算法通常包括比例系数(P)、积分系数(I)和微分系数(D)三个参数的调整,根据实际情况进行调节以达到控制精度和稳定性要求。

4.PWM输出控制:根据PID算法计算得到的控制值,单片机输出对应的PWM信号。

该信号通过驱动电路控制加热器的工作状态,调整和维持电阻炉的温度。

5.温度显示:单片机将当前的温度值通过显示模块进行显示,使操作员能够实时监测到电阻炉的温度。

基于单片机的电阻炉炉温控制系统

基于单片机的电阻炉炉温控制系统

目录第1章引言 (3)1.1 课题背景及研究意义 (3)1.2 计算机在热处理炉炉温控制中的应用 (3)第2章系统硬件设计 (8)2.1温度检测及变送器 (8)2.2控制机构 (9)2.3 A/D转换电路 (10)2.4 温度控制电路 (14)2.5 部分接口电路 (16)第3章温度控制的算法和程序 (18)3.1 温度控制的算法 (18)3.2 温度控制的程序 (20)第4章对于抗干扰的探究 (34)4.1 抗干扰的措施 (34)结束语 (35)致谢 (36)参考文献 (37)附录1 电路图 (38)附录2 英文专业文摘及翻译 (39)基于单片机的电阻炉温度控制系统设计摘要:主要以51系列单片机为核心对电阻炉炉温进行控制,使其温度稳定在某一个值上。

最高温度为1000℃,并且有键盘输入给定温度值,由LED数码管显示温度值的功能.关键词:单片机;电阻炉;温度控制The design of temperature control system of the resistance furnace based on single chip microcomputerAbstract: Mainly with 51 series single chip microcomputer for the unit of nucleus heats to the control of The resistance furnace, the tallest temperature is 1000℃. And the temperature of keyboard input is constant, LED digitron displays the function of temperature point.Key words: single chip microcomputer;the resistance furnace; temperature control system第一章引言1.1课题背景及研究意义近几年来,在我国以信息化带动的工业化正在蓬勃发展,温度已成为工业对象控制中一种重要的参数,特别是在冶金、化工、机械等各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。

(完整版)基于单片机的电阻炉温控制系统毕业设计论文

(完整版)基于单片机的电阻炉温控制系统毕业设计论文

摘要在现代工业生产中,人们需要对各类加热炉、反应炉和锅炉中的温度进行检测和控制。

为适应这一需要有必要设计一个性能良好、操作方便的温度控制系统。

课题主要设计一个水温测控系统,控制锅炉中水的温度,选择合适的控制规律,使锅炉中水的温度按预定规律变化,并且能够进行越限报警。

可通过键盘,显示电路设定目标温度和参数。

控制系统按功能分主要包括温度传感器模块、温度显示设定模块、温度控制模块、单片机与上位机通信模块。

系统可通过键盘对电阻炉水温以及恒温时间长短进行预设,单片机根据当前炉内温度和预设温度,根据设定的算法计算出控制量,根据控制量通过PWM控制固态继电器的导通和关闭从而控制电阻丝的导通时间,以实现对炉温的控制。

另外通过单片机的串口与上位机通信,通过上位机软件实时显示当前温度和历史温度并且绘制出温度曲线,让系统的可读性更强,实现了远程监测的功能[2]。

关键词:电阻炉,温度曲线,PWM,上位机AbstractThe project is mainly about designing a water temperature monitoring system to control the water temperature in the boiler, and choosing proper control rules to make water temperature in the boiler change within the predetermined path, with the function of alerting temperature rising limit. Through the keyboard and display, we can set the goal temp. and other parameters. Control system, according to the functions, includes temperature sensor module, the temperature display setting module, a temperature control module, MCU and module. System can preset the resistance furnace temperature and and off so as to control the resistance wire conduction time in order to achieve temperature control. In addition through the serial port of MCU and , through the PC software, the device can fulfill the real-time display of current temperature and temperature .Key words: STC89C52, DS18B20, PWM, PC目录摘要.............................................................. ..I Abstract . (II)目录 (III)1 绪论 (1)1.1 选题意义 (1)1.2 国内外发展趋势 (1)1.3 系统的主要性能指标 (2)1.4 主要工作任务 (2)2 系统方案选择和工作原理 (2)2.1 系统综述 (2)2.2各模块电路的方案选择及论证 (3)2.2.1 系统硬件总框图 (3)2.2.2主机控制模块 (4)2.2.3温度控制模块 (4)2.2.4温度采集模块 (5)2.2.5显示模块 (5)2.2.6上位机软件 (6)2.3系统各模块的最终方案 (6)3 系统硬件设计 (7)3.1 STC89C52构成的最小系统 (7)3.1.1 晶振回路 (7)3.1.2 复位电路 (8)3.2温度采集模块的硬件设计 (8)3.2.1温度传感器DS18B20概述 (8)3.2.2温度采集模块的硬件设计 (10)3.3 报警电路设计 (10)3.4 电源电路设计 (11)3.5 按键电路设计 (12)3.5.1矩阵式键盘的结构与工作原理 (12)3.5.2矩阵键盘两种扫描方式 (13)3.6 显示电路设计 (13)3.6.1 LCD1602简介 (13)3.6.2 LCD1602管脚功能介绍 (14)3.6.3温度显示模块电路图 (17)3.7 时钟电路设计 (17)3.7.1 DS1302简介 (17)3.7.2 DS1302的结构及工作原理 (18)3.7.3 DS1302的控制字节 (18)3.7.4数据输入输出(IO) (18)3.7.5 DS1302的寄存器 (19)3.7.6 DS1302硬件连接图 (19)3.8电平转换电路设计 (19)3.8.1 RS-232标准介绍 (19)3.8.2 DB-9连接器 (20)3.8.3 MAX232芯片介绍 (22)3.8.4 串口硬件连接图 (22)3.9 继电器驱动电路设计 (22)3.9.1 固态继电器的分类与工作原理 (22)3.9.2固态继电器的硬件连接图 (24)4 系统的软件设计 (24)4.1 主程序的设计 (25)4.2 液晶显示模块 (26)4.3温度模块软件设计 (27)4.3.1 DS18B20测温数据的读取程序设计 (27)4.3.2 DS18B20温度读取流程 (32)4.4中断服务函数 (33)4.5上位机软件设计 (34)5 系统抗干扰措施 (37)5.1软件抗干扰措施 (37)结论 (39)致谢 (40)参考文献 (41)附录A 系统原理图 (42)附录B 系统总程序 (43)1 绪论1.1 选题意义随着现代科学技术的迅猛发展,各个领域对温度控制系统的精度、稳定性等的要求越来越高,控制系统也千变万化。

基于单片机的电阻炉温度控制系统

基于单片机的电阻炉温度控制系统

基于单片机的电阻炉温度控制系统基于单片机的电阻炉温度控制系统是一种应用于工业领域的温度控制系统,它能够实时监测电阻炉的温度,并根据设定的温度范围进行自动控制,以保持电阻炉的温度稳定在设定值附近。

本文将详细介绍该系统的设计原理、硬件设计和软件设计等方面。

1.设计原理电阻炉温度控制系统的基本原理是通过采集电阻炉的温度信号,然后与设定温度进行比较,最后通过控制电阻炉的加热元件来实现温度的控制。

系统的主要部件包括温度传感器、模拟信号处理电路、ADC转换模块、单片机、继电器等。

2.硬件设计硬件设计主要包括电路原理图设计和PCB设计,其中电路原理图设计包括电源部分、传感器接口部分、显示部分、通信接口部分和控制部分。

PCB设计是将电路原理图转化为PCB布局和制作过程。

3.软件设计软件设计是整个系统的核心部分,它主要包括单片机程序设计和人机界面设计。

单片机程序设计主要包括温度采集、温度比较、控制算法和输出控制等功能代码的编写。

人机界面设计是通过LCD显示屏、按键和喇叭等组件来与用户进行交互,包括温度设定、温度显示和报警等功能。

4.系统调试和优化系统调试是在硬件和软件设计完成后进行的一系列测试和优化工作,包括电路板的组装和连接、功能的测试和调试等。

对于系统的稳定性和准确性进行优化和改善,如增加滤波电路来提高温度信号的稳定性、使用PID控制算法来提高温度控制的精度等。

5.系统应用该系统可以广泛应用于电子厂、化工厂、冶金厂等工业领域,用于实现电阻炉的精确温度控制。

通过控制电阻炉的温度,可以保证产品质量和生产效率,避免过热或过冷对生产过程的影响。

总结:基于单片机的电阻炉温度控制系统是一种应用广泛的温度控制系统,通过实时监测电阻炉的温度,并根据设定的温度范围进行自动控制,可以稳定地保持电阻炉的温度在设定值附近。

该系统的设计原理、硬件设计和软件设计都有较为详细的介绍和说明,为实现电阻炉的精确温度控制提供了可行的方案。

如有兴趣,欢迎了解。

毕业设计基于单片机的电阻炉温度控制系统设计

毕业设计基于单片机的电阻炉温度控制系统设计

基于单片机的电阻炉温度控制系统设计摘要电阻炉作为工业炉窑中的一种常用加热设备被广泛应用于工业生产中。

对电阻炉温度控制精确与否将直接影响到产品的质量和生产效率。

电阻炉是一种具有纯滞后的大惯性系统,开关炉门、加热材料、环境温度以及电网电压等都影响控制过程,传统的电阻炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。

本文将PID控制算法引入到传统的电阻炉控制系统中,借此提高其控制效果。

设计一个控制精度高、运行稳定的电阻炉温度控制系统是很有必要的。

本设计是以电阻炉为被控对象,单片机为核心设计的一种控制系统。

其中以K型热电偶作为温度传感器,STC89C52单片机为控制核心,PID运算规律作为控制算法。

文中详细介绍了该控制系统的硬件电路设计、软件设计及PID控制算法。

在对电阻炉温度控制系统的研究之后,本设计主要完成温度控制系统的总体方案设计、硬件原理图的绘制、信号调理电路的设计、固态继电器的应用及温度控制电路的设计同时也完成了系统程序设计,并通过软件完成了对温度的控制功能。

关键词:电阻炉;温度控制;PID算法;单片机The design of resistor furnace temperature control systembased on singlechipAbstractResistance furnace was widely used in industrial production, the effect of the temperature control of Resistance furnace has a direct impact on product quality and productivity.Therefore, the design of a high-precision control and stable operation of the resistance furnace temperature control system has a high application value.In this design , the resistance furnace as a controlled object, singlechip as the design of a control unit.Which type of thermocouple temperature sensor as K, STC89C51 microcontroller as control core and PID control algorithm for operation rule. This paper introduces the control system of the hardware circuit design, software design and the PID control algorithm.On the resistance furnace temperature control system, the design of the main completed the overall scheme of the temperature control system design, hardware circuit principle diagram, the signal of circuit, the application of solid state relays and temperature control circuit design of the system,meanwhile finish the program design, through the software control to complete the function of temperature control.Key words: resistance furnace; temperature control; PID control;single-chip microcomputer目录摘要 (I)Abstract (II)目录 ...................................................................................................................................... I II 第一章绪论 (1)1.1课题研究的背景及意义 (1)1.2国内外研究概况及发展趋势 (2)1.3智能温度控制技术的发展 (2)1.3.1 PID控制 (2)1.3.2 模糊控制 (4)1.3.3 模糊自整定PID控制 (5)1.3.4 神经网络控制系统 (5)1.3.5 专家控制系统 (6)第二章电阻炉温度控制系统总体方案设计 (8)2.1基于虚拟仪器的电阻炉温度控制 (8)2.2基于PLC的电阻炉温度控制 (8)2.3单片机与FPGA综合实现电阻炉的温度控制 (9)2.4基于单片机的电阻炉温度控制系统 (10)第三章硬件电路设计 (12)3.1温度检测电路 (12)3.1.1 温度传感器 (12)3.1.2 冷端温度补偿 (13)3.2 放大电路 (13)3.3 ADC0832简介 (15)3.3.1ADC0832引脚如图 (15)3.3.2单片机对ADC0832 的控制原理 (16)3.4 STC89C52单片机 (18)3.4.1单片机简介 (18)3.4.2管脚说明 (19)3.4.3单片机的复位电路 (21)3.4.4单片机的晶振电路 (22)3.5人机接口电路 (22)3.5.1 LCD液晶显示 (22)3.5.2 键盘 (26)3.6温度控制电路固态继电器及应用 (27)3.7报警电路 (29)第四章软件设计 (30)4.1主程序设计 (30)4.2 子程序设计 (31)4.2.1 A/D采样子程序 (31)4.2.2线性化 (31)4.2.3标度变换 (32)4.2.4键盘子程序 (34)4.2.5显示子程序 (34)4.2.6 PID子程序 (35)4.2.7 PWM控制子程序 (38)第五章系统调试 (41)总结 (44)参考文献 (45)附录A 硬件原理图 (47)附录B 源程序 (48)致谢 (60)第一章绪论1.1课题研究的背景及意义随着社会的发展,自动控制越来越成受到人们关注,自动调节电阻炉温度系统得到了广泛的应用。

基于单片机的电阻炉温度控制系统的设计

基于单片机的电阻炉温度控制系统的设计

基于单片机的电阻炉温度控制系统的设计一、本文概述Overview of this article本文主要探讨基于单片机的电阻炉温度控制系统的设计。

随着工业自动化的不断发展,电阻炉作为常见的加热设备,其温度控制精度和稳定性对生产效率和产品质量具有至关重要的影响。

传统的电阻炉温度控制方法往往存在精度低、稳定性差等问题,难以满足现代工业生产的需求。

因此,设计一种基于单片机的电阻炉温度控制系统,具有重要的实用价值和应用前景。

This article mainly explores the design of a temperature control system for a resistance furnace based on a microcontroller. With the continuous development of industrial automation, resistance furnaces, as common heating equipment, have a crucial impact on production efficiency and product quality due to their temperature control accuracy and stability. Traditional temperature control methods for resistance furnaces often have problems such as low accuracy and poor stability, making it difficult to meet the needs of modernindustrial production. Therefore, designing a temperature control system for a resistance furnace based on a microcontroller has important practical value and application prospects.本文将首先介绍电阻炉温度控制系统的基本原理和要求,包括温度控制的重要性、温度控制方法的分类和特点等。

毕业设计---基于单片机的电阻炉温度控制系统

毕业设计---基于单片机的电阻炉温度控制系统

摘要随着社会的发展,自动控制越来越成为人们关注的焦点,自动调节电阻炉温度系统也备受关注--。

其中微机及其应用已经成为高、新科学技术的重要内容和标志之一,它在国民经济的各个领域正在发挥着引人注目的作用。

微机控制的电阻炉温度控制系统实际上就是一个智能控制系统,是一种能耗相对来说比较低的温度控制系统。

本人采用AT89C51单片微机对电阻炉的加热过程进行控制。

使用热电偶作为温度传感器把热信号转变成电信号,电信号再经过放大,经过模数转换再输入到CPU。

控制器采用PID控制算法,温度控制的原理是通过调整晶闸管的导通时间来调节加热主回路的有效电压,从而达到温度控制的目的。

系统由AT89C51单片微机、温度传感器、A/D转换器、键盘及显示电路、晶闸管触发电路等组成的控制器和被控对象电阻炉构成一个闭环控制系统[1]。

系统控制程序采用模块化设计结构,主要包括主程序、中断服务子程序、控制算法子程序等。

系统采用过零触发等技术,省去了传统的D/A转换元件,简化了电路,并且提高了系统的可靠性。

同时,系统可以实时控制电阻炉的实际温度。

关键词:AT89C51;热电偶;晶闸管; PIDABSTRACTWith the development of the society,the autocontrol becomes more and more important.The autocontrol of the resistance furnace is highly anticipated.Microcomputer and its application has become one of the most important contents and signs in the field of High-scientific technology and new scientific technology, which plays an attractive role in every field in our national economy.As a matter of fact, Resistance Temperature Control System which is operated by microcomputer is an Intellectual Control System.In other words,it is a Temperature Control System which consumes less than others.The AT89C51 single microcomputer is adopted to control the heating process of resistance,use as a temperature transducer to turn the heating single into electing single,enlarge the electrical single,transformed through simulate numbers,then input CPU.Controllers use PID control calculation.The principle of temperature control is to adjust and heat the effective voltage of the main circuit through regulate the diversified time of transistor,therefore,it carries out the purpose of controlling the temperature.System as controlled resistance makes up an cycle control system.Control procedure of system adopts the structure of designing module,including main procedure,subsiding of suspending serves and subsidiary of control calculation etc.System adopt A.C、passes through zero etc technologies,omit traditional D/A transform components,simplify the circuit,and improve the dependability of system.Meanwhile,system also can control the real temperature of resistance at the right moment.Keywords:AT89C51;thermocouple;thyristor;PIDII目录第一章绪论 (1)1.1课题研究的背景及意义 ............................................................. - 1 -1.2 国内外研究现状 ........................................................................ - 2 -1.3 本文的主要内容 ........................................................................ - 3 - 第二章电阻炉温度控制系统总体设计方案 .......................................... - 4 -2.1系统原理 ..................................................................................... - 4 -2.2方案比较 ..................................................................................... - 6 -2.3系统方案的论证 (6)第三章系统硬件设计 (8)3.1 温度检测电路 (8)3.1.1 热电偶冷端温度补偿 (9)3.1.2 测量放大电路 (9)3.1.3 保护电路 (10)3.2 单片机的选型 .......................................................................... - 10 -3.3 EEPROM存储器的扩展设计 ..................................................... - 11 -3.4 A/D转换电路设计 (13)3.4.1隔离放大器的设计 ....................................................... - 14 -3.4.2 DAC7521数模转换接口 ............................................... - 16 -3.5 键盘及显示电路设计 (16)3.5.1 键盘接口电路设计 (16)3.5.2 显示电路设计 .............................................................. - 18 -3.6 可控硅调功控温 ...................................................................... - 18 -3.6.1 过零触发调功器的组成 .............................................. - 19 -3.6.2 可控硅调功主要电路介绍 .......................................... - 19 -3.7 与上位机通信模块 .................................................................. - 21 -3.7.1 通信接口MAX485 ......................................................... - 21 -Ⅲ3.7.2 下位机通信接口电路 .................................................. - 22 -3.8 掉电检测与保护电路 .............................................................. - 23 -3.9 晶闸管过零检测与触发电路…………………………………….23-24 -3.10 看门狗电路的设计 (24)第四章控制算法研究 (27)4.1 传统的PID算法 ...................................................................... - 28 -4.2 积分分离PID算法 .................................................................. - 29 -4.3 系统仿真分析 .......................................................................... - 30 - 第五章系统软件设计 (31)5.1 系统主程序设计 ...................................................................... - 32 -5.2 系统的控制程序 (33)5.3 积分分离PID控制 (34)5.4 采样子程序 .......................................................................... - 36 -35 结论 .......................................................................................................... - 38 - 致谢 (38)参考文献 .................................................................................................. - 40 - 附录 (40)Ⅲ第一章绪论热处理是提高金属材料及其制品质量的重要手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章引言 (3)1.1 课题背景及研究意义 (3)1.2 计算机在热处理炉炉温控制中的应用 (3)第2章系统硬件设计 (8)2.1温度检测及变送器 (8)2.2控制机构 (9)2.3 A/D转换电路 (10)2.4 温度控制电路 (14)2.5 部分接口电路 (16)第3章温度控制的算法和程序 (18)3.1 温度控制的算法 (18)3.2 温度控制的程序 (20)第4章对于抗干扰的探究 (34)4.1 抗干扰的措施 (34)结束语 (35)致谢 (36)参考文献 (37)附录1 电路图 (38)附录2 英文专业文摘及翻译 (39)基于单片机的电阻炉温度控制系统设计摘要:主要以51系列单片机为核心对电阻炉炉温进行控制,使其温度稳定在某一个值上。

最高温度为1000℃,并且有键盘输入给定温度值,由LED数码管显示温度值的功能.关键词:单片机;电阻炉;温度控制The design of temperature control system of the resistance furnace based on single chip microcomputerAbstract: Mainly with 51 series single chip microcomputer for the unit of nucleus heats to the control of The resistance furnace, the tallest temperature is 1000℃. And the temperature of keyboard input is constant, LED digitron displays the function of temperature point.Key words: single chip microcomputer;the resistance furnace; temperature control system第一章引言1.1课题背景及研究意义近几年来,在我国以信息化带动的工业化正在蓬勃发展,温度已成为工业对象控制中一种重要的参数,特别是在冶金、化工、机械等各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。

由于炉子的种类及原理不同,因此所采用的加热方法及燃料也不同,如煤气、天然气、油电等。

对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,选用的燃料,控制方案也有所不同。

例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等;控制方案有直接数字控制(DDC),推断控制,预测控制,模糊控制(Fuzzy),专家控制(Expert Control),鲁棒控制(Robust Control),推理控制等。

随着工业技术的不断发展,传统的控制方式以不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于他主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。

近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。

这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。

单片微型计算机的功能不断的增强,为先进的控制算法提供的载体,许多高性能的新型机种应运而生。

单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化领域和其他测控领域中广泛应用的器件,在工业生产中成为必不可少的器件。

在温度控制系统中,单片机更是起到了不可替代的核心作用。

像用于热处理的加热炉、用于融化金属的坩锅电阻炉等类似工业用加热炉中都可以广泛应用,随着生产的发展,在工业中,一些设备对温度的控制要求越来越高,而本文则以单片机为核心、PID 算法为控制方式而设计的电阻炉温度控制系统。

1.2计算机在炉温控制中的应用以前,人们是通过模拟仪表对炉温进行控制,采用人工手动操作,依据个人的工作经验和控制系统返回的数据来调节相应的设备,控制效果不太理想,生产也不稳定。

到了50年代,随着计算机的出现,人们开始在工厂、实验室或其它测试环境中用计算机进行数据采集和处理。

此时的计算机只起到“离线”的应用,且计算机与过程装置之间没有任何物理上的连接。

随着计算机技术的进一步发展,提供了计算机与过程装置之间的接口,人们开始用直接连接方法,使计算机与变送器和执行部件之间的信号双向传递无需人工干涉。

1962年,英国帝国工业公司安装了Ferranti Argus 计算机控制系统,替代全部模拟控制仪表,即模拟技术由数字技术代替,而系统功能保持不变,计算机控制系统应用真正开始,经历多年研究和改进,到70年代中期进入了集散控制系统的发展时期,炉温控制也随之进步,方式不断更新,算法也不断深入 技术日益成熟。

一般来说,计算机对炉温控制大致采用以「四种方式」1.计算机采集和处理系统(data acquisition system, DAS)计算机采集和处理系统是以计算机为核心对生产过程进行智能化,全工况开环监视系统。

其主要功能包括:信息输入,信息处理,报警处理,人机联系与信息输出等。

其系统构成如图1-1所示,计算机系统对生产过程的温度参数进行采集,并对信号进行转换,计算机对内部信息进行定期计算和处理。

图1-1 计算机采样处理系统结构图2直接数字控制系统(direct digital control, DDC)直接数字控制由计算机直接对生产过程进行控制,计算机取代模拟调节器作为生产过程控制装置,计算机按控制规律进行数值计算,并经过输出通道(D/A)直接控制生产过程。

直接数字控制系统实质上是单回路或多回路的数字调节装置,它以工控机为核心,加上过程输入、输出通道,与被控对象一起构成闭环控制系统。

它还具有巡回检测的全部功能,可以显示参数值,打印报表,并能进行越限报警和故障自诊。

(如图1-2所示) 被控对象 控 制 仪表 检 测 A/D 转换 计算机 数码LED 显示 事故报警打印机 音响灯光报警 人图1-2 直接数字控制系统结构图3计算机监督控制系统(supervisory computer control, SCC)由计算机根据生产过程工艺参数和数学模型,计算出最佳设定值和相应的控制指令,送给模拟调节器或DDC计算机,由模拟调节器或DDC计算机控制生产过程,使其处于最优工况。

其系统框图如1-3所示。

图1-3 计算机监督控制系统结构图SCC系统不仅可以进行给定值控制,同时还可以进行顺序控制,最优控制及自适应控制,它是DAS和DDC系统的综合和发展。

SCC系统按结构分为两种,一种是SCC 加模拟调节器,另一种是SCC+DDC控制系统,模拟或DDC系统担负第一级控制功能,监督计算机作为的二级控制系统,通过对子回路装置的切除或投入,对子回路状态及控制效果的监视,对最佳设定值进行计算与设置,使生产过程能在协调或最优化的程度上达到要求的性能指标。

监督计算机可仅完成最优工况计算,不直接参与过程控制,在有的系统中,它本身也具备直接数字控制功能,当监督计算机发生故障时,直接数字控制或模拟调节器可独立完成操作,而在模拟调节器等发生故障时,则可由监督计算机执行部分功能。

4.集散控制系统(distributed control)集散控制即分散控制,信息集中管理的分布控制系统。

它是计算机技术,控制技术,通信技术和CRT技术相结合的产物。

集散控制是以微处理机为核心,把微型计算机,工业控制机,数据通讯系统,显示操作装置,过程通道,模拟仪表等有机的结合起来,采用组合组装式组成系统。

为每个被控对象配备一套下位机控制设备,置于现场,用于对每个被控对象的数据采集和控制。

总体配备一台1_控机作为上位机,置于控制室内,对现场每个被控对象进行命令下达,组织和处理数据信息,集中管理整个系统。

此种方式能够实现工程系统的最优控制,使生产过程能长期在最佳状态下进行,且具有较高的可靠性,提高了系统的功能和效率,另外它的软件和硬件采用模块化结构,使用维护方便,系统易开发,易扩展,有利于分批投资逐步扩展;如果采用CRT操作站会有良好的人机交互接口;数据的高速传输,设备、通信,配线的费用低廉。

性能价格比较好。

(其系统框图见图1-4)近年来,由工控机(或PC机)和多台单片机或PLC构成的集散测控系统已广泛用于工业自动化控制中。

它既利用了单片机和PLC价格低、功能强、可靠性高的优点构建适宜于工业现场的监控站或下位机,又结合PC机丰富的软硬件资源,提供管理功能强大、人机界面友好的操作平台,实现了信息集中管理、过程分散控制的有机结合。

图1-4 集散系统控制结构图从温度控制系统的发展来看,以单片机为核心构成的温度控制系统己被国内外许多公司和单位作为研究对象,单片机温度控制装置硬件简单,软件丰富,能方便地实现现代化控制规律和多种功能,性能优良,运行、调试都非常方便,且生产成本低,可加快生产设备的更新换代,己开始受到重视和欢迎。

加之近年来,单片机的性能不断提高,而价格却逐年降低,所以单片机温度控制装置将具有广阔的发展和运用前景。

第二章系统硬件设计温度测控系统硬件结构图如图2-1所示。

图2-1 系统硬件结构图系统的工作过程:温度检测及变换电路把温度转换成电压信号,经A/D转换器转换为数字信号送人8031单片机中,并与给定值(对应着所要控制的温度值)进行比较,其偏差被PID程序计算出输出控制量,由P1.3口输出脉冲信号控制双向可控硅的导通,以实现对电炉输出有效功率的调节。

现对各部分主要电路作介绍。

2.1 温度检测和变送器温度检测元件和变送器的类型选择和被控温度及其精度等级有关,选用镍铬一镍铝热电偶作为温度传感器,测量温度范围0-1000℃,相应输出电压为0mV-41.32mV。

变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于将热电偶输出的0-41.32mV的电压变化成0-10Ma范围内的电流,电流/电压变送器负责将毫伏变送器输出的0-10mA 电流变换成为0-5v范围内的电压。

(ADC0809的限定电压为0-5v)为了提高测量精度,变送器可以进行零点迁移。

例如:如果温度测量范围为400℃-1000℃,则热电偶输出为16.4Mv-41.32Mv,毫伏变送器零点迁移后输出0-10mA范围内的电流。

这样采用ADC0809这个8位的A/D转换器就能是量化温度误差达到正负2.34以内2.2 控制机构本设计采用8031单片机作为控制机构的核心。

8031是一种速度快,功耗大的TTL型8位单片机。

它片内无ROM,片内RAM容量为128B,最高频率为24MHz,小巧,价格便宜,且在中国市场最常见,应用最广泛。

相关文档
最新文档