等差数列的性质练习 含答案

合集下载

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手,多多赢得小印章!分析:以下答案仅供参考!(1) 先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、…… 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、…… 从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用a 1表示;末项:一个数列的最后一项,通常用a n 表示,它也可表示数列的第n 项. 每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变得差,通常用d 来表示;和 :一个数列的某些项的和,常用S n 来表示 .(3) 三个重要的公式:① 通项公式:末项=首项+(项数-1)×公差1(1)n a a n d =+-⨯回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:(),()n m a a n m d n m -=-⨯② 项数公式:项数=(末项-首项)÷公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到: 1()1n n a a d =-÷+ (1na a 若);1n ()1n a a d =-÷+(1n a a 若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、……、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组. 当然,我们还可以有其他的配组方法.③ 求和公式:和=(首项+末项)×项数÷21()2n n s a a n =+⨯÷对于这个公式的得到我们可以从两个方面入手:(思路1)1+2+3+…+98+99+100=101×50=5050(思路2)这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:(1)4+8+12+…+32+36=(4+36)×9÷2=20×9=180 ,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20×9 ;(2)65+63+61+…+5+3+1=(1+65)×33÷2=33×33=1089 ,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33×33 .如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项 .中项定理也可用在速算与巧算中.譬如:计算:124.68+324.68+524.68+724.68+924.68分析:这是一列等差数列,项数是奇数,中间数是524.68,所以可以用5×524.68=2623.4 .等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点.一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透.【复习2】某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.问:这个剧一共有多少个座位?分析:首项:70-(25-1)×2=22 ,座位总数:(22+70)×25÷2=1150.【复习3】小明从1月1日开始写大字。

经典等差数列练习题(含答案)

经典等差数列练习题(含答案)

经典等差数列练习题(含答案)等差数列一、选择题:1.2005是数列7,13,19,25,31, ,中的第()项.A.332B.333C.334D.3352.已知等差数列首项为2,末项为62,公差为4,则这个数列共有()A.13项B.14项C.15项D.16项3.已知等差数列的通项公式为a n3na,a为常数,则公差d=()4.首项为24的等差数列从第10项起开始为正数,则公差d的取值范围是()A.d 8 8D.8B.d3C. d3 d33 3 3()A.第22项B.第21项C.第20项D.第19项6. 已知数列a,-15,b,c,45 是等差数列,则a+b+c 的值是( )A.-5 B .0 C .5 D .10( ) A.45 B .48 C .52 D .558.已知等差数列的首项a1和公差d是方程x2-2x-3=0 的两根,且知d>a1,则这个数列的第30项是( )A.86 B.85 C.84D.83()A.3B.2C.1D.-110、若x≠y,且两个数列:x,a1,a2,y 和x,b1,b2,b3,y 各成等差数列,那么a1x()(A) 3(B) 4(C) 2 (D)值不确定y b3 4 3 3二填空题1.等差数列a n中,a29,a533,则a n的公差为______________。

2.数列{a n}是等差数列,a47 ,则s7_________3.等差数列a n中,a3a524,a23,则a621.4.在等差数列{a n}中,若a4a6a8a10 a12 120,则2a10a12 .5.在首项为31,公差为-4的等差数列中,与零最接近的项是6.如果等差数列a n的第5项为5,第10项为5,则此数列的第1个负数项是第项.7.已知{a n}是等差数列,且a4a7a1057,a4a5a6a14 77,若ak13,则k=8.在△ABC中,A,B,C成等差数列,则tan A tan C3tan A tanC.三、解答题:2 22 21.根据数列的前几项写出数列的一个通项公式。

等差数列练习题附答案

等差数列练习题附答案

等差数列练习题附答案一、选择题1、已知等差数列{an}中,S10=120,那么a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,那么这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,那么S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.一、选择题1、已知等差数列{an}中,S10=120,则a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,则这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,则S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.1.在等差数列{an}中,已知a4=0.8,a11=2.2,求a51+a52的值。

等差数列的性质2

等差数列的性质2

(3) 已知 a4+a5+a6+a7=56,a4a7=187,求a14及公差d.
a4+a7=28 ①
解 ①、 ② 得 又 a4a7=187 ② ,
解: a4+a5+a6+a7=56
a4= 17
a7= 11

a4= 11 a7= 17
∴d= _2或2, 从而a14= _3或31
练习
1.等差数列{an}的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( B ) A . -1 B. 1 C .-2 D. 2
{an+bn},{an-bn},仍是等差数列,且公差分别为: d1+d2,d1-d2
等差数列的其它性质:
(2)若{an}、{bn}分别是公差为 d1、d2 的等差数列,则下 列{pan+qbn}(p、q 是常数)是公差为 pd1+qd2 的等差数列. 3. {an}的公差为 d, 则 d>0⇔{an}为 递增 数列; d<0⇔{an} 为 递减 数列;d=0⇔{an}为 常 数列.
【方法总结】
等差数列性质较多,利用数列性质
解题,方法灵活,计算简化,应多加思考,培养学生的 发散思维能力.
a2 变式练习 4 数列{an}满足 a1= 2a, an+ 1= 2a- (n an 1 ∈ N ),其中 a 是不为零的常数,令 bn= . an - a
*
(1)数列{bn}构成什么数列?并证明你的结论; (2)求数列{an}的通项公式.
[解析] a3+ a6+ a9+ „+ a99= (a1+ 2d)+ (a4+ 2d)+ (a7+ 2d) + „„+ (a97+2d)=(a1+a4+a7+„+a97)+2d×33=50+(-4)×33=-82.

(完整版)等差数列练习题有答案

(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。

11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。

{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。

n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。

1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。

n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。

n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。

等差数列典型例题及详细解答

等差数列典型例题及详细解答

1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项 如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n a 1+a n2或S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.(2015·重庆)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.2.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案 C解析 由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176 答案 B 解析 S 11=11a 1+a 112=11a 4+a 82=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10等于( ) A .100 B .210 C .380 D .400答案 (1)C (2)B解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×10-12×12=52.(2)因为a 2=7,a 4=15,所以d =4,a 1=3, 故S 10=10×3+12×10×9×4=210.思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5等于( )A .5B .7C .9D .11(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )B .1C .2D .3 答案 (1)A (2)C解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5a 1+a 52=5a 3=5.故选A.(2)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 (1)C (2)A解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60. 命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 S n =20n +n n -12·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0, ∴a 13=0.又a 1=-20,∴a 12<0,a 14>0, ∴当n =12或13时,S n 取得最小值, 最小值S 12=S 13=13a 1+a 132=-130.思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. ②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( ) A .5 B .6 C .7 D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A .5B .6C .5或6D .11(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)B (2)C (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C. (3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n n -12d =20n -n n -12×2=-n 2+21n =-⎝⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) A .S 4 B .S 5 C .S 6 D .S 7思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9, 所以S 10=10a 1+a 102=10a 3+a 82=10×92=45.(2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=a 11+a 100×902=-90,所以a 11+a 100=-2, 所以S 110=a 1+a 110×1102=a 11+a 100×1102=-110.(3)因为⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5. 答案 (1)A (2)-110 (3)B温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练 (时间:35分钟)1.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.2.(2015·北京)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 ∵数列{a n }为等差数列,且前n 项和为S n , ∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0,解得m =5,经检验为原方程的解,故选C.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11答案 B解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8 D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8,故选C. 6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14.7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d , ∵a 3=a 22-4,∴1+2d =(1+d )2-4, 解得d 2=4,即d =±2.由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12n -1=n -1-n 2n n -1=-12n n -1.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -1,n ≥2.10.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得≤n ≤,故当n =7时,S n 最大. 方法四 由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升 (时间:20分钟)11.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( ) A .S n 的最大值是S 8 B .S n 的最小值是S 8 C .S n 的最大值是S 7 D .S n 的最小值是S 7答案 D解析 由条件得S n n <S n +1n +1,即n a 1+a n 2n <n +1a 1+a n +12n +1,所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =________.答案 13解析 S k +1=S k +a k +1=-12+32=-212,又S k +1=k +1a 1+a k +12=k +1⎝⎛⎭⎪⎫-3+322=-212,解得k =13.13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.答案1941解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+n n -12×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小, 最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n , 所以b n =S nn +c =2n 2-nn +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),经验证c =-12时,{b n }是等差数列,故c =-12.。

等差数列测试题含答案

等差数列测试题含答案

等差数列测试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.等差数列1+x ,2x +2,5x +1,…的第四项等于( ) A .10B .6C .8D .122.在等差数列{}n a 中,若2810a a +=.,则()24652a a a +-=( ) A .100B .90C .95D .203.已知数列{}n a 是等差数列,数列{}n b 分别满足下列各式,其中数列{}n b 必为等差数列的是( ) A .||n n b a =B .2n n b a =C .1n nb a =D .2nn a b =-4.在等差数列{}n a 中,11a =,513a =,则数列{}n a 的前5项和为( ) A .13B .16C .32D .355.在等差数列{}n a 中,若39717,9a a a +==,则5a =( ) A .6B .7C .8D .96.在等差数列{}n a 中,124a a +=,7828a a +=,则数列的通项公式n a 为( ) A .2nB .21nC .21n -D .22n +7.已知数列{}n a 是等差数列,71320a a +=,则91011a a a ++= ( ) A .36B .30C .24D .18.已知数列{}n a 是首项为2,公差为4的等差数列,若2022n a =,则n = ( ) A .504B .505C .506D .5079.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .4210.已知等差数列{}n a 满足3456790a a a a a ++++=,则28a a +等于( ) A .18B .30C .36D .4511.在等差数列{}n a 中,143,24a a ==,则7a = A .32B .45C .64D .9612.设数列{}n a 是公差为d 的等差数列,若244,6a a ==,则d = ( )A .4B .3C .2D .113.在等差数列{}n a 中,若3712a a +=,则5a =( ) A .4B .6C .8D .1014.在等差数列{}n a 中,若3691215120a a a a a ++++=,则12183a a -的值为( ) A .24B .36C .48D .6015.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72B .60C .48D .3616.已知数列{}n a 是等差数列,且66a =,108a =,则公差d =( ) A .12B .23C .1D .2二、填空题17.在数列{}n a 中,12a =,13n n a a +-=则数列{}n a 的通项公式为________________. 18.已知数列{}n a 中,12a =,25a =,212n n n a a a +++=,则100a =________ 19.在等差数列{}n a 中,47a =,2818a a +=,则公差d =__________.20.己知等差数列{}n a 满足:10a =,54a =,则公差d =______;24a a +=_______. 21.已知数列{}n a 对任意的,m n N +∈有mn m n a a a ++=,若12a =,则2019a =_______.参考答案1.C 【解析】 【分析】根据等差中项的性质求出x ,进而求出公差,得出答案. 【详解】解:由题意可得,(1+x )+(5x +1)=2(2x +2) 解得x =1∴这个数列为2,4,6,8,… 故选C. 【点睛】本题考查了等差数列及等差中项的性质. 2.B 【解析】 【分析】利用等差数列的性质,即下标和相等对应项的和相等,得到28465210a a a a a +=+==. 【详解】数列{}n a 为等差数列,28465210a a a a a +=+==,∴()24652a a a +-=2101090-=.【点睛】考查等差数列的性质、等差中项,考查基本量法求数列问题. 3.D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】设数列{}n a 的公差为d ,选项A,B,C,都不满足1n n b b --=同一常数,所以三个选项都是错误的;对于选项D ,1112222n n n n n n a a a a d b b -----=-+==-, 所以数列{}n b 必为等差数列. 故选:D 【点睛】本题主要考查等差数列的判定和性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 4.D 【解析】 【分析】直接利用等差数列的前n 项和公式求解. 【详解】数列{}n a 的前5项和为1555)(113)3522a a +=+=(. 故选:D 【点睛】本题主要考查等差数列的前n 项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题. 5.C 【解析】 【分析】通过等差数列的性质可得答案. 【详解】因为3917a a +=,79a =,所以51798a =-=. 【点睛】本题主要考查等差数列的性质,难度不大. 6.C 【解析】 【分析】直接利用等差数列公式解方程组得到答案.【详解】121424a a a d +=⇒+= 7812821328a a a d +=⇒+= 1211,2n n a d a ==⇒-=故答案选C 【点睛】本题考查了等差数列的通项公式,属于基础题型. 7.B 【解析】 【分析】通过等差中项的性质即可得到答案. 【详解】由于71310220a a a +==,故9101110330a a a a ++==,故选B. 【点睛】本题主要考查等差数列的性质,难度较小. 8.C 【解析】 【分析】本题首先可根据首项为2以及公差为4求出数列{}n a 的通项公式,然后根据2022n a =以及数列{}n a 的通项公式即可求出答案。

2022年高中数学第二章数列2-2等差数列的性质练习含解析新人教A版必修

2022年高中数学第二章数列2-2等差数列的性质练习含解析新人教A版必修

课时训练8 等差数列的性质一、等差数列性质的应用1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=( )A.12B.16C.20D.24答案:B2.等差数列{a n}中,若a2+a4 024=4,则a2 013=( )A.2B.4C.6D.-2答案:A解析:2a2013=a2+a4024=4,∴a2013=2.3.在等差数列{a n}中,a3+3a8+a13=120,则a3+a13-a8等于( )A.24B.22C.20D.-8答案:A解析:根据等差数列的性质可知a3+a13=2a8,所以已知等式可变为2a8+3a8=120,解得a8=24,所以a3+a13-a8=2a8-a8=a8=24.4.如果等差数列{a n}中,a1=2,a3=6,则数列{2a n-3}是公差为 的等差数列.答案:4解析:设数列{a n}的公差为d,则a3-a1=2d=4,∴d=2.∴数列{2a n-3}的公差为4.5.在等差数列{a n}中,a3=7,a5=a2+6,则a6= .答案:13解析:设等差数列{a n}的公差为d.∵a5=a2+6,∴a5-a2=6,即3d=6,d=2.∴a6=a3+3d=7+3×2=13.6.(2015河南郑州高二期末,14)若2,a,b,c,9成等差数列,则c-a= .答案:72解析:由等差数列的性质可得2b=2+9,解得b=112.又可得2a=2+b=2+112=152,解得a=154,同理可得2c=9+112=292,解得c=294,故c-a=294−154=144=72.二、等差数列的综合应用7.已知等差数列{a n}中,a7=π4,则tan(a6+a7+a8)等于( )A.-√33B.-√2C.-1D.1答案:C解析:在等差数列中,a6+a7+a8=3a7=3π4,∴tan(a6+a7+a8)=tan3π4=-1.8.已知数列{a n}是等差数列,a4=15,a7=27,则过点P(3,a3),Q(5,a5)的直线斜率为( )A.4B.14C.-4 D.-14答案:A解析:由数列{a n}是等差数列,知a n是关于n的一次函数,其图象是一条直线上的等间隔的点(n,a n),因此过点P(3,a3),Q(5,a5)的直线斜率即过点(4,15),(7,27)的直线斜率,所以直线的斜率k=27-157-4 =4.9.在等差数列{a n}中,若a4+a6+a8+a10+a12=90,则a10-13a14的值为( )A.12B.14C.16D.18答案:A解析:由等差数列的性质及a4+a6+a8+a10+a12=90得5a8=90,即a1+7d=18,∴a10-13a14=a1+9d-13(a1+13d)=23(a1+7d)=23×18=12,故选A.10.数列{a n}满足a1=1,a n+1=(n2+n-λ)a n(n=1,2,…),λ是常数.(1)当a2=-1时,求λ与a3的值;(2)数列{a n}是否可能为等差数列?若可能,求出它的通项公式;若不可能,请说明理由.解:(1)由条件得a2=(2-λ)a1,又a1=1,a2=-1,所以λ=3,从而a3=(22+2-3)a2=-3.(2)假设数列{a n}是等差数列,由a1=1,a n+1=(n2+n-λ)a n得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).由假设知2a2=a1+a3,即2(2-λ)=1+(6-λ)(2-λ),解得λ=3,于是a2=-1,a3=-3,a4=-27,所以a2-a1=-2,而a4-a3=-24,与数列{a n}是等差数列矛盾,故数列{a n}不可能是等差数列.(建议用时:30分钟)1.已知{a n}为等差数列,a2+a8=12,则a5等于( )A.4B.5C.6D.7答案:C解析:由等差数列性质得a2+a8=2a5=12,所以a5=6.2.在等差数列{a n}中,a1+3a8+a15=120,则3a9-a11的值为( )A.6B.12C.24D.48答案:D解析:∵a1+a15=2a8,∴a1+3a8+a15=5a8.∴5a8=120,a8=24.而3a9-a11=3(a8+d)-(a8+3d)=2a8=48.∴选D.3.若数列{a n}为等差数列,a p=q,a q=p(p≠q),则a p+q为( )A.p+qB.0C.-(p+q)D.p+q2答案:B解析:公差d=p-qq-p=-1,∴a p+q=a p+(p+q-p)d=q+q×(-1)=0.4.由公差d≠0的等差数列a1,a2,…,a n,…组成一个数列a1+a3,a2+a4,a3+a5,…,下列说法正确的是( )A.该新数列不是等差数列B.是公差为d的等差数列C.是公差为2d的等差数列D.是公差为3d的等差数列答案:C解析:∵(a n+1+a n+3)-(a n+a n+2)=(a n+1-a n)+(a n+3-a n+2)=2d,∴数列a1+a3,a2+a4,a3+a5,…是公差为2d的等差数列.5.已知{a n}为等差数列,若a1+a5+a9=8π,则cos(a3+a7)的值为( )A.√32B.-√32C.12D.-12答案:D解析:∵{a n}为等差数列,a1+a5+a9=8π,∴a5=83π,cos(a3+a7)=cos(2a5)=cos163π=-12.6.等差数列{a n}中,已知a3=10,a8=-20,则公差d= . 答案:-6解析:由题知d=a8-a38-3=-305=-6.7.在等差数列{a n}中,已知a8+m=10,a8-m=6,其中m∈N*,且1≤m≤7,则a8= . 答案:8解析:∵a 8+m +a 8-m =2a 8,∴a 8=8.8.如果有穷数列a 1,a 2,…,a m (m 为正整数)满足条件:a 1=a m ,a 2=a m-1,…,a m =a 1,则称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{c n }中,c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,c 2= .答案:19解析:因为c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,又{c n }为21项的对称数列,所以c 2=c 20=c 11+9d=1+9×2=19.9.已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.解:∵a 1+a 7=2a 4,∴a 1+a 4+a 7=3a 4=15.∴a 4=5.又∵a 2a 4a 6=45,∴a 2a 6=9.即(a 4-2d )(a 4+2d )=9,即(5-2d )(5+2d )=9,解得d=±2.若d=2,a n =a 4+(n-4)d=2n-3;若d=-2,a n =a 4+(n-4)d=13-2n.10.已知{a n }为等差数列,a 15=8,a 60=20,求a 75.解:解法一:因为{a n }为等差数列,∴a 15,a 30,a 45,a 60,a 75也成等差数列,设其公差为d ,a 15为首项,则a 60为其第4项,∴a 60=a 15+3d ,得d=4.∴a 75=a 60+d=20+4=24.解法二:设{a n }的公差为d ,因为a 15=a 1+14d ,a 60=a 1+59d ,∴{a 1+14d =8,a 1+59d =20,解得{a 1=6415,d =415.故a 75=a 1+74d=6415+74×415=24.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业7 等差数列的性质时间:45分钟 满分:100分课堂训练1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( )A.数列{a n}一定不是等差数列B.数列{a n}是以k为公差的等差数列C.数列{a n}是以b为公差的等差数列D.数列{a n}不一定是等差数列【答案】 B【解析】 a n+1-a n=k(n+1)+b-kn-b=k.2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( )A.100 B.120C.140 D.160【答案】 B【解析】 ∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120.3.在等差数列{a n}中,a15=33,a25=66,则a35=________.【答案】 99【解析】 a15,a25,a35成等差数列,∴a35=2a25-a15=99.4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.【分析】 关键是求出数列{a n }的首项和公差.【解析】 由于数列为等差数列,因此可设等差数列的前三项为a -d ,a ,a +d ,于是可得Error!即Error!即Error!由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1.【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成:a -2d ,a -d ,a ,a +d ,a +2d .课后作业一、选择题(每小题5分,共40分)1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( )A .4B .-4C .7D .1【答案】 A【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=(a 5+a 9)12=×(3+5)=4.122.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( )A .20B .30C .40D .50【答案】 C【解析】 ∵a 3+a 11=a 5+a 9=2a 7,∴a 3+a 5+a 7+a 9+a 11=5a 7=100,∴a 7=20.∴3a 9-a 13=3(a 7+2d )-(a 7+6d )=2a 7=40.3.在等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .21【答案】 B【解析】 方法一:由等差数列的性质知,a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,所以(a 1+a 4+a 7)+(a 3+a 6+a 9)=2(a 2+a 5+a 8),则a 3+a 6+a 9=2×33-39=27.方法二:(a 2+a 5+a 8)-(a 1+a 4+a 7)=3d (d 为数列{a n }的公差),则d =-2,a 3+a 6+a 9=(a 2+a 5+a 8)+3d =33-6=27.4.把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 是较小的两份之和,问最小的1份是( )17A. B.56103C.D.53116【答案】 C【解析】 设这5份为a -2d ,a -d ,a ,a +d ,a +2d ,由已知得a =20,且(a +a +d +a +2d )=a -2d +a -d ,17∴d =,∴a -2d =.556535.等差数列{a n }的公差d <0,且a 2a 4=12,a 1+a 5=8,则其通项公式为( )A .a n =2n -2B .a n =2n +4C .a n =-2n +12D .a n =-2n +10【答案】 D【解析】 由等差数列的性质得a 2+a 4=a 1+a 5=8.又a 2a 4=12,所以a 2,a 4为方程x 2-8x +12=0的两根,解得Error!或Error!当a 2=2,a 4=6时,d ==2>0(舍去),a 4-a 24-2当a 2=6,a 4=2时,d ==-2.a 4-a 24-2所以数列的通项公式为a n =a 2+(n -2)d =6+(n -2)×(-2)=-2n +10.即a n =-2n +10.6.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37【答案】 C【解析】 设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列.又∵a 1+b 1=a 2+b 2=100,∴a 37+b 37=100.故正确答案为C.7.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-5【答案】 C【解析】 设该数列的公差为d ,则由题设条件知:a 6=a 1+5d >0,a 7=a 1+6d <0.又∵a 1=23,∴Error!即-<d <-.235236又∵d 是整数,∴d =-4,故选C.8.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1,b 1∈N +.设c n =ab n (n ∈N +),则数列{c n }的前10项和等于( )A .55B .70C .85D .100【答案】 C【解析】 由题c n =ab n (n ∈N +),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab 1+9.∵ab 1=a 1+(b 1-1)=4,∴ab1+ab1+1+…+ab1+9=4+5+…+13=85.二、填空题(每小题10分,共20分)9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.【答案】 1【解析】 ∵a1+a3+a5=105,即3a3=105,∴a3=35,同理a4=33,∴d=a4-a3=-2,∴a20=a4+(20-4)d=1.10.等差数列{a n}中,a1+a4+a10+a16+a19=150,则a18-2a14=________.【答案】 -30【解析】 由a1+a4+a10+a16+a19=5a10=150,得a10=30,a18-2a14=(a10+8d)-2(a10+4d)=-a10=-30.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)已知数列{a n}为等差数列,若a1-a5+a9-a13+a17=117,求a3+a15.(2)在等差数列{a n}中,已知a2+a5+a8=9,a3a5a7=-21,求数列{a n}的通项公式.【解析】 (1)方法一:∵数列{a n}是等差数列,∴设数列{a n}的首项为a1,公差为d,则由题意得a1-(a1+4d)+(a1+8d)-(a1+12d)+(a1+16d)=117,∴a1+8d=117.从而a3+a15=(a1+2d)+(a1+14d)=2(a1+8d)=234.方法二:由等差数列的性质知,a1+a17=a5+a13=a3+a15=2a9.∵a1-a5+a9-a13+a17=117,∴a9=117,∴a3+a15=2a9=234.(2)∵a2+a5+a8=9,a3a5a7=-21,a2+a8=a3+a7=2a5,∴a5=3,∴a3+a7=2a5=6,a3a7=-7,解得a3=-1,a7=7或a3=7,a7=-1.又a7=a3+4d,∴当a3=-1,a7=7时,可得d=2;当a3=7,a7=-1时,可得d=-2.根据a n=a3+(n-3)d,可得当a3=-1,d=2时,a n=2n-7;当a3=7,d=-2时,a n=-2n+13.12.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}的第几项?【解析】 数列{b n}是数列{a n}的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n}是等差数列,则{b n}也是等差数列.(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.数列{a n}中序号能被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n.即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,则m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。

相关文档
最新文档