中考数学专题复习—反比例函数与一次函数的综合压轴题专题训练

合集下载

备战中考数学—反比例函数的综合压轴题专题复习含详细答案

备战中考数学—反比例函数的综合压轴题专题复习含详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.3.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .4.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.5.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x= 代入,得y= ,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x= ,∴C ,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得: .故点坐标为:或 .【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.6.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①当x=4时,∴点B的坐标是(4,1)当y=2时,由得得x=2∴点A的坐标是(2,2)设直线AB的函数表达式为∴解得∴直线AB的函数表达式为②四边形ABCD为菱形,理由如下:如图,由①得点B(4,1),点D(4,5)∵点P为线段BD的中点∴点P的坐标为(4,3)当y=3时,由得,由得,∴PA= ,PC=∴PA=PC而PB=PD∴四边形ABCD为平行四边形又∵BD⊥AC∴四边形ABCD是菱形(2)四边形ABCD能成为正方形当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),当x=4时,∴点B的坐标是(4,)则点A的坐标是(4-t,)∴,化简得t=∴点D的纵坐标为则点D的坐标为(4,)所以,整理得m+n=32【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.7.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.(1)若点A的坐标为(a,3),求a的值;(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO≌△OEC,又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),由△ADO≌△OEC得,CE=OD=3,EO=DA=2,所以C(-3,-2);(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO∽△OEC,∴,∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,∴A( n,- m),代入y=-中,得mn=18.【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出,根据锐角三角函数的定义,及特殊锐角三角函数值得出,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.8.如图,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.(1)求k的值;(2)点P为双曲线上的一个动点,过点P作直线PA⊥x轴于A点,交NM延长线于F 点,过P点作PB⊥y轴于B交MN于点E.设点P的横坐标为m.①用含有m的代数式表示点E、F的坐标②找出图中与△EOM 相似的三角形,并说明理由.【答案】(1)解:当时,,,.把代入得,(2)解:①由(1)知 ..当时, ,.当时,,,∴E(2 -, ).② , , , ,,,,由一次函数解析式得∠OME=∠ONF=45°【解析】【分析】(1)当x=0时,求出y=2,得出N(0,2) ,由平移的性质得出N'(3,2) .把 (3,2) 代入 y=得k=6.(2)①由(1)可设P(m,) .当x=m时,求出y=−m+2 ,即F(m,2-m) ;当y=时,求出x=2−,即E(2 -,).②∵ON=2 , EM=, OM=2 , NF=,从而得出OMNF=EMON.由一次函数解析式得∠OME=∠ONF=45°;推出ΔEOM∼ΔOFN.9.已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的函数表达式;(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.【答案】(1)解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5(2)解:∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,∴2= ,解得x=3,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD= ×6×4+ ×6×3=12+9=21.【解析】【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D 的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.10.已知函数(1)判断该函数的图象与轴的交点个数.(2)若,求出函数值在时的取值范围.(3)若方程在内有且只有一个解,直接写出的范围.【答案】(1)解:△,当时,图象与轴只有一个交点,当时,图象与轴有两个交点(2)解:时,,当时,函数有最小值,当时,,故:(3)解:若方程在内有且只有一个解,即为和函数只有一个交点,函数,与轴的交点为:,函数的顶点坐标为:,故在时,和函数只有一个交点时,或【解析】【分析】(1)△,即可求解;(2)时,,当时,函数有最小值,当时,,即可求解;(3)若方程在内有且只有一个解,即为和函数只有一个交点,即可求解11.如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M 的坐标.【答案】(1)解:如图1中,∵∠AOB=90°,∠OAB=30°,∴∠CBE=60°,∵CE⊥AB,∴∠CEB=90°,∠BCE=30°,∵C(0,- ),∴OC= ,OF=OC•tan30°= ,CF=2OF=3 ,由翻折可知:FO′=FO= ,∴CO′≥CF-O′F,∴CO′≥ ,∴线段O′C的最小值为(2)解:①如图2中,当B′D′=B′M=BD= 时,可得菱形MND′B′.在Rt△AMB′中,AM=2B′M=2 ,∴OM=AM-OA=2 -3 ,∴M(3 -2 ,0).②如图3中,当B′M是菱形的对角线时,由题意B′M=2OB=6,此时AM=12,OM=12-3,可得M(3 -12,0).③如图4中,当B′D′是菱形的对角线时,由∠D′B′M=∠DBO可得,所以B′M=则在RT△AM B′中,AM=2B′M= ,所以OM=OA-AM=3 - ,所以M(3 - ,0).④如图5中,当MD′是菱形的对角线时,MB′=B′D′= ,可得AM=2 ,OM=OA+AM=3 +2 ,所以M(3 +2 ,0).综上所述,满足条件的点M的坐标为(3 +2 ,0)或(3 -12,0)或(3 -,0)或(3 +2 ,0)【解析】【分析】(1)根据直角三角形的两锐角互余求出∠CBE的度数,由垂直的定义可求出∠BCE的度数,由点C的坐标求出OC的长,再在Rt△OCF中,利用解直角三角形求出OF的长;然后利用折叠的性质,可得到FO′的长,然后根据CO′≥CF-O′F,可求出线段O′C的最小值。

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,一次函数11y kx =+与反比例函数2(0)m y m x =≠相交于A 、B 两点,与x 轴,y 轴分别交于D 、C 两点,已知5sin 5CDO ∠=,BOD 的面积为1.(1)求一次函数和反比例函数的表达式;(2)请直接写出使12y y >的x 的取值范围.2.如图,一次函数y nx b =+(0n ≠,n ,b 为常数)的图象与反比例函数k y x=(0k ≠,k 为常数)的图象交于点()3,1A 和()3B a -,.(1)求一次函数和反比例函数的解析式;(2)直接写出不等式k nx b x+<的解集. 3.如图,一次函数11y x =-的图象与反比例函数2(0)k y k x =≠的图交于点(,1)A m 和(1,)B n -.(1)求反比例函数2(0)k y k x=≠的解析式. (2)当12y y >时,请直接写出x 的取值范围.4.如图,在平面直角坐标系xOy 中,一次函数11y x =--与反比例函数2m y x=的图象交于点(2,1)A -和(1,)B n .(1)求反比例函数的表达式;(2)连接OA OB ,,求AOB 的面积;(3)根据图象,请直接写出满足不等式1m x x--<的x 取值范围. 5.如图,在平面直角坐标系中,一次函数1y kx b =+的图象上与反比例函数2m y x =的图象交于A 、B 两点,与y 轴交于点C ,已知点()4,1A ,点B 的横坐标为2-.(1)求一次函数与反比例函数的解析式;(2)若点D 是y 轴上一点,且9ABD S =△,求点D 坐标.6.如图,一次函数y x b =+的图像与反比例函数k y x =的图像交于(2,3)A ,(,2)B n -两点.(1)求一次函数与反比例函数的表达式.(2)过点B 作BC y ⊥轴,垂足为C ,连接AC ,求点B 的坐标,并直接写出ABC 的面积.7.如图,直线OA 与反比例函数()0m y m x=≠的图像在第一象限交于点A ,已知4OA =,直线OA 与y 轴的夹角为30︒.(1)求反比例函数的解析式;(2)若点P 是坐标轴上的一点,当AOP 是直角三角形时,直接写出点P 的坐标.8.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于点()13A ,和()3B n ,.(1)直接写出m =_______;n = _______;(2)请结合图象直接写出不等式m kx b x+>的解集是_______;(3)在y 轴上是否存在一点P ,使PAB 是等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由. 9.如图,已知直线2y x =与双曲线(0)k y k x=≠交第一象限于点(,4)A m .(1)求点A 的坐标和反比例函数的解析式;(2)将点O 绕点A 逆时针旋转90︒至点B ,求直线OB 的函数解析式;(3)在(2)的条件下,若点C 是射线OB 上的一个动点,过点C 作y 轴的平行线,交双曲线(0)k y k x=≠的图像于点D ,交x 轴于点E ,且:2:3DCO DEO S S =△△,求点C 的坐标.10.如图,一次函数22y x =-的图象与反比例函数k y x=的图象交于,M N 两点.(1)求反比例函数的表达式;(2)求OMN 的面积;(3)根据图象,直接写出使反比例函数值大于一次函数值时x 的取值范围.11.如图,一次函数1y kx =-的图象与反比例函数m y x=的图象相交于A 、B 两点,已知点A 的坐标是()2,1-,AOB 的面积为32.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.12.如图,一次函数4y x =+的图象与反比例函数k y x=(k 为常数且0k ≠)的图象交于A ,B 两点,其中()1,3A -,直线4y x =+与y 轴、x 轴分别交于C ,D 两点.(1)求反比例函数的表达式;(2)在x 轴上找一点P ,使PA PB +的值最小,并求满足条件的点P 的坐标;(3)在坐标平面中是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与COD △相似?如果存在,请直接写出所有满足条件的点Q 的坐标.13.如图,点A 是反比例函数k y x=的图象上一点,延长AO 交该图象于点B ,AC x ⊥轴,BC y ⊥轴,若()3,4C -.(1)求Rt ACB △的面积.(2)求经过AB 两点的直线y k x '=,并直接写出k k x x '>时x 的取值范围.14.如图,在平面直角坐标系中,一次函数32y x =+的图象与y 轴交于点A ,与反比例函数(0)k y k x=≠在第一象限内的图象交于点B ,且点B 的横坐标为1,过A 作AC y ⊥轴交反比例函数的图象于点C ,连接BC .(1)求反比例函数表达式;(2)求ABC 面积.15.如图,一次函数4y x =-+的图象与反比例函数k y x=(k 为常数,且0k ≠)的图象交于()1,A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)直接写出一次函数4y x =-+的值大于反比例函数k y x=的值自变量x 的范围; (3)在y 轴上找一点P ,使PA PB +的值最小,求点P 的坐标.参考答案:1.(1)1112y x =+ 24y x= (2)40x -<<或 2x >2.(1)2y x =- 3y x=(2)1x <-或03x <<3.(1)反比例函数为22y x=; (2)10x -<<或2x >. 4.(1)反比例函数的表达式为:22y x=- (2)32AOB S = (3)20x -<<或1x >5.(1)24y x = 1112y x =-; (2)()0,2D 或()0,4-.6.(1)1y x =+ 6y x =(2)1527.(1)43y x =; (2)()0,23或()2,0或830,3⎛⎫ ⎪ ⎪⎝⎭或()8,0.8.(1)3,1;(2)0x <或13x <<;(3)存在,点P 的坐标为()0,37+或()0,37-或()0,0.9.(1)()8A 2,4y x=, (2)13y x = (3)2222,3⎛⎫ ⎪ ⎪⎝⎭或 (210, 210)310.(1)4y x= (2)3OMN S =△(3)02x <<或1x <-11.(1)2y x=- =1y x -- (2)20x -<<或1x >12.(1)3y x =-(2)5,02⎛⎫- ⎪⎝⎭(3)()1,1- ()3,3- ()1,1 ()3,5- ()1,1-- ()5,3-13.(1)24(2)30x -<<或3x >14.(1)5y x =(2)15415.(1)3y x = ()3,1 (2)0x <13x <<或(3)502⎛⎫⎪⎝⎭,。

专题训练:反比例函数与一次函数的综合应用(含答案)

专题训练:反比例函数与一次函数的综合应用(含答案)

专训2 反比例函数与一次函数的综合应用名师点金:反比例函数单独考查的时候很少,与一次函数综合考查的情况较多,其考查形式有:两种函数图象在同一坐标系中的情况,两种函数的图象与性质,两种函数图象的交点情况、交点坐标,用待定系数法求函数表达式及求与函数图象有关的几何图形的面积等.反比例函数图象与一次函数图象的位置判断1.【2015·兰州】在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k ≠0)的图象大致是( )2.一次函数y =kx +b 与反比例函数y =kx (k ≠0)在同一平面直角坐标系中的大致图象如图所示,则k ,b 的取值范围是( )A .k >0,b >0B .k <0,b >0C .k <0,b <0D .k >0,b <0(第2题) (第3题) (第4题)反比例函数与一次函数的图象与性质3.(中考·仙桃】如图,正比例函数y 1=k 1x 和反比例函数y 2=k 2x 的图象交于A (1,2),B两点,给出下列结论:①k 1<k 2;②当x <-1时,y 1<y 2;③当y 1>y 2时,x >1;④当x <0时,y 2随x 的增大而减小.其中正确的有( )A .0个B .1个C .2个D .3个4.已知函数y 1=x (x ≥0),y 2=4x (x >0)的图象如图所示,则以下结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 1>y 2; ③当x =1时,BC =2;④两函数图象构成的图形是轴对称图形;⑤当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________.反比例函数与一次函数的有关计算类型1 利用点的坐标求面积5.如图,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A ,B ,与双曲线y =4x在第一象限内交于点C (1,m ).(1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y =4x 交于点P ,Q ,求△APQ 的面积.(第5题)类型2 利用面积求点的坐标6.【2015·兰州】如图,A ⎝⎛⎭⎫-4,12,B (-1,2)是一次函数y 1=ax +b 与反比例函数y 2=mx图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D . (1)根据图象直接回答:在第二象限内,当x 取何值时, y 1-y 2>0? (2)求一次函数表达式及m 的值.(3)P 是线段AB 上一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.(第6题)参考答案1.A 2.C3.C 点拨:把点A (1,2)的坐标分别代入y =k 1x ,y =k 2x 中,得k 1=2,k 2=2.所以①是错误的,易知点B 的坐标为(-1,-2),由图象可知②,④是正确的,当y 1>y 2时,x >1或-1<x <0,所以③是错误的,故选C .4.①②④⑤5.解:(1)把C (1,m )的坐标代入y =4x ,得m =41,∴m =4.∴点C 的坐标为(1,4).把C (1, 4)的坐标代入y =2x +n ,得4=2×1+n ,解得n =2. (2)对于y =2x +2,令x =3,则y =2×3+2=8, ∴点P 的坐标为(3,8).令y =0,则2x +2=0,得x =-1, ∴点A 的坐标为(-1,0). 对于y =4x ,令x =3,则y =43.∴点Q 的坐标为⎝⎛⎭⎫3,43. ∴PQ =8-43=203,AD =3+1=4.∴△APQ 的面积=12AD ·PQ =12×4×203=403.点拨:注意反比例函数与一次函数图象的交点坐标满足两个函数的表达式,解答这类题通常运用方程思想.6.解:(1)在第二象限内,当-4<x <-1时,y 1-y 2>0. (2)∵双曲线y 2=m x 过A ⎝⎛⎭⎫-4,12,∴m =-4×12=-2. ∵直线y 1=ax +b 过A ⎝⎛⎭⎫-4,12,B (-1,2), ∴⎩⎪⎨⎪⎧-4a +b =12,-a +b =2,解得⎩⎨⎧a =12,b =52.∴y 1=12x +52.(第6题)(3)设P ⎝⎛⎭⎫n ,12n +52,过P 作PM ⊥x 轴于M ,PN ⊥y 轴于N , ∴PM =12n +52,PN =-n .∵S △PCA =S △PDB , ∴12·AC ·CM =12·BD ·DN , 即12×12(n +4)=12×1×⎝⎛⎭⎫2-12n -52,解得n =-52. ∴P 点坐标为⎝⎛⎭⎫-52,54.。

中考数学函数之一次函数和反比例函数综合问题压轴题专题

中考数学函数之一次函数和反比例函数综合问题压轴题专题

《中考压轴题全揭秘》中考压轴题(第17、18天)函数之一次函数和反比例函数综合问题1.(2014年14分)直线y =﹣x +3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1). (1)求该反比例函数的关系式;(2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A ′;①求△A ′BC 的周长和sin ∠BA ′C 的值;②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC =1m.2.(2014年10分)在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x +72=0的两根(OA >OC ),BE =5,tan ∠ABO =43.(1)求点A ,C 的坐标; (2)若反比例函数y =kx的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.3.(2014年12分)点A(1,6)和点M(m,n)都在反比例函数kyx=(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.4.(2014年枣庄10分)一次函数y=ax+b与反比例函数kyx=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为13,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、B D.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.5. (2014年10分)在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1k y x=(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+. (1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式12k k x b >0x+-的解集.6. (2013年湘西8分)在平面直角坐标系xOy 中,正比例函数y =kx 的图象与反比例函数2y x=的图象有一个交点A (m ,2). (1)求m 的值;(2)求正比例函数y =kx 的解析式;(3)试判断点B (2,3)是否在正比例函数图象上,并说明理由.7. (2013年10分)如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数m y x=的图象交于一、三象限的A 、B 两点,直线AB 与x 轴交于点C ,点B 的坐标为(﹣6,n ),线段OA =5,E 为x 轴正半轴上一点,且tan ∠AOE =43(1)求反比例函数的解析式; (2)求△AOB 的面积.8. (201210分)如图,在平面直角坐标系中,一次函数11y k x 1=+的图象与y 轴交于点A ,与x 轴交于点B ,与反比例函数22k y x=的图象分别交于点M ,N ,已知△AOB 的面积为1,点M 的纵坐标为2, (1)求一次函数和反比例函数的解析式; (2)直接写出12y y >时x 的取值围。

中考数学函数之一次函数和反比例函数综合问题压轴题专题.docx

中考数学函数之一次函数和反比例函数综合问题压轴题专题.docx

《中考压轴题全揭秘》三年经典中考压轴题 函数之一次函数和反比例函数综合问题1.( 2014 年福建泉州 14 分)如图,直线 y= ﹣x+3 与 x ,y 轴分别交于点 A ,B ,与反比例函数的图象交于点 P ( 2,1).( 1)求该反比例函数的关系式;( 2)设 PC ⊥y 轴于点 C ,点 A 关于 y 轴的对称点为 A ′;①求△ A ′BC 的周长和 sin ∠ BA ′C 的值;1 ②对大于1 的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC =.m2.(2014 年黑龙江牡丹江与 x 轴、 y 轴分别交于点10 分)如图,在平面直角坐标系中,直线AB 与 x 轴、 y 轴分别交于点 A ,B ,直线 CD C , D , AB 与 CD 相交于点 E ,线段 OA ,OC 的长是一元二次方程 x 2﹣18x+72=0 的两根 ( O A > OC ), BE=5, tan ∠ ABO= 3.4( 1)求点 A ,C 的坐标;( 2)若反比例函数 y= k的图象经过点 E ,求 k 的值;x( 3)若点 P 在坐标轴上,在平面内是否存在一点Q ,使以点 C , E , P , Q 为顶点的四边形是矩形?若存在,请写出满足条件的点 Q 的个数,并直接写出位于x 轴下方的点 Q 的坐标;若不存在,请说明理由.3.(2014 年江苏淮安 12 分)如图,点 A ( 1,6)和点 M ( m , n )都在反比例函数 yk (x > 0)的图象上,x( 1) k 的值为 ;( 2)当 m=3,求直线 AM 的解析式;( 3)当 m >1 时,过点 M 作 MP ⊥x 轴,垂足为 P ,过点 A 作 AB ⊥ y 轴,垂足为 B ,试判断直线 BP 与直线 AM 的位置关系,并说明理由.4.(2014 年山东枣庄 10 分)如图,一次函数 y=ax+b 与反比例函数 yk 的图象交于 A 、B 两点,点 A 坐标为( m ,x2),点 B 坐标为(﹣ 4,n ),OA 与 x 轴正半轴夹角的正切值为1,直线 AB 交 y 轴于点 C ,过 C 作 y 轴的垂线,3交反比例函数图象于点 D ,连接 OD 、BD .( 1)求一次函数与反比例函数的解析式;( 2)求四边形 OCBD 的面积. 5. ( 2014 年四川巴中10 分)如图,在平面直角坐标系xOy 中,已知四边形DOBC是矩形,且D (0,4),B (6,0).若反比例函数 y k 1(x > 0)的图象经过线段 OC 的中点 A ,交 DC 于点 E ,交 BC 于点 F .设直线EF 的x解析式为yk 2 xb .( 1)求反比例函数和直线EF 的解析式;( 2)求△ OEF的面积;(3)请结合图象直接写出不等式k 2x bk 1> 0 的解集.x6. (2013 年湖南湘西8 分)如图,在平面直角坐标系xOy 中,正比例函数 y=kx 的图象与反比例函数 y2 的图x象有一个交点 A ( m , 2).( 1)求 m 的值;( 2)求正比例函数 y=kx 的解析式;( 3)试判断点 B ( 2, 3)是否在正比例函数图象上,并说明理由.7. ( 2013 年四川巴中 10 分)如图,在平面直角坐标系m xOy 中,一次函数 y=kx+b ( k ≠0)的图象与反比例函数 yx的图象交于一、三象限内的 A 、B 两点,直线 AB 与 x 轴交于点 C ,点 B 的坐标为(﹣ 6,n ),线段 OA=5, E 为 x轴正半轴上一点,且 tan ∠AOE=43( 1)求反比例函数的解析式;( 2)求△ AOB 的面积.8. ( 2012 四川巴中 10 分)如图,在平面直角坐标系中,一次函数y 1 k 1x 1 的图象与 y 轴交于点 A ,与 x 轴交于点 B ,与反比例函数y 2k 2 的图象分别交于点 M , N ,已知△ AOB 的面积为 1,点 M 的纵坐标为 2,x( 1)求一次函数和反比例函数的解析式;( 2)直接写出 y1y 2 时 x 的取值范围。

备战中考数学—反比例函数的综合压轴题专题复习附答案解析

备战中考数学—反比例函数的综合压轴题专题复习附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1)m=________,k1=________;(2)当x的取值是________时,k1x+b>;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.【答案】(1)4;(2)﹣8<x<0或x>4(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).∴CO=2,AD=OD=4.∴S梯形ODAC= •OD= ×4=12,∵S四边形ODAC:S△ODE=3:1,∴S△ODE= S梯形ODAC= ×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的解析式是y= x,∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,即反比例函数解析式为y2= ,将点A(4,m)代入y2= ,得:m=4,即点A(4,4),将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,得:,解得:,∴一次函数解析式为y1= x+2,故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,故答案为:﹣8<x<0或x>4;【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.2.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.3.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.4.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.5.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.6.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。

中考数学——反比例函数的综合压轴题专题复习含答案

中考数学——反比例函数的综合压轴题专题复习含答案一、反比例函数1.如图,直线y=﹣x+b与反比例函数y= 的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC= S△AOB?若存在请求出点P坐标,若不存在请说明理由.【答案】(1)解:将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4= ,解得:b=5,k=4(2)解:一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1(3)解:过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴,∵,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC= OP•CD+ OP•AE= OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).【解析】【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为:列方程,求得B(4,1),于是得到,由已知条件得到,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.2.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.3.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.4.如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.【答案】(1)解:∵点A(﹣1,2)在双曲线y= 上,∴2= ,解得,k=﹣2,∴反比例函数解析式为:y=﹣,∴b= =﹣1,则点B的坐标为(2,﹣1),∴,解得,m=﹣1,n=1(2)解:对于y=﹣x+1,当x=0时,y=1,∴点C的坐标为(0,1),∵点D与点C关于x轴对称,∴点D的坐标为(0,﹣1),∴△ABD的面积= ×2×3=3(3)解:对于y=﹣x+1,当y=0时,x=1,∴直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),S△PAB= ×|1﹣a|×2+ ×|1﹣a|×1=3,解得,a=﹣1或3,当点P在y轴上时,设点P的坐标为(0,b),S△PAB= ×|1﹣b|×2+ ×|1﹣b|×1=3,解得,b=﹣1或3,∴P点坐标为(﹣1,0)或(3,0)或(0,﹣1)或(0,3)【解析】【分析】(1)由点A(﹣1,2)在双曲线上,得到k=﹣2,得到反比例函数解析式为,从而求出b的值和点B的坐标,把A、B坐标代入直线y=mx+n,求出m、n的值;(2)由一次函数的解析式求出点C的坐标,由点D与点C关于x轴对称,得到点D的坐标,从而求出△ABD的面积;(3)由一次函数的解析式得到直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),求出S△PAB=3,求出a的值,当点P在y轴上时,设点P的坐标为(0,b),求出S△PAB=3,求出b的值,从而得到P点坐标.5.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.6.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,(点A的横纵坐标,所以舍去)或∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.7.如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【答案】(1)解:∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y= .(2)解:不等式2x+6﹣<0的解集为0<x<1.(3)解:由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴﹣>0∴S△BMN= |MN|×|y M|= ×(﹣)×n=﹣(n﹣3)2+ ,∴n=3时,△BMN的面积最大,最大值为.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)由图象直接求得;(3)构建二次函数,利用二次函数的最值即可解决问题.8.如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.【答案】(1)解:∵反比例函数经过点D(﹣2,﹣1),∴把点D代入y= (m≠0),∴﹣1= ,∴m=2,∴反比例函数的解析式为:y= ,∵点A(1,a)在反比例函数上,∴把A代入y= ,得到a= =2,∴A(1,2),∵一次函数经过A(1,2)、D(﹣2,﹣1),∴把A、D代入y=kx+b (k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1(2)解:如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值(3)解:过点A作AE⊥x轴交x轴于点E,∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),∵点B在一次函数上,∴p=3+1=4,∵点C在反比例函数上,∴q= ,∴S△ABC= BC•EN= ×(4﹣)×(3﹣1)= .【解析】【分析】由反比例函数经过点D(-2,-1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.9.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【答案】(1)解:∵双曲线y= (m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1(2)解:符合条件的点P的坐标是(1,﹣6)或(6,﹣1).【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.10.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.11.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∠BAC=30º时,求△ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,AB=10,∠BAC=30°,∴BC= AB=5,∴AC= ,∴S△ABC= AC⋅BC=(2)解:连接AD,∵∠ACB=90°,CD=BC,∴AD=AB=10,∵DE⊥AB,∴AE= =6,∴BE=AB−AE=4,∴DE=2BE,∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,∴∠AFE=∠DBE,∵∠AEF=∠DEB=90°,∴△AEF∽△DEB,∴ =2,∴EF= AE= ×6=3(3)解:连接EC,设E(x,0),当的度数为60°时,点E恰好与原点O重合;①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,∴,∵EC是Rt△BDE斜边的中线,∴CE=CB,∴∠CEB=∠CBE,∴∠EOF=∠CEB,∴OF∥CE,∴△AOF∽△AEC∴,∴,即,解得x= ,因为x>0,∴x= ;②60°< 的度数<90°时,点E在O点的左侧,若∠EOF=∠B,则OF∥BD,∴OF= BC= BD,∴即解得x= ,若∠EOF=∠BAC,则x=− ,综上点E的坐标为( ,0) ;(,0);(−,0).【解析】【分析】(1)根据圆周角定理求得∠ACB=90°,根据30°的直角三角形的性质求得BC,进而根据勾股定理求得AC,然后根据三角形面积公式即可求得;(2)连接AD,由垂直平分线的性质得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依题意证明△AEF∽△DEB,利用相似比求EF;(3)当以点E、O、F为顶点的三角形与△ABC相似时,分为两种情况:①当交点E在O,B之间时;②当点E在O点的左侧时;分别求E点坐标.12.如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1)解:将C(0,-3)代入函数表达式得,,∴(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN, ∴ .设点E的坐标为(x, ),∴ ,∴x=4m.∴为定值.(3)解:存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中,∵tan∠CGO= , tan∠FGH= , ∴ = .∴OG="3m,"由勾股定理得,GF= ,AD=∴ .由(2)得,,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】【分析】1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.。

中考数学压轴题 反比例函数和一次函数综合题 研讨课 课件


解:由上问知:
yM
yN
yA yB
8 xA
8 xB
xM xN 4 - yM 4 - yN
16
64 xA xB
16 4(4k 4) 8k xM xN yM yN 0
(3)在(2)的条件下,连接OM,ON,则∠MON是否为定值?若为 定值,请求出这个定值;若不为定值,请说明理由!
分别过M , N作MG、NH垂直于x轴,垂足分别为G, H
-OG ▪OH+MG▪NH= 0
l1
OH MG
l2
NH GO
∴tan∠4= tan∠3 ∴∠4= ∠3 易得∠3+∠1=90°
2
3
14
G
H
反比例函数
y
k1 x
和一次函数 y k2 x b 交点问题
1、两交点距离: 应用两点间距离公式及根与系数的关系
(k<0)的图像与反比例函数y=8/x(x>0)的图像交于A 、B 两点。
(1)若AB=8,求直线l1的解析式; 解:将F(4,4)代入l1得:b 4 4k l1

y y
kx 8 x
4
4k 得
:kx
2
(4
4k ) x8Fra bibliotek0则
为该方程的两根
AB ( xA xB )2 ( yA yB )2
(yA-yB)2=_______________;
拓展:yAyB=_____________; yA+yB=______________
AB= (xA xB )2 ( yA yB )2 __________(xA xB )2
kx2 bx 2 0
——经验公式
例:如图,点F的坐标为(4,4),经过点F的直线l1:y=kx+b

人教中考数学—反比例函数的综合压轴题专题复习含答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.2.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.3.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x= 代入,得y= ,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x= ,∴C ,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得: .故点坐标为:或 .【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.4.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= == .思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.【答案】(1)解:方法一:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;方法二:tan75°=tan(45°+30°)= = = =(2)解:如图2,在Rt△ABC中,AB= = = ,sin∠BAC= ,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB•tan∠DAB= •()= ,∴DC=DB﹣BC= = .答:这座电视塔CD的高度为()米(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.解方程组:,得:或,∴点A(4,1),点B(﹣2,﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或(,3).【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.5.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.6.已知抛物线与轴的两个交点间的距离为2.(1)若此抛物线的对称轴为直线,请判断点(3,3)是否在此抛物线上?(2)若此抛物线的顶点为(S,t),请证明;(3)当时,求的取值范围【答案】(1)解:抛物线的对称轴为直线,且抛物线与轴的两个交点间的距离为2,可得抛物线与轴的两个交点为(0,0)和(2,0),所以抛物线的解析式为与当时,所以点(3,3)在此抛物线上 .(2)解:抛物线的顶点为,则对称轴为直线,且抛物线与轴的两个交点间的距离为2,可得抛物线与轴的两个交点为(,,0)和(,0)所以抛物线的解析式为与由得所以;(3)解:由(2)知即整理得由对称轴为直线,且二次项系数可知当时,b的随a的增大而增大当a=10时,得当a=20时,得所以当时,【解析】【分析】(1)根据已知条件得出两个交点坐标,利用待定系数法求出解析式,然后验证点(3,3)是否在这条抛物线上即可;(2)先确定对称轴为直线,再得出与x 轴的两交点坐标为(,0)和(,0),再利用待定系数法求出解析式的顶点式可得解;(3)把t=-1代入顶点坐标公式,得到二次函数解析式,根据函数的增减性分别计算a=10和20时b的值从而得解.7.已知,抛物线的图象经过点,.(1)求这个抛物线的解析式;(2)如图1,是抛物线对称轴上一点,连接,,试求出当的值最小时点的坐标;(3)如图2,是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标.【答案】(1)解:将,的坐标分别代入.得解这个方程组,得,所以,抛物线的解析式为(2)解:如图1,由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,由,令,得,解得,,点的坐标为,又,易得直线的解析式为:.当时,,点坐标(3)解:设点的坐标为,所以所在的直线方程为.那么,与直线的交点坐标为,与抛物线的交点坐标为.由题意,得① ,即,解这个方程,得或(舍去).② ,即,解这个方程,得或(舍去),综上所述,点的坐标为,或,.【解析】【分析】(1)将点、的坐标代入可得出、的值,继而得出这个抛物线的解析式;(2)由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,利用待定系数法确定直线的解析式,然后求得该直线与轴的交点坐标即可;(3)如图2,交于,设,根据一次函数和二次函数图象上点的坐标特征,设点的坐标为,,.然后分类讨论:分别利用或,列关于的方程,然后分别解关于的方程,从而得到点坐标8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B 点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.【答案】(1)解:如图,过点A作AD⊥y轴于点D,AE⊥x轴于点E,∴∠ADC=∠AEB=90°∵二次函数与y轴交于点C,点C坐标为(0,2)∵点A坐标(3,3)∴DA=AE=3∵∠DAC+∠CAE=90°∠EAB+∠CAE=90°∴∠DAC=∠EAB∴△ACD≌△ABE∴EB=CD=3-2=1OB=3+1=4∴点B的坐标为(4,0)将A(3,3)B(4,0)代入二次函数中得:解得:二次函数的解析式为:(2)解:将点Q(m,m+3)代入二次函数解析式得:m1=1;m2= (舍)∴m=1∴点Q坐标为(1,4)由勾股定理得:BC=2设圆的圆心为N∵圆经过点O,且∠COB=90°∴BC是圆N的直径,∴圆N的半径为,N的坐标为(2,1)由勾股定理得,QN=半径r= ,则≤QM≤(3)解:当点A的对称点,点O的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:∴的坐标为()∴旋转中心P的坐标为当点A的对称点,点C的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:∴的坐标为()∴旋转中心P的坐标为综上所述,旋转中心P的坐标为或【解析】【分析】(1)过点A作AD⊥y轴于点D,AE⊥x轴于点E,求证△ACD≌△ABE,进而求得点B坐标,再将A、B两点坐标代入二次函数解析式,即可解答;(2)将点Q (m,m+3)代入二次函数解析式,求得m的值,进而且得点Q坐标,根据圆的性质得到BC是圆N的直径,利用勾股定理即可求得BC,进而求得N的坐标,再利用勾股定理求得QN的长,确定取值范围即可;(3)分两种情况:当点A的对称点,点O的对称点在抛物线上时,利用旋转180°可知,∥,设点的横坐标为m,则点的横坐标为m-3,利用列出式子,即可求得m的值,利用旋转中心和线段中点的特点,即可求得旋转中心P的坐标;当点A的对称点,点C的对称点在抛物线上时,设点的横坐标为m,则点的横坐标为m-3,同理可求得m的值以及旋转中心P 的坐标.10.如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M 的坐标.【答案】(1)解:如图1中,∵∠AOB=90°,∠OAB=30°,∴∠CBE=60°,∵CE⊥AB,∴∠CEB=90°,∠BCE=30°,∵C(0,- ),∴OC= ,OF=OC•tan30°= ,CF=2OF=3 ,由翻折可知:FO′=FO= ,∴CO′≥CF-O′F,∴CO′≥ ,∴线段O′C的最小值为(2)解:①如图2中,当B′D′=B′M=BD= 时,可得菱形MND′B′.在Rt△AMB′中,AM=2B′M=2 ,∴OM=AM-OA=2 -3 ,∴M(3 -2 ,0).②如图3中,当B′M是菱形的对角线时,由题意B′M=2OB=6,此时AM=12,OM=12-3,可得M(3 -12,0).③如图4中,当B′D′是菱形的对角线时,由∠D′B′M=∠DBO可得,所以B′M=则在RT△AM B′中,AM=2B′M= ,所以OM=OA-AM=3 - ,所以M(3 - ,0).④如图5中,当MD′是菱形的对角线时,MB′=B′D′= ,可得AM=2 ,OM=OA+AM=3 +2 ,所以M(3 +2 ,0).综上所述,满足条件的点M的坐标为(3 +2 ,0)或(3 -12,0)或(3 -,0)或(3 +2 ,0)【解析】【分析】(1)根据直角三角形的两锐角互余求出∠CBE的度数,由垂直的定义可求出∠BCE的度数,由点C的坐标求出OC的长,再在Rt△OCF中,利用解直角三角形求出OF的长;然后利用折叠的性质,可得到FO′的长,然后根据CO′≥CF-O′F,可求出线段O′C的最小值。

2023年中考苏科版数学一轮复习专题练习-一次函数与反比例函数综合应用

2023年中考数学一轮复习专题练习一次函数与反比例函数综合应用 一、选择题 1.下列式子:①y =3x −5;②y =x 1;③y=1-x ;④y 2=x ;⑤y =|x |,其中y 是x 的函数的个数是( )A .2个B .3个C .4个D .5个2.点P (3,﹣1)关于x 轴对称的点的坐标是( )A .(﹣3,1)B .(﹣3,﹣1)C .(1,﹣3)D .(3,1) 3.下列函数是反比例函数的是( )A .2x y =B .x y 1-=C .y =x 2D .y =2x +1 4.在反比例函数x m y 31-=的图像上有A (x 1,y 1),B (x 2,y 2)两点,x 1<0<x 2,y 1<y 2,则m 的取值范围是( )A .m >31B .m <31C .m≥31D .m≤31 5.一次函数y =—2x +3的图象与坐标轴的交点是 ( ) A .(3,1)(1,23) B .(1,3)(23,1) C .(3,0)(0,23) D .(0,3)(23,0) 6.若函数y =(m +2)x |m |﹣3是反比例函数,则m 的值是( ) A .2 B .﹣2C .±2D .不为2的实数 7.已知点A (﹣2,y 1)、B (﹣1,y 2)、C (3,y 3)都在反比例函数y =的图象上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 8. 函数y 1=x 和y 2=x1的图像如图所示,则y 1>y 2的x 取值范围是( ) A .x <-1或x >1 B .x <-1或0<x <1C .-1<x <0或x >1D .-1<x <0或0<x <1 9. 如图,函数y =-x 与函数y =-x4的图像相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为C 、D ,则四边形ACBD 的面积为( ) A .2 B .4C .6D .8第8题第9题二、填空题10.已知直线y=k1x(k1≠0)与反比例函数y =(k2≠0)的图象交于M.N两点,若点M 的坐标是(1,2),则点N 的坐标是.11.如图,直线y 1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是.12.如图,一次函数y=x与反比例函数y=(k>0)的图象在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为.13.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为.14.点A(a,b)是一次函数y=x﹣2与反比例函数y=的交点,则a2b﹣ab2=.三、解答题15.如图,点A和点E(2,1)是反比例函数y=kx(x>0)图象上的两点,点B在反比例函数y=6x(x<0)的图象上,分别过点A,B作y轴的垂线,垂足分别为点C,D,AC=BD,连接AB交y轴于点F.(1)k=;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2;(3)连接CE,DE,当∠CED=90°时,直接写出点A的坐标:.第11题第12题第13题16.如图,反比例函数y =与一次函数y =ax +b 的图象交于点A (﹣2,6)、点B (n ,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.(3)将一次函数y =ax +b 的图象沿y 轴向下平移n 个单位,使平移后的图象与反比例函数y =的图象有且只有一个交点,求n 的值.17.在平面直角坐标系中,O 为坐标原点,直线y =﹣x +3与x 轴交于点B ,与y 轴交于点C ,二次函数y =ax 2+2x +c 的图象过B 、C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交BC 于点F ,交二次函数y =ax 2+2x +c 的图象于点E .(1)求二次函数的表达式;(2)当以C 、E 、F 为顶点的三角形与△ABC 相似时,求线段EF 的长度;(3)已知点N 是y 轴上的点,若点N 、F 关于直线EC 对称,求点N 的坐标.18.如图,在平面直角坐标系中.四边形OABC 为矩形,点C 、A 分别在x 轴和y 轴的正半轴上,点D 为AB 的中点已知实数0k ≠,一次函数3y x k =-+的图像经过点C 、D ,反比例函数()0k y x x=>的图像经过点B ,求k 的值.19.已知一次函数y=kx+b和反比例函数y=图象相交于A(2,4),B(n,﹣2)两点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式kx+ b﹣<0的解集;(3)点C(a,b),D(a,c)(a>2)分别在一次函数和反比例函数图象上,且满足CD=2,求a的值.20如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)求出反比例函数解析式;(2)求证:△ACB∽△NOM.(3)延长线段AB,交x轴于点D,若点B恰好为AD的中点,求此时点B的坐标.21.如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B 在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.22.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.23.如图,在平面直角坐标系中,□ABCO的顶点A在x轴正半轴上,两条对角线相交于点D,双曲线y=(x>0)经过C,D两点.(1)求□ABCO的面积.(2)若□ABCO是菱形,请直接写出:①tan∠AOC=.②将菱形ABCO沿x轴向左平移,当点A与O点重合时停止,则平移距离t与y轴所扫过菱形的面积S之间的函数关系式:.24.学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).(1)点P1旋转后,得到的点P1′的坐标为;(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.【深入感悟】如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.【灵活运用】如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习—反比例函数与一次函数的综合压轴题1.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.

2.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.3.如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.

4.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?5.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.

6.如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);

(3)求使y1>y2时x的取值范围.

7.已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.8.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.

9.如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

12.已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.

(3)观察图象,直接写出不等式的解集.13.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.

14.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.15.如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.

16.如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.17.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.

18.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.19.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.

20.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.(1)求直线AB和反比例函数的解析式;(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.21.如图,在平面直角坐标系中,点A是反比例函数y=(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,﹣2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.

22.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=,cos∠AOE=(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.23.如图,一次函数y=x+2的图象与x轴交于点B,与反比例函数y=(k≠0)的图象的一个交点为A(2,m).(1)求反比例函数的表达式;(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;

(3)请直接写出不等式x+2<成立的x取值范围.

24.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.25.如图,已知反比例函数y=(k<0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求k和m的值;(2)若一次函数y=ax+1的图象经过点A,并且与x轴的交点为点C,试求出△ABC的面积.

26.如图,已知一次函数y=k1x+b的图象分别与x轴、y轴的正半轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OA=OB=2,OD=1.(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.27.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.

28.如图,直线y=﹣2和双曲线y=相交于A(b,1),点P在直线y=x﹣2上,且P点的纵坐标为﹣1,过P作PQ∥y轴交双曲线于点Q.(1)求Q点的坐标;(2)求△APQ的面积.

29.如图,在一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.30.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;

(3)当kx+b>时,请根据图象直接写出x的取值范围.

 2018级中考数学专题复习-反比例函数与一次函数的交点参考答案与试题解析

一.解答题(共30小题)

1.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.

【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.

【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得

AO==5,

△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;

当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得

相关文档
最新文档