新东方优能中学-数学-第一章 集合及常用逻辑用语 (答案版)
高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
新高中数学必修一第一册第一章 讲义 集合与常用逻辑用语--第1讲集合的概念与性质(含答案)

第一章 集合与常用逻辑用语第一讲:集合的概念知识点梳理讲解:一、集合的概念 【知识梳理】1、元素与集合的概念【要点讲解】 准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素. 【知识精讲】例1 (1)下列各组对象:①接近于0的数的全体;②比较小的正整数的全体;③平面上到点A 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A .2B .3C .4D .5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合;②由1,32,64,21 ,12组成的集合有五个元素;③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.【解】(1)选A “接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合.②不正确.由于32=64,⎪⎪⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的. ③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合.【变式训练】1、下列各组对象可以组成集合的是( ) A .数学必修1课本中所有的难题 B .小于8的所有素数C .平面直角坐标系内第一象限的一些点D .所有小的正数 【答案】 B【解析】A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“平面直角坐标系内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合.2 考察下列每组对象能否构成一个集合. (1)不超过20的非负数;(2)方程x 2-9=0在实数范围内的解; (3)某班的所有高个子同学; (4)3的近似值的全体.【解】(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合; (2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合; (4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.3、判断下列每组对象能否构成一个集合.(1)著名的数学家;(2)某校2020年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解; (5)平面直角坐标系内第一象限的一些点.【解】(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.【方法技巧总结】判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.二、元素的特性及集合相等【知识梳理】1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.【要点讲解】(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.【知识精讲】例1、已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x.(1)若-3∈A,求a的值;(2)若x2∈B,求实数x的值;(3)是否存在实数a,x,使A=B.【解】(1)由-3∈A且a2+1≥1,可知a-3=-3或2a-1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. (3)显然a 2+1≠0.由集合元素的无序性, 只可能a -3=0或2a -1=0. 若a -3=0,则a =3,A ={a -3,2a -1,a 2+1}={0,5,10}≠B . 若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1}=⎭⎬⎫⎩⎨⎧-45,25,0≠B . 故不存在这样的实数a ,x ,使A =B .例2、 已知集合A 中含有两个元素a 和2a ,若1∈A ,求实数a 的值. 【解】若1∈A ,则a =1或2a =1,即a =±1.当a =1时,a =2a ,集合A 中有一个元素,∴a ≠1. 当a =-1时,集合A 中含有两个元素1,-1,符合互异性.∴a =-1.【变式训练】1、已知集合M 中含有三个元素:2,a ,b ,集合N 中含有三个元素:2a,2,b 2,且M =N ,求a ,b 的值. 【解】方法一: 根据集合中元素的互异性,有⎩⎪⎨⎪⎧a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a ,解得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12.方法二 ∵两个集合相等,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2,a ·b =2a ·b 2,即错误!∵集合中的元素互异, ∴a ,b 不能同时为零.当b ≠0时,由②得a =0或b =12.当a =0时,由①得b =1或b =0(舍去). 当b =12时,由①得a =14.当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12.2、已知集合A 中含有三个元素1,0,x ,若2x ∈A ,求实数的值.x 【解】∵2x ∈A ,∴2x 是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若2x =0,则x =0,此时集合A 中有两个元素0,不符合互异性,舍去;②若2x =1,则x =±1.当x =1时,此时集合A 中有两个元素1,舍去;当x =-1时,此时集合A 中有三个元素1,0,-1,符合题意;③若 2x =x ,则x =0或x =1,不符合互异性,都舍去.综上可知,x =-1.【方法技巧总结】1、元素的无序性主要体现在:①给出元素属于某集合,则它可能等于集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.2、元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.【易错题】【典例】若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x 2+x ,x 2,且A =B ,则实数x 的值为________. 【解析】∵A =B ,∴⎩⎪⎨⎪⎧x +1=x 2,1=x 2+x或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 【易错点】1.上面例题易由方程组求得x =±1后,忽视对求出的值进行检验,从而得出错误的结论.2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性. 【易错点训练】若集合A 中含有三个元素a -3,2a -1,a 2-4,且-3∈A ,则实数a 的值为________. 解析:①若a -3=-3,则a =0, 此时A ={-3,-1,-4},满足题意.②若2a -1=-3,则a =-1,此时A ={-4,-3,-3},不满足元素的互异性. ③若a 2-4=-3,则a =±1.当a =1时,A ={-2,1,-3},满足题意; 当a =-1时,由②知不合题意. 综上可知a =0或a =1. 答案:0或1三、元素与集合的关系 【知识梳理】1、如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A .2、如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . 【要点讲解】(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R ∈0是错误的 3.常用的数集及其记法 (1)数集及其记法(2【知识精讲】题型1判定元素与集合的关系例3 (1)设集合A只含有一个元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A(2)下列所给关系正确的个数是( )①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2C.3 D.4【解析】(1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.【答案】(1)C (2)B【变式训练】1 给出下列关系:①12∈R;②2∉Q;③|-3|∉N;④|-3|∈Q;⑤0∉N,其中正确的个数为( )A.1 B.2 C.3 D.4【答案】 B【解析】12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3是无理数,④错; 0是自然数,⑤错.故选B.2 用符号 “∈”或“∉”填空. -2________R ;-3________Q ; -1________N ;π________Z. 【答案】 ∈ ∈ ∉ ∉ 3给出下列说法:①R 中最小的元素是0; ②若a ∈Z ,则-a ∉Z ; ③若a ∈Q ,b ∈N *,则a +b ∈Q. 其中正确的个数为( ) A .0 B .1 C .2D .3【解析】选B 实数集中没有最小的元素,故①不正确;对于②,若a ∈Z ,则-a 也是整数,故-a ∈Z ,所以②也不正确;只有③正确. 【方法技巧总结】判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.题型2 根据已知的元素与集合的关系推理 例3 集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________. 【答案】 0,1,2【解析】∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N.当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N.∴A 中元素为0,1,2.【变式训练】1 已知集合A中元素满足2x+a>0,a∈R,若1∉A,2∈A,则( )A.a>-4 B.a≤-2C.-4<a<-2 D.-4<a≤-2【答案】 D【解析】∵1∉A,∴2×1+a≤0,a≤-2.又∵2∈A,∴2×2+a>0,a>-4,∴-4<a≤-2.【方法技巧总结】判断元素和集合关系的两种方法(1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现.(2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.【课堂小测】1.下列选项中能构成集合的是( )A.高一年级跑得快的同学B.中国的大河C.3的倍数D.有趣的书籍【解析】选C 根据集合的定义,选项A,B,D都不具备确定性.2.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是( )A.梯形B.平行四边形C.菱形D.矩形【解析】选A 由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.有下列说法:①集合N与集合N*是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).【解析】因为集合N*表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.【答案】②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.【解析】代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去.所以a=2或a=4.【答案】2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.【解】因为集合A,B相等,则x=0或y=0.①当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.②当y=0时,x=x2,解得x=0或x=1.由①知x=0应舍去.综上知x=1,y=0.【课后作业】一、选择题1.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈A C.0∈A D.-1∉A【答案】 C解析很明显3,1不满足不等式,而0,-1满足不等式.2.集合A中只有一个元素a(a≠0),则( )A.0∈A B.a=AC.a∈A D.a∉A【答案】 C解析∵A中只有一个元素a且a≠0,∴0∉A,选项A错.∵a为元素,A为集合,故B错误.由已知选C.3.下列结论中,不正确的是( )A .若a ∈N ,则-a ∉NB .若a ∈Z ,则a 2∈ZC .若a ∈Q ,则|a |∈QD .若a ∈R ,则3a ∈R 【答案】 A解析 A 不对.反例:0∈N ,-0∈N.4.已知x ,y 为非零实数,代数式x |x |+y |y |的值所组成的集合是M ,则下列判断正确的是( ) A .0∉MB .1∈MC .-2∉MD .2∈M 【答案】 D【解析】①当x ,y 为正数时,代数式x |x |+y |y |的值为2;②当x ,y 为一正一负时,代数式x |x |+y|y |的值为0;③当x ,y 均为负数时,代数式x |x |+y |y |的值为-2, 所以集合M 中的元素共有3个:-2,0,2,故选D.5.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 【答案】 D【解析】由元素的互异性知a ,b ,c 均不相等.6.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A 【答案】C【解析】令3k -1=-1,解得k =0∈Z ,∴-1∈A ;令3k -1=-11,解得k =-103∉Z ,∴-11∉A ; ∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A ;令3k -1=-34,解得k =-11∈Z ,∴-34∈A .7.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( )A .2个元素B .3个元素C .4个元素D .5个元素【答案】 A【解析】 由于|x |=±x ,x 2=|x |,-3x 3=-x ,并且x ,-x ,|x |之中总有两个相等,所以最多含2个元素.8.由不超过5的实数组成集合A ,a =2+3,则( )A .a ∈AB .a 2∈A C.1a∉A D .a +1∉A 【答案】 A【解析】a =2+3<4+4=4<5,∴a ∈A .a +1<4+4+1=5,∴a +1∈A .a 2=(2)2+22·3+(3)2=5+26>5.∴a 2∉A .1a =12+3=3-2(2+3)(3-2)=3-2<5. ∴1a∈A . 故选A.二、填空题9.下列所给关系正确的个数是________.①π∈R ;②3D ∈/Q ;③0∈N *;④|-4|D ∈/N *.【答案】 2【解析】∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.10.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是________.【答案】 x ≠0,1,2,1±52【解析】由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52. 11.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a+b =____.【答案】 -1【解析】∵A =B,0∈B ,∴0∈A .又a ≠0,∴b a =0,则b =0.∴B ={a ,a 2,0}.∵1∈B ,a ≠1,∴a 2=1,a =-1或1(舍).由元素的互异性知,a =-1,∴a +b =-1.三、解答题12.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值.解:由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,故a =-1舍去.当a =-32时,a -2=-72,2a 2+5a =-3,满足题意. ∴实数a 的值为-32. 13.数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1).若2∈A ,试求出A 中其他所有元素; 解:(1)2∈A ,则11-2∈A , 即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A , 即2∈A ,所以A 中其他所有元素为-1,12. 证明如下:1()若a ∈A ,a ≠1,则有11-a ∈A 且11-a≠1, 所以又有11-11-a=a -1a ∈A 且a -1a ≠1, 进而有11-a -1a =a ∈A .又因为a ≠11-a (因为若a =11-a,则a 2-a +1=0,而方程a 2-a +1=0无解),故11-a ≠a -1a,所以A 中只能有3个元素, 它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1. 四、探究与拓展14.已知集合A 中有3个元素a ,b ,c ,其中任意2个不同元素的和的集合中的元素是1,2,3.则集合A 中的任意2个不同元素的差的绝对值的集合中的元素是________.【答案】 1,2【解析】由题意知⎩⎪⎨⎪⎧ a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧a =1,b =0,c =2, ∴集合A ={0,1,2},则集合A 中的任意2个不同元素的差的绝对值分别是1,2.故集合A 中的任意2个不同元素的差的绝对值的集合是{1,2}. 15.已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z),求证:(1)3∈A ;(2)偶数4k -2(k ∈Z)不属于集合A .证明 (1)令m =2∈Z ,n =1∈Z ,得x =m 2-n 2=4-1=3,所以3∈A .(2)假设4k -2∈A ,则存在m ,n ∈Z ,使4k -2=m 2-n 2=(m +n )(m -n )成立.①当m ,n 同奇或同偶时,m +n ,m -n 均为偶数,所以(m +n )(m -n )为4的倍数与4k -2不是4的倍数矛盾.②当m ,n 一奇一偶时,m +n ,m -n 均为奇数,所以(m +n )(m -n )为奇数,与4k -2是偶数矛盾.所以假设不成立.综上,4k -2∉A .。
高中数学第一章集合与常用逻辑用语知识汇总大全(带答案)

高中数学第一章集合与常用逻辑用语知识汇总大全单选题1、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.2、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.3、设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .4、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、集合A={x|x<−1或x≥1},B={x|ax+2≤0},若B⊆A,则实数a的取值范围是()A.[−2,2]B.[−2,2)C.(−∞,−2)∪[2,+∞)D.[−2,0)∪(0,2)答案:B分析:分B=∅与B≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;解:∵B⊆A,∴①当B=∅时,即ax+2≤0无解,此时a=0,满足题意.②当B≠∅时,即ax+2≤0有解,当a>0时,可得x≤−2a,要使B⊆A,则需要{a>0−2a<−1,解得0<a<2.当a<0时,可得x≥−2a ,要使B⊆A,则需要{a<0−2a≥1,解得−2≤a<0,综上,实数a的取值范围是[−2,2).故选:B.7、在下列命题中,是真命题的是()A.∃x∈R,x2+x+3=0B.∀x∈R,x2+x+2>0C.∀x∈R,x2>|x|D.已知A={a∣a=2n},B={b∣b=3m},则对于任意的n,m∈N∗,都有A∩B=∅答案:B分析:可通过分别判断选项正确和错误,来进行选择/选项A,∃x∈R,x2+x+3=0,即x2+x+3=0有实数解,所以Δ=1−12=−11<0,显然此方程无实数解,故排除;选项B,∀x∈R,x2+x+2>0,x2+x+2=(x+12)2+74≥74>0,故该选项正确;选项C,∀x∈R,x2>|x|,而当x=0时,0>0,不成立,故该选项错误,排除;选项D,A={a∣a=2n},B={b∣b=3m},当n,m∈N∗时,当a、b取得6的正整数倍时,A∩B≠∅,所以,该选项错误,排除.故选:B.8、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a =−3时,A ={2,14,4}满足集合中元素的互异性,故a =−3满足要求.综上,a =2或a =−3.故选:D .多选题9、已知集合A ={x ∣1<x <2},B ={x ∣2a −3<x <a −2},下列命题正确的是A .不存在实数a 使得A =B B .存在实数a 使得A ⊆BC .当a =4时,A ⊆BD .当0⩽a ⩽4时,B ⊆AE .存在实数a 使得B ⊆A答案:AE分析:利用集合相等判断A 选项错误,由A ⊆B 建立不等式组,根据是否有解判断B 选项;a =4时求出B ,判断是否A ⊆B 可得C 错误,分B 为空集,非空集两种情况讨论可判断D 选项,由D 选项判断过程可知E 选项正确.A 选项由相等集合的概念可得{2a −3=1a −2=2解得a =2且a =4,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A ⊆B ,得{2a −3≤1a −2≥2即{a ≤2a ≥4,此不等式组无解,因此B 错误; C 选项当a =4时,得B ={x ∣5<x <2}为空集,不满足A ⊆B ,因此C 错误;D 选项当2a −3≥a −2,即a ≥1时,B =∅⊆A ,符合B ⊆A ;当a <1时,要使B ⊆A ,需满足{2a −3≥1a −2≤2解得2≤a ≤4,不满足a <1,故这样的实数a 不存在,则当0≤a ≤4时B ⊆A 不正确,因此D 错误; E 选项由D 选项分析可得存在实数a 使得B ⊆A ,因此E 正确.综上AE 选项正确.故选:AE.小提示:本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.10、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④¬p 是¬s 的必要条件而不是充分条件;则正确命题序号是 ( )A.①B.②C.③D.④答案:ABD分析:根据题设有p⇒r⇔s⇔q,但r⇏p,即知否定命题的推出关系,判断各项的正误. 由题意,p⇒r⇔s⇔q,但r⇏p,故①②正确,③错误;所以,根据等价关系知:¬s⇔¬q⇔¬r⇒¬p且¬p⇏¬r,故④正确.故选:ABD11、已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A.0∉M B.2∈M C.−4∈M D.4∈M答案:CD分析:讨论x,y,z的正负数分布情况判断对应代数式的值,即可确定集合M,进而确定正确的选项.当x,y,z均为负数时,x|x|+y|y|+z|z|+|xyz|xyz=−4;当x,y,z两负一正时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z两正一负时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z均为正数时,x|x|+y|y|+z|z|+|xyz|xyz=4;∴M={−4,0,4},A、B错误,C、D正确.故选:CD12、已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是().A.(1,2)∈B B.A=B C.0∉A D.(0,0)∉B答案:ACD分析:根据集合的定义判断,注意集合中代表元形式.由已知集合A={y}y≥1}=[1,+∞),集合B是由抛物线y=x2+1上的点组成的集合,A正确,B错,C正确,D正确,故选:ACD.小提示:本题考查集合的概念,确定集合中的元素是解题关键.13、对任意实数a,b,c,下列命题中真命题是()A.a=b是ac=bc的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.a>b是a2>b2的充要条件D.a<5是a<3的必要条件答案:BD分析:利用充分条件和必要条件的定义进行判断解:∵“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac=bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;∵“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;∵“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;∵{a|a<3}{a|a<5},故“a<5”是“a<3”的必要不充分条件,故D为真命题.故选:BD.填空题14、已知A={x∈R|2a≤x≤a+3},B={x∈R|x<-1或x>4},若A⊆B,则实数a的取值范围是________.答案:a<-4或a>2分析:按集合A为空集和不是空集两种情况去讨论即可求得实数a的取值范围.①当a>3即2a>a+3时,A=∅,满足A⊆B;.②当a≤3即2a≤a+3时,若A⊆B,则有{2a≤a+3a+3〈−1或2a〉4,解得a<-4或2<a≤3综上,实数a的取值范围是a<-4或a>2.所以答案是:a<-4或a>215、命题“∃x∈R,x≥1或x>2”的否定是__________.答案:∀x∈R,x<1根据含有量词的命题的否定,即可得到命题的否定分析:特称命题的否定是全称命题,∴命题“∃x∈R,x≥1或x>2”的等价条件为:“∃x∈R,x≥1”,∴命题的否定是:∀x∈R,x<1.所以答案是:∀x∈R,x<1.16、用符号∈或∉填空:3.1___N,3.1___Z, 3.1____N∗,3.1____Q,3.1___R.答案:∉∉∉∈∈分析:由元素与集合的关系求解即可因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数,所以有:3.1∉N;3.1∉Z;3.1∉N∗;3.1∈Q;3.1∈R.所以答案是:∉,∉,∉,∈,∈.解答题17、已知m>0,p:(x+1)(x−5)≤0,q:1−m≤x≤1+m.(1)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围.答案:(1){x|−4≤x<−1或5<x≤6};(2)[4,+∞).分析:(1)由“p∨q”为真命题,“p∧q”为假命题,可得p与q一真一假,然后分p真q假,p假q真,求解即可;(2)由p是q的充分条件,可得[−1,5]⊆[1−m,1+m],则有{m>01−m≤−11+m≥5,从而可求出实数m的取值范围(1)当m=5时,q:−4≤x≤6,因为“p∨q”为真命题,“p∧q”为假命题,故p与q一真一假,若p真q假,则{−1≤x≤5x<−4或x>6,该不等式组无解;若p假q真,则{x<−1或x>5−4≤x≤6,得−4≤x<−1或5<x≤6,综上所述,实数的取值范围为{x|−4≤x<−1或5<x≤6};(2)因为p是q的充分条件,故[−1,5]⊆[1−m,1+m],故{m>01−m≤−11+m≥5,得m≥4,故实数m的取值范围为[4,+∞).18、已知集合A={x|2<x<4},B={x|a<x<3a}.(1)若A∩B={x|3<x<4},求实数a的值;(2)若A∩B=∅,求实数a的取值范围.答案:(1)3(2){a|a≤23或a≥4}分析:(1)根据交集结果直接判断即可.(2)按B=∅,B≠∅讨论,简单计算即可得到结果. (1)因为A∩B={x|3<x<4},所以a=3.(2)因为A∩B=∅,所以可分两种情况讨论:B=∅,B≠∅. 当B=∅时,有a≥3a,解得a≤0;当B≠∅时,有{a>0a≥4或3a≤2,解得a≥4或0<a≤23.综上,实数a的取值范围是{a|a≤23或a≥4}.。
高中数学必修一第一章集合与常用逻辑用语必练题总结(带答案)

高中数学必修一第一章集合与常用逻辑用语必练题总结单选题1、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D2、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:A.5B.10C.15D.20答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.3、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.4、命题“∀x<0,x2+ax−1≥0”的否定是()A.∃x≥0,x2+ax−1<0B.∃x≥0,x2+ax−1≥0C.∃x<0,x2+ax−1<0D.∃x<0,x2+ax−1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x<0,x2+ax−1≥0”的否定是“∃x<0,x2+ax−1<0”.故选:C5、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.6、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.7、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C8、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.多选题9、(多选题)下列各组中M,P表示不同集合的是()A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=x2+1,x∈R},P={x|x=t2+1,t∈R}D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}答案:ABD分析:选项A中,M和P的代表元素不同,是不同的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,解出集合M和P.选项D中,M和P的代表元素不同,是不同的集合.选项A中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,M={y|y=x2+1,x∈R}=[1,+∞),P={x|x=t2+1,t∈R}=[1,+∞),故M=P;选项D中,M是二次函数y=x2-1,x∈R的所有因变量组成的集合,而集合P是二次函数y=x2-1,x∈R图象上所有点组成的集合.故选ABD.10、已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={−1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={−1}D.A∩B的真子集个数是7答案:ACD分析:求出集合A,再由集合的基本运算以及真子集的概念即可求解.A={x|2x+1≥0,x∈Z}={x|x≥−1,x∈Z},B={−1,0,1,2},2A∩B={0,1,2},故A正确;A∪B={x|x≥−1,x∈Z},故B错误;,x∈Z},所以(∁U A)∩B={−1},故C正确;∁U A={x|x<−12由A∩B={0,1,2},则A∩B的真子集个数是23−1=7,故D正确.故选:ACD11、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.填空题12、请写出不等式a>b的一个充分不必要条件___________.答案:a>b+1 (答案不唯一)分析:根据充分不必要条件,找到一个能推出a>b,但是a>b推不出来的条件即可.因为a>b+1能推出a>b,但是a>b不能推出a>b+1,所以a>b+1是不等式a>b的一个充分不必要条件,所以答案是:a>b+1(答案不唯一)13、已知集合A={x|−2≤x≤7},B={x|m+1≤x≤2m−1},若B⊆A,则实数m的取值范围是____________.答案:(−∞,4]分析:分情况讨论:当B=∅或B≠∅,根据集合的包含关系即可求解.当B=∅时,有m+1≥2m−1,则m≤2;当B≠∅时,若B⊆A,如图,则{m+1≥−2, 2m−1≤7,m+1<2m−1,解得2<m≤4.综上,m的取值范围为(−∞,4].所以答案是:(−∞,4]14、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).解答题15、已知集合A={x|−1≤x≤2},B={y|y=ax+3,x∈A},C={y|y=2x+3a,x∈A},(1)若∀y 1∈B ,∀y 2∈C ,总有y 1≤y 2成立,求实数a 的取值范围;(2)若∀y 1∈B ,∃y 2∈C ,使得y 1≤y 2成立,求实数a 的取值范围; 答案:(1)a ≥5;(2)a ≥−14. 分析:(1)设y 1=ax +3,y 2=2x +3a ,由题设可得y 1max ≤y 2min ,建立不等式组,解之可得答案. (2)由题设可得y 1max ≤y 2max ,建立不等式组,解之可得答案.(1)设y 1=ax +3,y 2=2x +3a ,其中−1≤x ≤2, 由题设可得y 1max ≤y 2min ,即y 1max ≤3a −2,故{−a +3≤−2+3a 2a +3≤−2+3a , 解得a ≥5.(2)由题设可得y 1max ≤y 2max ,故{−a +3≤4+3a 2a +3≤4+3a ,解得a ≥−14.。
高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
新高中数学必修一第一册第一章 讲义 集合与常用逻辑用语--第1讲集合的概念与性质(含答案)

第一章 集合与常用逻辑用语第一讲:集合的概念知识点梳理讲解:一、集合的概念 【知识梳理】1、元素与集合的概念【要点讲解】 准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素. 【知识精讲】例1 (1)下列各组对象:①接近于0的数的全体;②比较小的正整数的全体;③平面上到点A 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A .2B .3C .4D .5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合;②由1,32,64,21 ,12组成的集合有五个元素;③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.【解】(1)选A “接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合.②不正确.由于32=64,⎪⎪⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的. ③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合.【变式训练】1、下列各组对象可以组成集合的是( ) A .数学必修1课本中所有的难题 B .小于8的所有素数C .平面直角坐标系内第一象限的一些点D .所有小的正数 【答案】 B【解析】A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“平面直角坐标系内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合.2 考察下列每组对象能否构成一个集合. (1)不超过20的非负数;(2)方程x 2-9=0在实数范围内的解; (3)某班的所有高个子同学; (4)3的近似值的全体.【解】(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合; (2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合; (4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.3、判断下列每组对象能否构成一个集合.(1)著名的数学家;(2)某校2020年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解; (5)平面直角坐标系内第一象限的一些点.【解】(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.【方法技巧总结】判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.二、元素的特性及集合相等【知识梳理】1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.【要点讲解】(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.【知识精讲】例1、已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x.(1)若-3∈A,求a的值;(2)若x2∈B,求实数x的值;(3)是否存在实数a,x,使A=B.【解】(1)由-3∈A且a2+1≥1,可知a-3=-3或2a-1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. (3)显然a 2+1≠0.由集合元素的无序性, 只可能a -3=0或2a -1=0. 若a -3=0,则a =3,A ={a -3,2a -1,a 2+1}={0,5,10}≠B . 若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1}=⎭⎬⎫⎩⎨⎧-45,25,0≠B . 故不存在这样的实数a ,x ,使A =B .例2、 已知集合A 中含有两个元素a 和2a ,若1∈A ,求实数a 的值. 【解】若1∈A ,则a =1或2a =1,即a =±1.当a =1时,a =2a ,集合A 中有一个元素,∴a ≠1. 当a =-1时,集合A 中含有两个元素1,-1,符合互异性.∴a =-1.【变式训练】1、已知集合M 中含有三个元素:2,a ,b ,集合N 中含有三个元素:2a,2,b 2,且M =N ,求a ,b 的值. 【解】方法一: 根据集合中元素的互异性,有⎩⎪⎨⎪⎧a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a ,解得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12.方法二 ∵两个集合相等,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2,a ·b =2a ·b 2,即错误!∵集合中的元素互异, ∴a ,b 不能同时为零.当b ≠0时,由②得a =0或b =12.当a =0时,由①得b =1或b =0(舍去). 当b =12时,由①得a =14.当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12.2、已知集合A 中含有三个元素1,0,x ,若2x ∈A ,求实数的值.x 【解】∵2x ∈A ,∴2x 是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若2x =0,则x =0,此时集合A 中有两个元素0,不符合互异性,舍去;②若2x =1,则x =±1.当x =1时,此时集合A 中有两个元素1,舍去;当x =-1时,此时集合A 中有三个元素1,0,-1,符合题意;③若 2x =x ,则x =0或x =1,不符合互异性,都舍去.综上可知,x =-1.【方法技巧总结】1、元素的无序性主要体现在:①给出元素属于某集合,则它可能等于集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.2、元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.【易错题】【典例】若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x 2+x ,x 2,且A =B ,则实数x 的值为________. 【解析】∵A =B ,∴⎩⎪⎨⎪⎧x +1=x 2,1=x 2+x或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 【易错点】1.上面例题易由方程组求得x =±1后,忽视对求出的值进行检验,从而得出错误的结论.2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性. 【易错点训练】若集合A 中含有三个元素a -3,2a -1,a 2-4,且-3∈A ,则实数a 的值为________. 解析:①若a -3=-3,则a =0, 此时A ={-3,-1,-4},满足题意.②若2a -1=-3,则a =-1,此时A ={-4,-3,-3},不满足元素的互异性. ③若a 2-4=-3,则a =±1.当a =1时,A ={-2,1,-3},满足题意; 当a =-1时,由②知不合题意. 综上可知a =0或a =1. 答案:0或1三、元素与集合的关系 【知识梳理】1、如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A .2、如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . 【要点讲解】(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R ∈0是错误的 3.常用的数集及其记法 (1)数集及其记法(2【知识精讲】题型1判定元素与集合的关系例3 (1)设集合A只含有一个元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A(2)下列所给关系正确的个数是( )①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2C.3 D.4【解析】(1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.【答案】(1)C (2)B【变式训练】1 给出下列关系:①12∈R;②2∉Q;③|-3|∉N;④|-3|∈Q;⑤0∉N,其中正确的个数为( )A.1 B.2 C.3 D.4【答案】 B【解析】12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3是无理数,④错; 0是自然数,⑤错.故选B.2 用符号 “∈”或“∉”填空. -2________R ;-3________Q ; -1________N ;π________Z. 【答案】 ∈ ∈ ∉ ∉ 3给出下列说法:①R 中最小的元素是0; ②若a ∈Z ,则-a ∉Z ; ③若a ∈Q ,b ∈N *,则a +b ∈Q. 其中正确的个数为( ) A .0 B .1 C .2D .3【解析】选B 实数集中没有最小的元素,故①不正确;对于②,若a ∈Z ,则-a 也是整数,故-a ∈Z ,所以②也不正确;只有③正确. 【方法技巧总结】判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.题型2 根据已知的元素与集合的关系推理 例3 集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________. 【答案】 0,1,2【解析】∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N.当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N.∴A 中元素为0,1,2.【变式训练】1 已知集合A中元素满足2x+a>0,a∈R,若1∉A,2∈A,则( )A.a>-4 B.a≤-2C.-4<a<-2 D.-4<a≤-2【答案】 D【解析】∵1∉A,∴2×1+a≤0,a≤-2.又∵2∈A,∴2×2+a>0,a>-4,∴-4<a≤-2.【方法技巧总结】判断元素和集合关系的两种方法(1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现.(2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.【课堂小测】1.下列选项中能构成集合的是( )A.高一年级跑得快的同学B.中国的大河C.3的倍数D.有趣的书籍【解析】选C 根据集合的定义,选项A,B,D都不具备确定性.2.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是( )A.梯形B.平行四边形C.菱形D.矩形【解析】选A 由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.有下列说法:①集合N与集合N*是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).【解析】因为集合N*表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.【答案】②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.【解析】代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去.所以a=2或a=4.【答案】2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.【解】因为集合A,B相等,则x=0或y=0.①当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.②当y=0时,x=x2,解得x=0或x=1.由①知x=0应舍去.综上知x=1,y=0.【课后作业】一、选择题1.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈A C.0∈A D.-1∉A【答案】 C解析很明显3,1不满足不等式,而0,-1满足不等式.2.集合A中只有一个元素a(a≠0),则( )A.0∈A B.a=AC.a∈A D.a∉A【答案】 C解析∵A中只有一个元素a且a≠0,∴0∉A,选项A错.∵a为元素,A为集合,故B错误.由已知选C.3.下列结论中,不正确的是( )A .若a ∈N ,则-a ∉NB .若a ∈Z ,则a 2∈ZC .若a ∈Q ,则|a |∈QD .若a ∈R ,则3a ∈R 【答案】 A解析 A 不对.反例:0∈N ,-0∈N.4.已知x ,y 为非零实数,代数式x |x |+y |y |的值所组成的集合是M ,则下列判断正确的是( ) A .0∉MB .1∈MC .-2∉MD .2∈M 【答案】 D【解析】①当x ,y 为正数时,代数式x |x |+y |y |的值为2;②当x ,y 为一正一负时,代数式x |x |+y|y |的值为0;③当x ,y 均为负数时,代数式x |x |+y |y |的值为-2, 所以集合M 中的元素共有3个:-2,0,2,故选D.5.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 【答案】 D【解析】由元素的互异性知a ,b ,c 均不相等.6.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A 【答案】C【解析】令3k -1=-1,解得k =0∈Z ,∴-1∈A ;令3k -1=-11,解得k =-103∉Z ,∴-11∉A ; ∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A ;令3k -1=-34,解得k =-11∈Z ,∴-34∈A .7.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( )A .2个元素B .3个元素C .4个元素D .5个元素【答案】 A【解析】 由于|x |=±x ,x 2=|x |,-3x 3=-x ,并且x ,-x ,|x |之中总有两个相等,所以最多含2个元素.8.由不超过5的实数组成集合A ,a =2+3,则( )A .a ∈AB .a 2∈A C.1a∉A D .a +1∉A 【答案】 A【解析】a =2+3<4+4=4<5,∴a ∈A .a +1<4+4+1=5,∴a +1∈A .a 2=(2)2+22·3+(3)2=5+26>5.∴a 2∉A .1a =12+3=3-2(2+3)(3-2)=3-2<5. ∴1a∈A . 故选A.二、填空题9.下列所给关系正确的个数是________.①π∈R ;②3D ∈/Q ;③0∈N *;④|-4|D ∈/N *.【答案】 2【解析】∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.10.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是________.【答案】 x ≠0,1,2,1±52【解析】由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52. 11.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a+b =____.【答案】 -1【解析】∵A =B,0∈B ,∴0∈A .又a ≠0,∴b a =0,则b =0.∴B ={a ,a 2,0}.∵1∈B ,a ≠1,∴a 2=1,a =-1或1(舍).由元素的互异性知,a =-1,∴a +b =-1.三、解答题12.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值.解:由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,故a =-1舍去.当a =-32时,a -2=-72,2a 2+5a =-3,满足题意. ∴实数a 的值为-32. 13.数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1).若2∈A ,试求出A 中其他所有元素; 解:(1)2∈A ,则11-2∈A , 即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A , 即2∈A ,所以A 中其他所有元素为-1,12. 证明如下:1()若a ∈A ,a ≠1,则有11-a ∈A 且11-a≠1, 所以又有11-11-a=a -1a ∈A 且a -1a ≠1, 进而有11-a -1a =a ∈A .又因为a ≠11-a (因为若a =11-a,则a 2-a +1=0,而方程a 2-a +1=0无解),故11-a ≠a -1a,所以A 中只能有3个元素, 它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1. 四、探究与拓展14.已知集合A 中有3个元素a ,b ,c ,其中任意2个不同元素的和的集合中的元素是1,2,3.则集合A 中的任意2个不同元素的差的绝对值的集合中的元素是________.【答案】 1,2【解析】由题意知⎩⎪⎨⎪⎧ a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧a =1,b =0,c =2, ∴集合A ={0,1,2},则集合A 中的任意2个不同元素的差的绝对值分别是1,2.故集合A 中的任意2个不同元素的差的绝对值的集合是{1,2}. 15.已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z),求证:(1)3∈A ;(2)偶数4k -2(k ∈Z)不属于集合A .证明 (1)令m =2∈Z ,n =1∈Z ,得x =m 2-n 2=4-1=3,所以3∈A .(2)假设4k -2∈A ,则存在m ,n ∈Z ,使4k -2=m 2-n 2=(m +n )(m -n )成立.①当m ,n 同奇或同偶时,m +n ,m -n 均为偶数,所以(m +n )(m -n )为4的倍数与4k -2不是4的倍数矛盾.②当m ,n 一奇一偶时,m +n ,m -n 均为奇数,所以(m +n )(m -n )为奇数,与4k -2是偶数矛盾.所以假设不成立.综上,4k -2∉A .。
高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)
高中数学第一章集合与常用逻辑用语总结(重点)超详细单选题1、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.2、已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,|x−y∣∈A}中所含元素的个数为()A.2B.4C.6D.8答案:C分析:根据题意利用列举法写出集合B,即可得出答案.解:因为A={1,2,3},所以B={(2,1),(3,1),(3,2),(1,2),(1,3),(2,3)},B中含6个元素.故选:C.3、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.4、已知集合M={x|1−a<x<2a},N=(1,4),且M⊆N,则实数a的取值范围是()A.(−∞,2]B.(−∞,0]C.(−∞,13]D.[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13]. 故选:C5、已知集合P ={x|1<x <4},Q ={x|2<x <3},则P ∩Q =( )A .{x|1<x ≤2}B .{x|2<x <3}C .{x|3≤x <4}D .{x|1<x <4}答案:B分析:根据集合交集定义求解.P ∩Q =(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.6、已知集合S ={x ∈N|x ≤√5},T ={x ∈R|x 2=a 2},且S ∩T ={1},则S ∪T =( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}答案:C分析:先 根据题意求出集合T ,然后根据并集的概念即可求出结果.S ={x ∈N|x ≤√5}={0,1,2},而S ∩T ={1},所以1∈T ,则a 2=1,所以T ={x ∈R|x 2=a 2}={−1,1},则S ∪T ={−1,0,1,2}故选:C.7、设集合A ={x |−2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.多选题9、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m与n,也不成立,所以不存在m,n为整数使得m2+n2=3成立,故选项C不正确;对于选项D:m2+n2=4,此时存在m=0,n=2或m=2,n=0使得其成立,故选项D正确,故选:ABD.10、已知全集U =R ,集合A ={x|−2≤x ≤7},B ={x|m +1≤x ≤2m −1},则使A ⊆∁U B 成立的实数m 的取值范围可以是( )A .{m|6<m ≤10}B .{m|−2<m <2}C .{m|−2<m <−12}D .{m|5<m ≤8}答案:ABC分析:讨论B =∅和B ≠∅时,计算∁U B ,根据A ⊆∁U B 列不等式,解不等式求得m 的取值范围,再结合选项即可得正确选项.当B =∅时,m +1>2m −1,即m <2,此时∁U B =R ,符合题意,当B ≠∅时,m +1≤2m −1,即m ≥2,由B ={x|m +1≤x ≤2m −1}可得∁U B ={x|x <m +1或x >2m −1},因为A ⊆∁U B ,所以m +1>7或2m −1<−2,可得m >6或m <−12, 因为m ≥2,所以m >6,所以实数m 的取值范围为m <2或m >6,所以选项ABC 正确,选项D 不正确;故选:ABC.11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1 答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( )A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图.由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确;函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确.故选:ABD[0,1]13、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),A.由(−4,4)⊂≠(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;B.由(−3,3)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.填空题14、已知集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},则M的子集个数______答案:8分析:按x、y、z的正负分情况计算m值,求出集合M的元素个数即可得解.因为集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},当x、y、z都是正数时,m=4,当x、y、z都是负数时,m=-4,当x、y、z中有一个是正数,另两个是负数时,m=0,当x、y、z中有两个是正数,另一个是负数时,m=0,于是得集合M中的元素有3个,所以M的子集个数是8.所以答案是:815、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:416、已知全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},若A={1,2,3},B={−1,0,1},则∁U(A⊙B)______.答案:{x∈Z||x|≥4}分析:利用集合运算的新定义和补集运算求解.全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},A={1,2,3},B={−1,0,1}所以A⊙B={−3,−2,−1,0,1,2,3},所以∁U(A⊙B)={x||x|≥4,x∈Z}.所以答案是:{x||x|≥4,x∈Z}解答题17、已知集合A={x|(x−a)(x+a+1)≤0},B={x|x≤3或x≥6}.(1)当a=4时,求A∪B;(2)当a>0时,若“x∈A”是“x∈B”的充分条件,求a的取值范围.答案:(1)A∪B={x|x≤4或x≥6};(2)(0,3].解析:(1)当a=4时,解出集合A,计算A∪B;(2)由集合法判断充要条件,转化为A⊆B,进行计算.解:(1)当a=4时,由不等式(x−4)(x+5)≤0,得−5≤x≤4,故A={x|−5≤x≤4},又B={x|x≤3或x≥6},所以A∪B={x|x≤4或x≥6}.(2)若“x∈A”是“x∈B”的充分条件,等价于A⊆B,因为a>0,由不等式(x−a)(x+a+1)≤0,得A={x|−a−1≤x≤a},又B={x|x≤3或x≥6},要使A⊆B,则a≤3或−a−1≥6,综合可得a的取值范围为(0,3].小提示:名师点评有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对应集合与p对应集合互不包含.18、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)(带答案)
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)单选题1、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.2、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.3、设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.4、已知命题p:∃x ∈(−1,3),x 2−a −2≤0.若p 为假命题,则a 的取值范围为( )A .(−∞,−2)B .(−∞,−1)C .(−∞,7)D .(−∞,0)答案:A解析:由题可得命题p 的否定为真命题,即可由此求解.∵ p 为假命题,∴ ¬p:∀x ∈(−1,3),x 2−a −2>0为真命题,故a <x 2−2恒成立,∵ y =x 2−2在x ∈(−1,3)的最小值为−2,∴a <−2.故选:A.5、若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则实数a 的范围是( )A .a >2B .a ⩾2C .a >−2D .a ⩽−2答案:A解析:根据命题的否定为真命题可求.若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则命题“∀x ∈[−1,2],−x 2+2<a ”是真命题,当x =0时,(−x 2+2)max =2,所以a >2.6、若不等式|x −1|<a 成立的充分条件为0<x <4,则实数a 的取值范围是( )A .{a ∣a ≥3}B .{a ∣a ≥1}C .{a ∣a ≤3}D . {a ∣a ≤1}答案:A分析:由已知中不等式|x −1|<a 成立的充分条件是0<x <4,令不等式的解集为A ,可得{x |0<x <4 }⊆A ,可以构造关于a 的不等式组,解不等式组即可得到答案.解:∵不等式|x −1|<a 成立的充分条件是0<x <4,设不等式的解集为A ,则{x |0<x <4 }⊆A ,当a ≤0时,A =∅,不满足要求;当a >0时,A ={x ∣1−a <x <1+a},若{x |0<x <4 }⊆A ,则{1−a ⩽01+a ⩾4,解得a ≥3. 故选:A.7、下列命题是假命题的有( )A .若x ∈A ,那么x ∈A ∩B B .若x ∈A ∩B ,那么x ∈AC .若x ∈A ∩B ,那么x ∈A ∪BD .若x ∈A ,那么x ∈A ∪B答案:A分析:由集合与元素的关系和交集并集的定义逐一判断,即可求解对于A ,若x ∈A ,那么x 可能不属于B ,故A 错误;对于B ,若x ∈A ∩B ,则x 是集合A 和B 的公共元素,那么x ∈A ,故B 正确;对于C ,若x ∈A ∩B ,那么x ∈A ∪B ,故C 正确;对于D ,若x ∈A ,那么x ∈A ∪B ,故D 正确.故选:A .8、已知命题p :∃x ∃N ,e x <0(e 为自然对数的底数),则命题p 的否定是( )A .∃x ∃N ,e x <0B .∃x ∃N ,e x >0C .∃x ∃N ,e x ≥0D .∃x ∃N ,e x ≥0分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是()A.(−∞,−5)B.(−3,−1]C.(3,+∞)D.[0,3]答案:AB解析:根据假命题的否定为真命题可知∀x∈M,x≤3,又∀x∈M,|x|>x,求出命题成立的条件,求交集即可知M满足的条件.∵∃x∈M,x>3为假命题,∴∀x∈M,x≤3为真命题,可得M⊆(−∞,3],又∀x∈M,|x|>x为真命题,可得M⊆(−∞,0),所以M⊆(−∞,0),故选:AB小提示:本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.11、下列说法中不正确的是()A.0与{0}表示同一个集合B.集合M={3, 4}与N={(3, 4)}表示同一个集合C.方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 1, 2}D.集合{x|4<x<5 }不能用列举法表示答案:ABC分析:根据集合的概念,以及元素与集合的关系,以及元素的特征,逐项判定,即可求解.对于A中,0是一个元素(数),而{0}是一个集合,可得0∈{0},所以A不正确;对于B中,集合M={3, 4}表示数3,4构成的集合,集合N={(3, 4)}表示点集,所以B不正确;对于C中,方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2},根据集合元素的互异性,可得方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 2},所以C不正确;对于D中,集合{x|4<x<5}含有无穷个元素,不能用列举法表示,所以D正确.故选:ABC.填空题12、关于x的方程ax2+2x+1=0的实数根中有且只有一个负实数根(含两相等实根)的充要条件为____________.答案:a≤0或a=1分析:根据方程根的情况,讨论a=0和a≠0两种情况,结合一元二次方程根的分布情况,以及充要条件的概念,即可求解.,符合题意.若方程ax2+2x+1=0有且仅有一个负实数根,则当a=0时,x=−12当a≠0时,方程ax2+2x+1=0有实数根,则Δ=4−4a≥0,解得a≤1,当a=1时,方程有且仅有一个负实数根x=−1,当a<1且a≠0时,若方程有且仅有一个负实数根,则1<0,即a<0.a所以当a≤0或a=1时,关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根.综上,“关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根”的充要条件为“a≤0或a=1”.所以答案是:a≤0或a=1.13、设非空集合Q⊆M,当Q中所有元素和为偶数时(集合为单元素时和为元素本身),称Q是M的偶子集,若集合M={1,2,3,4,5,6,7},则其偶子集Q的个数为___________.答案:63分析:对集合Q中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q的个数,综合可得结果.集合Q中只有2个奇数时,则集合Q的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种,若集合Q中只有4个奇数时,则集合Q={1,3,5,7},只有一种情况,若集合Q中只含1个偶数,共3种情况;若集合Q中只含2个偶数,则集合Q可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q中只含3个偶数,则集合Q={2,4,6},只有1种情况.因为Q是M的偶子集,分以下几种情况讨论:若集合Q中的元素全为偶数,则满足条件的集合Q的个数为7;若集合Q中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q中的元素是2个奇数1个偶数,共6×3=18种;若集合Q中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.14、写出一个使得命题“∀x∈R,ax2−2ax+3>0恒成立”是假命题的实数a的值__________.(写出一个a的值即可)答案:−1分析:根据题意,假设命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,根据不等式恒成立,分类讨论当a=0和a≠0时两种情况,从而得出实数a的取值范围,再根据补集得出命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题时a的取值范围,即可得出满足题意的a的值.解:若命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,则当a=0时成立,当a≠0时有{a>0Δ=4a2−12a<0,解得:0<a<3,所以当0≤a<3时,命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,所以当a∈(−∞,0)∪[3,+∞)时,命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题,所以答案是:−1.(答案不唯一,只需a∈(−∞,0)∪[3,+∞))解答题15、已知命题p:∀1≤x≤2,x2−a≥0,命题q:∃x∈R,x2+2ax+2a+a2=0.(1)若命题¬p为真命题,求实数 a 的取值范围;(2)若命题 p 和¬q均为真命题,求实数 a 的取值范围.答案:(1){a|a>1};(2){a|0<a≤1}.分析:(1)写出命题p的否定,由它为真命题求解;(2)由(1)易得命题p为真时a的范围,再由q为真命题时a的范围得出非q为真时a的范围,两者求交集可得.解:(1)根据题意,知当1≤x≤2时,1≤x2≤4.¬p:∃1≤x≤2,x2−a<0,为真命题,∴a>1.∴实数 a 的取值范围是{a|a>1}.(2)由(1)知命题 p 为真命题时,a≤1.命题 q 为真命题时,Δ=4a2−4(2a+a2)≥0,解得a≤0,∴¬q为真命题时,a>0.∴{a≤1a>0,解得0<a≤1,即实数 a 的取值范围为{a|0<a≤1}.。
作业答案-第一单元-集合与常用逻辑用语
数学 (理科 ) RJA课时作业 ( 一)1.D[解析 ] P= [0, ],m= >,故选 D.2.B[解析 ] 由题可知A={-1,0,1,2,3}, 则?A B={-1,2,3} .故选 B.3.D[解析 ] 因为集合M={-4,-3,-2, -1,0,1}, N= {x∈R|x2+3 x<0} ={x|-3 <x<0},所以M∩N={-2,-1} .4.B[解析 ] 由题意得 , 集合N=x <2 = x x<0或 x> ,所以 M N.故选B .5.0 [解析 ] 由A=B且 0 ∈B,得 0∈A.若x= 0,则集合B中的元素不满足互异性,∴x≠0, 同理y≠0,∴或解得或-∴ x+y=0.-6.B[解析 ] ∵A∩B= ?,∴a≥1,故选 B .7.C[解析 ] 因为B= {x|-1 <x<2},所以A∩B= {0,1}, 即A∩B的元素个数为2,选 C.8.D[解析 ] 阴影部分所表示的集合为B∩(?U A),∵ A={x|x2- 3x- 4> 0} ={x|x<-1或 x>4},U= R,∴? U A={x|-1≤x≤4},又∵B={x|-2≤x≤2},∴B∩(? U A)={x|-1≤x≤2}.9.D[解析 ] 由题知 ,1 ∈M,1?N;0∈N,0 ?M;3 ∈M,3∈N.∴M? N且N? M.10 .C[解析 ] ∵集合Q={x|2 x2-5 x≤0,x∈N}, ∴Q={0,1,2}, 共有 3 个元素.∵P Q,又集合Q的真子集的个数为 2 3-1 =7,∴集合P的个数为7 .11 .C[解析 ] A= {x|x>0}, B={y|y≥1}, 那么A∩(? U B)=(0,1), 故选 C .12 .B [解析 ] 由|x+1 |-1 >0,得|x+1 |>1,即x<-2 或x>0,∴A={x|x<- 2 或x>0},则?U A={x|-2≤x≤0};由 cos πx=1,得πx=2 kπ,k∈Z, ∴x=2k,k∈Z, 则B={x|x= 2k,k∈Z} .∴(?U A)∩B={ x|-2 ≤x≤0} ∩{x|x= 2k,k ∈Z} ={-2,0}, ∴(? U A)∩B的元素个数为 2 .13 .D[解析 ] ∵A={y|y=,0≤x≤1} ={y|0≤y≤1}, ∴B={y|y=kx+ 1,x∈A}={y|y=kx+ 1,0 ≤x≤1},又∵A? B,∴或解得 k≤-1 . ∴实数k 的取值范围为k≤-1 .14 .②[解析 ] ①中 ,-4 +(-2) =-6 不属于A,所以①不正确 ;②中 ,设n1,n2∈B,n1=3 k1,n2=3 k2 ,k1,k2∈Z, 则n1+n2∈B,n1-n2∈B,所以②正确 ;对于③,令A1={n|n= 5 k,k∈Z}, A2={n|n=2 k,k∈Z}, 则A1, A2为闭集合 ,但A1∪A2不是闭集合 ,所以③不正确.15 .A[解析 ] ∵A对应椭圆+=1上的点集,B 对应指数函数 y= 3x图像上的点集,画出椭圆和指数函数的图像 (图略 )可知 ,两个图像有两个不同交点 ,故∩有 2 个元素 ,其子集个数为A B224故选 A.= .16 .B[解析 ] 因为C(A)=2,A*B=1,所以C(B)=1 或C(B) =3 .由x2+ax=0得 x1 =0,x2=-a,当 a=0时, B={0}, C(B)= 1,满足题设.当a≠0 时 ,对x2+ax+ 2=0,当Δ=0 时 ,a=±2,此时C(B)=3,符合题意; 当Δ>0 时 ,a<-2 或a> 2,此时必有C(B)=4,不符合题意 ;当Δ<0 时 ,-2 ≤a<0 或 0<a≤2,此时C(B)=2,不符合题意.所以 S={0, -2 ,2 },故选B.课时作业 ( 二)1.B[解析 ] 若x2<1,则 (x+1)( x- 1) <0,∴-1 <x<1,∵(-∞,1) ? (-1,1), ∴“x<1 ”是x“2<1”的必要不充分条件.故选B.2.B [解析 ] 对于一个命题的否命题 ,就是把命题的条件与结论分别否定 ,故原命题的否命题是“若f(x)不是奇函数,则 f(-x)不是奇函数”.故选B.3.A [解析 ] 当x>0,y> 0 时 ,由基本不等式得+ ≥2成立 .当 + ≥2时,只需要 xy>0,不能推出x> 0,y>0.所以是充分不必要条件,故选 A .4.C [解析]对于原命题 ,若c=0,则ac2=bc 2,故原命题为假,由等价命题同真同假知其逆否命题也为假 ;对于逆命题 ,22,20,由不等式的基本性质得, 逆命题为真 ,由等价命∵ ac>bc∴c>a>b ∴题同真同假知否命题也为真有 2 个真命题.. ∴5 .必要不充分[解析] 若⊥ ,则· (x-1,x)·(2,x-4)(x-1)(x+2)(x-4)=22 3 2=0,解得a b a b=x+=+x x - x-x= 2或 x=- ;若 x=2,则 a·b= 0,即“a⊥b”.所以“a⊥b”是x=“2”的必要不充分条件 .6.B [解析 ] 若直线y=x+b与圆x2+y2=1 相交 ,则<1,∴- <b<,不一定有 0<b<1; 当 0 <b<1时, 直线y=x+b上的点 (0, b)在圆内 ,∴直线y=x+b与圆x2+y2= 1 相交.故选 B.7.C[解析 ]根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是:若A,B,C至少有一人及格,则及格分不低于70 分.8.B[解析 ]若, , , 依次成等差数列,则有a+d=b+c;反之 ,如 2 3 1+4,但 2,1,4,3 不成等a b c d+ =差数列 .所以“a+d=b+c ”是a“,b,c,d 依次成等差数列”的必要不充分条件 .9.C[解析 ]由三角形边角关系有A>B>C?a>b>c,由正弦定理有a>b>c? 2sin2R sinR A>B>2R sin C? sin A>sin B>sin C(其中2R 是△ABC 的外接圆直径),所以sin A>sin B> sin C?A>B>C ,选C .10 .C[解析 ] 若α=120°,β=60°,则α>β,sinα=sin β,故 A 错误 ;命题“?x>1,x2>1 ”的否定是“?x0>1,≤1”,故 B 错误 ;命题“若x≤ ,则-≥3 ”的逆命题是“若≥3,则x≤”,解≥3 得 1<x≤ ,此--时满足x ≤,故 C 正确 ;“若0, 则x=0或y=0 ”的逆否命题为“若≠0 且y≠0, 则xy≠0”,故 D 错xy=x误.11 .A [解析 ] ∵函数f(x)是奇函数 , ∴若x1+x2=0,则x1=-x2,则f(x1)=f (-x2)=-f(x2),即f(x1)+f(x2)=0成立 ,即充分性成立 ;若f(x)=0,满足f(x)是奇函数 ,当x1=x2=2 时 ,满足f(x1)=f(x2) =0,此时满足f(x1)+f( x2)=0,但 x1+x2= 4≠0,即必要性不成立.故“x1+x 2=0”是f“(x1)+f(x2)= 0”的充分不必要条件 .12.B [解析]对于①,“x+y= 0的充要条件是 =-1”是假命题,比如 y=0时,不成立 ,因此不正确 ;对于②,其中满足条件的两直线m,n 也可以平行,因此不正确;对于③,从等价命题的角度考虑,因为“若x= 2且 y=3,则 x+y= 5”是真命题,“若x+y=5,则 x= 2且 y=3”是假命题,所以 p?q, q p,即 q? p,p q,故③正确;对于④,原命题的逆命题为“若 a,b 中至少有一个不小于1,则a+b≥2”,而 a=2,b=-2满足 a,b 中至少有一个不小于1,但此时a+b= 0,故④正确.所以选 B.13.若log a2≥0( a>0且 a≠1),则函数 f(x)=log a x 在其定义域内不是减函数[解析 ] “若函数f(x)=log x( a>0且 a≠1)在其定义域内是减函数,则log2<0 ”的条件的否定是“在定义域内不是a a减函数”,结论的否定是 log a2≥0 .14.充分不必要[解析 ] 因为 sin( α+β)=sin αcosβ+cos αsin β<sin α+sin β,所以若 sin α+sin β<,则有 sin( α+β)< , 故充分性成立 ;当α=β=时 ,有 sin( α+β)=sin π= 0< ,而 sin α+sinβ=1+1 =2,不满足 sin α+sin β<,故必要性不成立.所以“sinα+sinβ<”是“sin(α +β)< ”的充分不必要条件 .15 .C [解析 ] 若公比q=1,则a1> 0? S2017>0;若q≠1,则S2017=-,∵1 -q与 1 -q2017符号-相同 ,∴a1与S2017的符号相同 ,则a1>0? S2017> 0.∴“a1> 0”是S“2017>0”的充分必要条件 , 故选 C.16 .[ 解析 ] 由a> 0,m2-7 am+12 a2<0, 得 3a<m< 4 a,即p:3a<m< 4a,a> 0.由方程-+ - =1表示焦点在 y 轴上的椭圆,可得2 -m>m- 1 >0,解得1<m< ,即 q:1<m< .因为 p 是 q的充分不必要条件,所以或解得≤a≤ ,所以实数 a 的取值范围是, .课时作业 ( 三)1.C[解析 ] 根据逻辑联结词“且”的含义 ,可知 C 符合.A 不是命题 ,B,D 不是“p且q”形式.2.C[解析 ] 易知命题p和命题q均为假命题 ,只有选项 C 正确.3.B[解析 ]根据全称命题与特称命题互为否定的关系可知p:? x1,x2∈R,[ (2)(1)]( 2-x 1)0.f x-f x x<4 .B[解析 ]∩, ?,由图可知 A 错误 ,B 正确 ,C 错误 ,D 错误故选 B.∵P Q=P ∴P Q.5.? x0∈(0,+∞), +x0+1≤0 [解析]命题“?x∈(0, +∞), x2+x+1 >0”的否定是“?x0∈(0, +∞),+x0 +1≤0”.6.B[解析 ] 对于命题p,若△为钝角三角形 ,则当B为钝角时 ,cos0<sin A,不等式 sinABC B<A<cos B不成立 ,即命题p是假命题 ,故命题p是真命题 ;对于命题q“若≠2,则≠1或yx+y x -≠3 ”,其逆否命题为“若x=-1 且y= 3,则x+y= 2”,为真命题 ,所以命题q是真命题.所以依据复合命题的真假判别法可知命题∧是真命题 ,应选 B.p q7.B[解析 ] 若x=0,则 20=3 0=1,∴p是假命题.∵方程x3=1 -x2有解 ,∴q是真命题 , ∴p∧q是真命题 .8.A[解析 ] 对于命题p,幂函数y=a2017在 R 上单调递增 , 因此若a2017>-1,则a>-1,故p是真命题 .对于命题 q,取 x=,则x2tan x2=tan=-<0,因此命题 q 是假命题 .则B,C,D都为假命题 ,只有 A 是真命题.故选 A.9.A[解析 ]函数()在 R 上单调递增 ,?0∈R, ( 0 1 ) ≤(log 20 2 ), 等价为?0∈R,01|∵ f x∴ x f |x + | f a-|x + |x|x+≤log 2a-|x0+2 |成立 ,即|x+1 |+|x+2 |≤log 2a有解 ,∵|x+1|+|x+ 2|≥|x+ 2-x- 1|=1,∴log 2a≥1,即a≥2 .10 D[解析] 当a=0 时,命题p为真 ;当a≠0 时 ,若命题p为真 ,则a>0 且 2 4a<0,即 04.=a-<a< .故命题 p 为真时,0≤a<4 .命题 q为真时 ,Δ=1-4 a≥0,即a≤.命题p∧q为真命题时 ,p,q均为真命题, 则实数a的取值范围是0,.11 .A[解析 ] f'(x)=e x ln x+,令g(x)=ln x+,则g'(x)= -= -,∴当0 <x< 1时 ,g'(x)<0,当x>1时, g'(x)>0,∴g(x)在,1 上单调递减 ,在 (1,e)上单调递增 ,∴g(x) ≥g(1) =1,∴(f'x)>0,∴f(x)在,e 上单调递增 ,∴x0∈ ,e时 ,f(x0)∈[-,e e ],因此 [-,e e ]? [-a,a]? 0<a≤.选 B .12 .0[解析 ] 令f(x)=tan x+1,则函数 f(x)在 - ,上为增函数,故 f(x)的最小值为 f -=0,∵?x ∈-, ,m≤tanx+1, 故m≤(tanx+1) min ,≤0,故实数m的最大值为 0.∴m13 .①②[解析 ] 对于①,命题“?x∈(0,2),3 x>x3”的否定是“?x0∈(0,2),≤”,故①为真命题;对于②,若f(x)=2x-2 -x,则?x∈R, f(-x)= 2-x-2 x=-(2 x-2 -x)=-f(x), 故②为真命题 ;对于③,对于函数( )=x+,当且仅当x=0 时,( ) 1,故③为假命题.f x f x =故答案为①②.14 .m< 1 或m>2[解析 ]若对任意 x∈R,不等式 x2-2x-1≥m2-3 m 恒成立,则[(x-1)2-2]min≥m 2-3 m,即 m2-3 m≤-2,解得1≤m ≤2,∵ p 为真命题,∴ m<1或 m> 2.15 A[解析 ]()---(),故 () 是奇函数 ,命题p 是真命题 ;对()32,x∈.f-x=-==-f x f x g x=x -x (0, +∞),g'(x)= 3x2-2 x=x (3 x-2), 令g'(x)>0,解得x> ,令g'(x)<0,解得0 <x< ,故g( x)在 0,上单调递减 ,在 ,+∞上单调递增 ,故命题q是假命题.故p∨q是真命题 ,p∧q是假命题 ,p∧q 是假命题 ,p∨q 是假命题,故选A.16 .解析由“ 且q ”为真命题知p真q真由题意得, p:?x∈ , ,2x<m (x2+1),即[]p.m>=在,上恒成立,当x=时,x+取得最小值,此时取得最大值,最大值为,所以m>;设t=2x ,则∈(0,), 则原函数化为( )22t+m-1,由题知()在 (0,)上存在零点 ,令t+∞g t=t+g t+∞()0,得(t+1)22, 又t>0,所以 1 所以实数m的取值范围是1g t =m=-+m< .<m< .。
第一章 集合与常用逻辑用语(答案)
答案 高三课标版 数学(理) 第一章 集合与常用逻辑用语 第一节 集合的概念与运算基础自测1.[答案] (1)× (2)× (3)× (4)√ (5)×2.[解析] 由题意知B ={x |-2<x <1},所以A ∩B ={-1,0}.故选A.[答案] A3.[解析] 由已知条件可得B ={x |(x -1)(x +1)>0}={x |x >1或x <-1},∴A ∪B ={x |0<x <2}∪{x |x >1或x <-1}={x |x >0或x <-1},故选C.[答案] C4.[解析] 解不等式|x -1|<2得-1<x <3,所以A ={x |-1<x <3}.要使函数y =lg(x 2+x )有意义,须x 2+x >0,解得x <-1或x >0,所以B ={x |x <-1或x >0},∁U B ={x |-1≤x ≤0},所以A ∩(∁UB )=(-1,0],故选B.[答案] B5.[解析] ∵a ∈A ,b ∈A ,x =a +b ,∴x =2,3,4,5,6,8,∴B 中有6个元素.[答案] 6 考点一 集合的基本概念例1:[解题指导] 切入点:集合中元素的特征;关键点:集合中元素的互异性.[解析] (1)逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),因为当m =-32时,m +2=12≠3,符合题意.所以m =-32.[答案] (1)C (2)-32对点训练1.[解析] 由题意得,ax 2+ax +1=0只有一个实数解,当a =0时,方程无实数解;当a ≠0时,则Δ=a 2-4a =0,解得a =4(a =0不合题意舍去),故选A.[答案] A2.[解析] 由集合A ={t 2+s 2|t ,s ∈Z }(即A 中元素均可以表示为两个整数平方和的形式),可得1=02+12,2=12+12,所以x =1∈A ,y =2∈A ,但1+2=3∉A ,故A.“x +y ∈A ”不成立;又1-2=-1∉A ,故B.“x -y ∈A ”不成立;又12∉A ,故D.“xy ∈A ”不成立.故选C.[答案] C3.[解析] 因为B 是一个集合,由集合元素的互异性可知y ≠-3且y ≠1,A 是函数y =x 2-2的值域[-2,+∞),从而y 的取值集合就是{y |y ≥-2且y ≠1}.[答案] {y |y ≥-2且y ≠1} 考点二 集合间的基本关系例2:[解题指导] 切入点:子集的定义;关键点:含有字母参数时,应对Ø关注.[解析] (1)集合N ={x |x 2-2x -3>0}={x |x >3或x <-1},所以∁R N ={x |-1≤x ≤3},又M ={x |0≤x ≤2},所以M ⊆∁R N ,故选B. (2)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A ;若B ≠Ø,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3.∴2≤m ≤3.故m <2或2≤m ≤3,即m 的取值范围为{m |m ≤3}.[答案] (1)B (2){m |m ≤3} 对点训练1.[解析] ∵A ={1,2,3},B ={2,3},∴2,3∈A 且2,3∈B,1∈A 但1∉B ,∴B ⊂≠A .[答案] D 2.[解析] 由题意得,P ={-3,2}. 当a =0时,S =Ø,满足S ⊆P ;当a ≠0时,方程ax +1=0的解为x =-1a,为满足S ⊆P ,可使-1a =-3,或-1a=2,即a =13,或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.[答案] D 3.[解析] 集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].[答案] (-∞,-2]考点三 集合的基本运算例3:[解题指导] 切入点:集合的交、并、补的概念;关键点:化简集合,准确运算. [解析] (1)先求得集合B 的补集,再进行交集运算.由题意得∁U B ={2,5,8},∴A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}.(2)y =x 2-2x =(x -1)2-1≥-1,y =-x 2+2x +6=-(x -1)2+7≤7, ∴A ={y |y ≥-1},B ={y |y ≤7},故A ∩B ={y |-1≤y ≤7}.[答案] (1)A (2){y |-1≤y ≤7}[拓展探究] [解] (1)因A 中元素是函数自变量,则A =R ,而B ={y |y ≤7},则A ∩B ={y |y ≤7}.(2)由⎩⎪⎨⎪⎧y =x 2-2x ,y =-x 2+2x +6⇒x 2-2x -3=0,解得x =3或x =-1.于是,⎩⎪⎨⎪⎧x =3,y =3或⎩⎪⎨⎪⎧x =-1,y =3,故A ∩B ={(3,3),(-1,3)}.考点四 与集合有关的新定义问题例4:[解题指导] 切入点:拓扑的概念;关键点:从概念出发解决问题.[解析] (1)τ={Ø,{a },{c },{a ,b ,c }},而{a }∪{c }={a ,c }∉τ,故(1)不是集合X 上的拓扑;(2)满足:①X 属于τ,Ø属于τ,②τ中任意多个元素的并集属于τ,③τ中任意多个元素的交集属于τ,因此(2)是集合X 上的拓扑;(3){a ,b }∪{a ,c }={a ,b ,c }∉τ,故(3)不是集合X 上的拓扑;(4)满足:①X 属于τ,Ø属于τ,②τ中任意多个元素的并集属于τ,③τ中任意多个元素的交集属于τ,因此(4)是集合X 上的拓扑.[答案] (2)(4) 对点训练[解析] m ,n 同奇同偶时有11组:(1,11),(2,10),…,(11,1);m ,n 一奇一偶时有4组:(1,12),(12,1),(3,4),(4,3).[答案] 15课时跟踪训练(一)一、选择题1.[解析] 由题知A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},所以∁R B ={x |x >2或x <0},所以A ∩(∁R B )={x |-3≤x <0},所以选D.[答案] D 2.[解析] ∵P ={1,3},∴集合P 的子集个数为4,故选C.[答案] C3.[解析] 先化简集合P ,再应用集合的补集与交集的定义进行计算.由x 2-2x ≥0,得x ≤0或x ≥2,即P ={x |x ≤0或x ≥2},所以∁R P ={x |0<x <2}=(0,2).又Q ={x |1<x ≤2}=(1,2],所以(∁R P )∩Q =(1,2).[答案] C4.[解析] 因为A ={x |x (x +3)<0}={x |-3<x <0},∁U B ={x |x ≥-1},阴影部分为A ∩(∁U B ),所以A ∩(∁U B )={x |-1≤x <0},故选C.[答案] C5.[解析] ∵A ={x |y =x x }={x |x ≥0},B ={y |y =-x 2}={y |y ≤0},∴∁U B ={y |y >0},从而有A ∩(∁U B )={x |x >0}.[答案] C6.[解 ∵B ={x |(x +2)(x -1)<0},∴B ={x |-2<x <1},∵A ={x |x ≥1},∴A ∩B =Ø.[答 A 7.[解析] 由A ∪B =A ,可得B ⊆A ,则m =3或m =m ,得m =3或0或1.经检验m =1时,集合A ={1,3,1},B ={1,1},显然不成立.综上有m =0或3,故选B.[答案] B8.[解 当x =1时,y =2或3或4;当x =2时,y =3,所以集合B 中的元素个数为4.[答 C 9.[解析] 因为本题涉及的集合间的运算以及关系较为抽象,可以考虑利用Venn 图辅助解题.作出满足题意的Venn 图,如图所示,容易知道M ∩N =Ø,故选B.[答案] B10.[解 A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1图象的对称轴为x =a >0,f (0)=-1<0,根据对称性可知要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,故选B.[答 B 二、填空题11.[解析] 若a =4,则a 2=16∉(A ∪B ),所以a =4不符合要求;若a 2=4,则a =±2,又-2∉(A ∪B ),所以a =2.[答案] 212.[解析] 集合A 表示以原点为圆心,7为半径的圆在x 轴及其上方的部分,A ∩B ≠Ø,表示直线y =x +m 与半圆有交点,作出示意图可得实数m 的取值范围是[-7,72].[答案] [-7,72]13.[解析] ①当A 中的元素为非正数时,A ∩B =Ø,即方程x 2+(a +2)x +1=0只有非正数解,所以⎩⎪⎨⎪⎧Δ=a +2-4≥0,a +2≥0,解得a ≥0;②当A =Ø时,Δ=(a +2)2-4<0,解得-4<a <0.综上,a >-4.所以a 的取值范围是(-4,+∞).[答案] (-4,+∞) 三、解答题14.[解] 由A =B 可知,(1)⎩⎪⎨⎪⎧m +d =mq ,m +2d =mq 2,或(2)⎩⎪⎨⎪⎧m +d =mq 2,m +2d =mq .解(1)得q =1,解(2)得q =1或q =-12.又因为当q =1时,m =mq =mq 2,不满足集合中元素的互异性,应舍去,所以q =-12.15.[解] 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3. 16.[解] 由x -5x +1≤0,解得-1<x ≤5,所以A ={x |-1<x ≤5}. (1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3}, 所以A ∩(∁R B )={x |3≤x ≤5}.(2)因为A ={x |-1<x ≤5},A ∩B ={x |-1<x <4}, 所以有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.第二节 命题及其关系、充分条件与必要条件基础自测1.[答案] (1)× (2)× (3)× (4)× (5)√2.[解:根据逆否命题的定义可以排除A ,D ,因为x 2-3x -4=0,所以x =4或-1,故选C. 3.[解析] 方程x 2-2x +a =0有实数根的充要条件是Δ=4-4a ≥0,即a ≤1.因此,“a =1”是“关于x 的方程x 2-2x +a =0有实数根”的充分不必要条件,故选A.4.[解析] 因为a >b ⇒a >b -1,但a >b -1推不出a >b ,故A 是a >b 的必要不充分条件;B 是a >b 的充分不必要条件;C 是a >b 的既不充分也不必要条件;D 是a >b 的充要条件,故选A. 5.[解析]xx -1<0⇔0<x <1.由已知,得(0,1)(0,m ),所以m >1.[答案] (1,+∞)考点一 命题的关系及命题真假的判断例1:[解题指导] 切入点:四种命题的概念;关键点:分清命题的条件和结论.[解:(1)命题“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”,故选D. (2)原命题正确,所以逆否命题正确.模相等的两复数不一定互为共轭复数,如z 1=3+4i ,z 2=4+3i ,同时因为逆命题与否命题互为逆否命题,所以逆命题和否命题错误.故选B. [答案] (1)D (2)B 对点训练1.[解析] 对于选项A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项A 为假命题;对于选项B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项D 为假命题.综上可知,选B.2.[解析] 由f (x ),g (x )均为奇函数可得h (x )=f (x )·g (x )为偶函数,反之则不成立,如h (x )=x 2是偶函数,但函数f (x )=x 2x 2+1,g (x )=x 2+1都不是奇函数,故其逆命题不正确,其否命题也不正确,只有其逆否命题正确.故选B.3.[解析] 根据题意得⎩⎪⎨⎪⎧x <2或x >5,1≤x ≤4,解得1≤x <2,故x ∈[1,2).[答案] [1,2)考点二 充分条件与必要条件的判断例2:[解题指导] 切入点:充分、必要条件的概念;关键点:从集合的角度进行判断.[解析] (1)∵x>1⇒log12(x+2)<0,log12(x+2)<0⇒x+2>1⇒x>-1,∴“x>1”是“log12(x+2)<0”的充分而不必要条件.(2)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,故选C.[答案] (1)B (2)C对点训练1.[解析] 因为m=1时,A={0,1},A∪B={0,1,2},所以充分性成立;反之,若A∪B={0,1,2},则A={0,1}或A={0,2},当m2=1时,m=1或m=-1;当m2=2时,m=2或m=-2,所以必要性不成立,即“m=1”是“A∪B={0,1,2}”的充分不必要条件,故选A.2.[解析] 据已知可得非p q,q⇒非p,因为原命题与其逆否命题等价,故有非q p,p⇒非q,故有p是非q的充分不必要条件,故选A.3.[解析] △ABC中,sin A>32得,A∈⎝⎛⎭⎪⎫π3,2π3,故sin A>32是A>π3的充分条件,而当A=56π时,sin A=12<32故为不必要,选A.考点三充分条件与必要条件的应用例3:[解题指导] 切入点:充分、必要条件的判断;关键点:弄清条件、结论.[解析] (1)若a<0,b<0,则一定有a+b<0,故选A.(2)由q:(x-a)(x-a-4)>0,得x<a或x>a+4.设p:A={x|-2≤x≤1},q:B={x|x<a或x>a+4},∵p是q成立的充分不必要条件,∴A B.∴a+4<-2或a>1,即a<-6或a>1. [答案] (1)A (2)(-∞,-6)∪(1,+∞)[拓展探究] [解] 由q:(x-a)(x-a-4)>0,得x<a或x>a+4.设p:A={x|x≤-2或x≥1},q:B={x|x<a或x>a+4},∵p 是q 的必要不充分条件,∴BA .∴⎩⎪⎨⎪⎧a ≤-2,a +4≥1,解得-3≤a ≤-2.课时跟踪训练(二)一、选择题1.[解析] q :2x>1⇔x >0,且(1,2)⊆(0,+∞),所以p 是q 的充分不必要条件.[答案] A 2.[解析] 结合韦恩图可知,A ∩B =A ,得A ⊆B ,反之,若A ⊆B ,即集合A 为集合B 的子集,故A ∩B =A ,故“A ∩B =A ”是“A ⊆B ”的充要条件,选C.3.[解析] 当a <0时,Δ=1-4a >0,所以方程x 2+x +a =0有实根,故原命题为真;根据原命题与逆否命题真假一致,可知其逆否命题为真;逆命题为:“若方程x 2+x +a =0有实根,则a <0”,因为方程有实根,所以判别式Δ=1-4a ≥0,所以a ≤14,显然a <0不一定成立,故逆命题为假;根据否命题与逆命题真假一致,可知否命题为假.故正确的命题有2个.[答B 4.[解析] 注意到x 2-3x >0⇔x <0或x >3,x -4>0⇔x >4.由x 2-3x >0不能得出x -4>0;反过来,由x -4>0可得出x 2-3x >0,因此“x 2-3x >0”是“x -4>0”的必要不充分条件,选B. 5.[解:依题意,注意到由|a -b |=|a |+|b |不能得知ab <0,如取a =0,b =3;反过来,由ab <0可得|a -b |=|a |+|b |.因此,“|a -b |=|a |+|b |”是“ab <0”的必要不充分条件,选B. 6.[解析] q :3x +1<1⇒3x +1-1<0⇒2-xx +1<0⇒(x -2)·(x +1)>0⇒x <-1或x >2.因为p 是q 的充分不必要条件,所以k >2,故选B.7.[解:若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =Ø;若A ∩B =Ø,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C . 故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =Ø”的充要条件.答C8.[解析] 原命题的逆否命题:若a ,b 都小于1,则a +b <2,是真命题,所以原命题为真命题;原命题的逆命题:若a ,b 中至少有一个不小于1,则a +b ≥2,如a =3,b =-3满足条件a ,b 中至少有一个不小于1,但此时a +b =0,故逆命题为假命题,故选A.9.[解析] 由f (x )在(-∞,+∞)上是减函数可得3a -1<0,0<a <1,7a -1≥0,即17≤a <13,所求应该是⎣⎢⎡⎭⎪⎫17,13的真子集,故选C.10.[解析] 将ab +1>a +b 变形为(a -1)(b -1)>0,即⎩⎪⎨⎪⎧a >1,b >1,或⎩⎪⎨⎪⎧a <1,b <1.在平面直角坐标系中分别作出满足条件a 2+b 2<1和⎩⎪⎨⎪⎧a >1,b >1,或⎩⎪⎨⎪⎧a <1,b <1,的点(a ,b ),若分别构成集合P 和Q .P是圆内的点,Q 是直线x =1和y =1两直线把平面分成四部分中右上和左下对角区域的部分,显然有P 是Q 的真子集,所以选C. 二、填空题11.[解:首先将原命题写成“若p 则q ”的形式,其中p :两个三角形全等,q :两个三角形相似,则其逆否命题为“若非q 则非p ”.[答案] 若两个三角形不相似,则它们一定不全等 12.[解析] 若a =4时,函数f (x )=x +a x在(2,+∞)上单调递增,而当函数f (x )在(2,+∞)上为增函数时,只需a ≤4即可,故“a =4”是函数f (x )在(2,+∞)上为增函数的充分不必要条件.[答案] 充分不必要13.[解析] 由题意知,p :x ∈(-∞,1)∪(2,+∞),q :(x -1)(x +a )>0,由p 是q 的充分不必要条件可知p 中不等式的解集是q 中不等式的解集的真子集,从而有-a =1或1<-a <2,所以实数a 的取值范围是(-2,-1].[答案] (-2,-1] 三、解答题14.[解] 设A ={x |(4x -3)2≤1},B ={x |x 2-(2a +1)x +a (a +1)≤0}, 易知A ={x |12≤x ≤1},B ={x |a ≤x ≤a +1}.∵q 是p 的必要不充分条件,即A B ,∴⎩⎪⎨⎪⎧a ≤12,a +1≥1.故所求实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 15. [证明] (1)充分性:∵0<m <13,∴方程mx 2-2x +3=0的判别式Δ=4-12m >0,且3m >0,∴方程mx 2-2x +3=0有两个同号且不相等的实根.(2)必要性:若方程mx 2-2x +3=0有两个同号且不相等的实根,则有⎩⎪⎨⎪⎧Δ=4-12m >0,3m >0,∴0<m <13.综合(1)(2)可知,方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <13.16.解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x -2x -52<0=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫2<x <52,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -94x -12<0=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫12<x <94, ∴∁U B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥94.∴(∁U B )∩A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪94≤x <52. (2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}. ①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎪⎨⎪⎧a ≤2,3a +1≤a 2+2,即13<a ≤3-52. ②当3a +1=2,即a =13时,A =Ø,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,∴-12≤a <13.综上所述:实数a 的取值范围是⎣⎢⎡⎭⎪⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.第三节 简单的逻辑联结词、全称量词与存在量词基础自测1.[答案] (1)× (2)× (3)× (4)√ (5)√2.[解析] 根据指数函数值域为(0,+∞),得p 为真命题;而“x >1”是“x >2”的必要不充分条件,故q 为假命题.根据复合命题的真假规律,可得p ∧(非q )为真命题,故选D.3.[解析] 依据含有一个量词的命题的否定判定即可.因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,非p (x )”,所以命题“∃x ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n”.故选C.4.解:由命题∃x 0∈R ,使x 20+mx 0+2m -3<0为假命题得Δ=m 2-4(2m -3)≤0,即2≤m ≤6,选A. 5.[解析] 先求p ∧q 是真命题时m 的取值范围,再求其补集.命题p 是真命题时,m ≤-1,命题q 是真命题时,m 2-4<0,解得-2<m <2,所以p ∧q 是真命题时,-2<m ≤-1,故p ∧q 为假命题,则m 的取值范围是m ≤-2或m >-1.[答案] m ≤-2或m >-1 考点一 含有逻辑联结词的命题及其真假判断例1:[解题指导] 切入点:判断p ,q 的真假;关键点:根据真值表判断.[解:(1)命题p 、q 均为真命题,则非p 、非q 为假命题.从而结论①②③④均正确,故选D. (2)当x >y 时,-x <-y ,故命题p 为真命题,从而非p 为假命题.当x >y 时,x 2>y 2不一定成立,故命题q 为假命题,从而非q 为真命题. 由真值表知,①p ∧q 为假命题;②p ∨q 为真命题;③p ∧非q 为真命题;④(非p )∨q 为假命题.故选C. [答案] (1)D (2)C 对点训练1.[解:由于非p 是真命题,则命题p 是假命题.又p ∨q 是真命题,则命题q 是真命题.[答A2.[解析] 因为当x >0,a >0时,x +a x≥2x ·ax=2a ,由2a ≥2可得a ≥1,所以命题p 为假命题;因为当x =2时,x 2+x -2=22+2-2=4>0,所以命题q 为真命题.所以(非p )∧q为真命题,故选B.3.[解析] 函数y =2-a x +1的图象可看出是先把函数y =a x的图象向左平移一个单位,再将所得图象沿x 轴作翻折,最后再将所得图象向上平移2个单位得到,而y =a x的图象恒过(0,1),所以y =2-ax +1的图象恒过(-1,1),因此p 为假命题;若函数f (x -1)为偶函数,即图象关于y 轴对称,f (x )的图象即f (x -1)向左平移一个单位得到,所以f (x )的图象关于直线x =-1对称,因此q 为假命题.故p ∨(非q )为真命题,故选D.考点二 全(特)称命题的否定例2:[解题指导] 切入点:确定量词;关键点:根据含有一个量词的命题的否定形式进行判断. [解析] (1)特称命题的否定是全称命题,故选A.(2)根据全称命题的否定是特称命题求解.写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.[答案] (1)A (2)D 对点训练1.[解:特称命题的否定为全称命题,所以“存在”对“任意”,“x >1”对“x ≤1”.选C. 2.[解析] 依题意,非p 是“∃x >2,x 3-8≤0”,故选B.3.[解析] 命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是“对任意的x ∈R ,都有|x -1|-|x +1|≤3”.[答案] “对任意的x ∈R ,都有|x -1|-|x +1|≤3”考点三 利用含逻辑联结词的命题的真假求参数的取值范围例3:[解题指导] 切入点:当p ,q 为真时,求出实数a 的范围;关键点:对复合命题的真假情况分类讨论.[解析] (1)若命题p 是真命题,则Δ=a 2-16≥0,即a ≤-4或a ≥4;若命题q 是真命题,则-a4≤3,即a ≥-12.因为p 或q 是真命题,分为p 真q 真,p 真q 假,p 假q 真,所以a ∈R ,即a 的取值范围是(-∞,+∞).(2)根据指数函数的单调性,可知命题p 为真时,实数a 的取值集合为P ={a |0<a <1}; 对于命题q :函数的定义域为R 的充要条件是ax 2-x +a ≥0恒成立. 当a =0时,不等式为-x ≥0,解得x ≤0,显然不成立; 当a ≠0时,不等式恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=-2-4a ×a ≤0,解得a ≥12.综上,命题q 为真时,a 的取值集合为Q =⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥12.由“p ∨q 是真命题,p ∧q 是假命题”,可知命题p ,q 一真一假,当p 真q 假时,a 的取值范围是P ∩(∁R Q )={a |0<a <1}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a <12=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪0<a <12; 当p 假q 真时,a 的取值范围是(∁R P )∩Q ={a |a ≤0或a ≥1}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥12={a |a ≥1}. 综上,a 的取值范围是⎝ ⎛⎭⎪⎫0,12∪[1,+∞).[答案] (1)(-∞,+∞) (2)⎝ ⎛⎭⎪⎫0,12∪[1,+∞)[拓展探究] [解] (1)∵p ∧q 为真,∴p 和q 均为真,∴a 的取值范围为[-12,-4]∪[4,+∞).(2)∵p ∧q 为真命题时,a 的取值范围为[-12,-4]∪[4,+∞), ∴p ∧q 为假命题时,a 的取值范围为(-∞,-12)∪(-4,4).(3)根据指数函数的单调性,可知命题p 为真时,实数a 的取值集合为P ={a |0<a <1}; 对于命题q :函数的定义域为R 的充要条件是ax 2-x +a ≥0恒成立. 当a =0时,不等式为-x ≥0,解得x ≤0,显然不成立; 当a ≠0时,不等式恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=-2-4a 2≤0,解得a ≥12.综上,命题q 为真时,a 的取值集合为Q =⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥12.由“非p 是真命题,p ∨q 是真命题”,可知命题p 假q 真.由⎩⎪⎨⎪⎧a ≤0或a ≥1,a ≥12,得a ≥1.故实数a 的取值范围是[1,+∞).课时跟踪训练(三)一、选择题1.[解:对于D 选项,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤ 2,故D 错,易得A 、B 、C 正确.[答D2.[解析] 把量词“∃”改为“∀”,并把结论“>”改为“≤”,应选D.3.[解析] 由指数函数性质可得∀x ∈(-∞,0],2x≤1,所以p 是真命题.其否定是∃x ∈(-∞,0],2x>1,故选C.4.[解析] 对于命题p ,当x =0时,20=30=1,所以命题p 为假命题,非p 为真命题;对于命题q ,作出函数y =x 3与y =1-x 2的图象,可知它们在(0,1)上有一个交点,所以命题q 为真命题,所以(非p )∧q 为真命题,故选C.5.[解析] 命题:“∀x ∈R ,kx 2-kx -1<0”是真命题.当k =0时,则有-1<0;当k ≠0时,则有k <0,且Δ=(-k )2-4×k ×(-1)=k 2+4k <0,解得-4<k <0.综上所述,实数k 的取值范围是(-4,0].[答案] B6.[解析] 对于命题p :取x =-1,则x +1x=-2<2,所以命题p 是真命题,则非p 是假命题;对于q ,Δ=1-4=-3<0,所以不等式x 2+x +1>0的解集为R ,所以命题q 是真命题,命题非q 是假命题,所以p ∧q 为真命题,故选A.7.[解析] 由x 2+2x -3>0,得x <-3或x >1,故非p :-3≤x ≤1.又非q :x ≤a ,且非q 的一个充分不必要条件为非p ,则实数a 的取值范围为[1,+∞).[答案] A 8.[解析] 易知选项A ,C ,D 均不正确,选项B 正确,故选B.9.[解析] 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧ m ≥0,m ≤-2或m ≥2,即m ≥2.[答案] A10.[解析] 由题意知,p ,q 中一个为真,一个为假,分p 真q 假和p 假q 真讨论.若p 真,则⎩⎪⎨⎪⎧Δ>0,x 1+x 2=-m <0,x 1x 2=1>0,解得m >2;若q 真,则Δ<0,解得1<m <3.当p 假q 真时,由⎩⎪⎨⎪⎧m ≤2,1<m <3,得1<m ≤2;当p 真q 假时,由⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,得m ≥3.综上所述,实数m 的取值范围是(1,2]∪[3,+∞).[答案] B 二、填空题11.[解析] 全称命题的否定是特称命题,非p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)<0.[答案] ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<012.[解析] 因为命题p 是假命题,所以非p 为真命题,即∀x ∈R ,ax 2+x +12>0恒成立.当a=0时,x >-12,不满足题意;当a ≠0时,要使不等式恒成立,则有⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-4×12×a <0,解得⎩⎪⎨⎪⎧a >0,a >12,所以a >12,即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.[答案]⎝ ⎛⎭⎪⎫12,+∞13.[解析] 由对任意实数x ,ax 2>-ax -1,即ax 2+ax +1>0,得a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0≤a ≤4,故命题p :0≤a <4;由关于x 的方程x 2-x +a =0有实数根,得1-4a ≥0,解得a ≤14,故命题q :a ≤14.由“p ∨q ”为真命题,“p ∧q ”为假命题可知p ,q 一真一假.若p 真q 假,则14<a <4;若p 假q 真,则a <0.所以实数a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫14,4. [答案] (-∞,0)∪⎝ ⎛⎭⎪⎫14,4三、解答题14.[解] (1)非p :∃x ∈R ,x 2-x +14<0,是假命题.(2)非q :至少存在一个正方形不是矩形,是假命题.(3)非r :∀x ∈R ,x 2+2x +2>0,是真命题.(4)非s :∀x ∈R ,x 3+1≠0,是假命题.15.[解] 由2x 2+ax -a 2=0得(2x -a )(x +a )=0,∴x =a2或x =-a ,∴当命题p 为真命题时⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点, ∴Δ=4a 2-8a =0,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2.∵命题“p 或q ”为假命题,∴a >2或a <-2.即a 的取值范围为{a |a >2或a <-2}. 16.[解] ∵函数y =a x在R 上单调递增,∴p :a >1. 不等式ax 2-ax +1>0对∀x ∈R 恒成立,且a >0, ∴a 2-4a <0,解得0<a <4,∴q :0<a <4.∵“p ∧q ”为假,“p ∨q ”为真,∴p ,q 中必有一真一假. ①当p 真,q 假时,{a |a >1}∩{a |a ≥4}={a |a ≥4}. ②当p 假,q 真时,{a |0<a ≤1}∩{a |0<a <4}={a |0<a ≤1}. 故a 的取值范围是{a |0<a ≤1或a ≥4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合及常用逻辑用语1.1集合概念及运算一、选择题1、★(2014东城一模)已知集合{()()}021≥-+=x x x A ,则R A =ð( )A .{1-<x x 或}2>x B .{1-≤x x 或}2≥x C .{}21<<-x xD .}{21≤≤-x x1、答:C2、★(2014丰台一模)设集合}{11≤≤-∈=x R x A ,}{0)3(≤-∈=x x R x B ,则B A I 等于( )A. }{31≤≤-∈x R xB.}{30≤≤∈x R x C. }{01≤≤-∈x R x D. }{10≤≤∈x R x 2、答:D3、★(2014海淀一模)已知集合11,2,2A ⎧⎫=⎨⎬⎩⎭,集合}{A x x y yB ∈==,2,则=B A I ( )A.12⎧⎫⎨⎬⎩⎭B.{}2C.{}1D.∅ 3、答:C4、★(2014西城一模)设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()U A B =U ð( )A.(,2]-∞B.(,1]-∞C.(2,)+∞D.[2,)+∞ 4、答:C5、★(2014朝阳一模)已知集合1{|()1}2xA x =<,集合{|lg 0}B x x =>,则A B =U ( )A.{|0}x x >B.{|1}x x >C.{|1}{|0}x x x x ><UD.∅ 5、答:A6、★(2014东城二模)设集合{12}A x x =∈+≥R ,集合{2,1,0,1,2}--,则A B I =( )A.{2}B.{1,2}C.{0,1,2}D.{1,0,1,2}- 6、答:B7、★(2013朝阳一模)若集合}{32<<-=x x M ,}{121≥=+x x N ,则=N M I ( )A.()+∞,3B.()3,1-C.)[3,1-D.](1,2-- 7、答:C8、★(2013海淀一模)集合{6}A x x =∈≤N | ,2{30}B x x x =∈->N | ,则A B =I ( )A.{1,2}B.{3,4,5}C.{4,5,6}D.{3,4,5,6} 8、答:C9、★(2013石景山一模)设集合{}42≤=x x M ,{}1log 2≥=x x N ,则=N M I ( )A.[]2,2-B.{}2C.)[+∞,2D. )[+∞-,29、答:B10、★(2013西城期末)已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =I ( )A.1(0,)2B.1(,1)2C.1(,1)(0,)2-∞-UD.1(,1)(,1)2-∞-U 10、答:B11、★(2013朝阳期末)设集合{02}A x x =<<,2{log 0}B x x =>,则A B I =( )A.{}|2x x <B.{}|x x >0C.{}|02x x <<D.{}|12x x <<11、答:D12、★(2013朝阳一模)集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则M N =I ( ) A.(2,)-+∞ B.(2,3)- C.(2,1]-- D.[1,3)- 12、答:D13、★★(2013朝阳期末)设集合{}2A=230x x x +->,{}2B=210,0x xax a --≤>.若A B I 中恰含有一个整数,则实数a 的取值范围是( )A.30,4⎛⎫ ⎪⎝⎭B.34,43⎡⎫⎪⎢⎣⎭C.3,4⎡⎫+∞⎪⎢⎣⎭ D.()1,+∞13、答:B14、★★(2014西城二模)已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( )A.(,2]-∞-B.[2,)-+∞C.(,2]-∞D.[2,)+∞14、答:D15、★★(2013房山一模)设集合M 是R 的子集,如果点0x ∈R 满足:00,,0a x M x x a ∀>∃∈<-<,称0x 为集合M 的聚点.则下列集合中以1为聚点的有:{|}1n n n ∈+N ; ②*2{|}n n ∈N ; ③Z ; ④{|2}x y y = ( )A .①④B .②③C .①②D .①②④ 15、答:A 二、填空题16、★★(2014海淀二模)已知集合{}100......3,21,,,=M ,A 是集合M 的非空子集,把集合A 中的各元素之和记作()A S .①满足()8=A S 的集合A 的个数为_____;②()A S 的所有不同取值的个数为_____. 16、答:6,505017、★★(2013丰台一模)已知M 是集合{}1,2,3,,21(*,2)k k N k -∈≥L 的非空子集,且当x M ∈时,有2k x M -∈.记满足条件的集合M 的个数为()f k ,则(2)f = ;()f k = 。
17、答:3,21k- 三、解答题18、★★★(2013西城一模)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N L L . 对于12(,,,)n A a a a =L ,12(,,,)n n B b b b S =∈L ,定义1122(,,,)n n AB b a b a b a =---u u u rL ;1212(,,,)(,,,)()n n a a a a a a λλλλλ=∈R L L ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.问:当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ; 18、答:当5n =时,由51(,)||7iii d A B a b ==-=∑,得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=. 由 *5a ∈N ,得 51a =,或55a =.19、★★★(2014东城一模)已知集合{})3(,......,4,3,2,1≥n n ,若该集合具有下列性质的子集:每个子集至少含有2个元素,且每个子集中任意两个元素之差的绝对值大于1,则称这些子集为T 子集,记T 子集的个数为n a .(1)当5=n 时,写出所有T 子集; (2)求10a ;19、答:(Ⅰ)当5=n 时,所以T 子集:{}3,1,{}4,1,{}5,1,{}4,2,{}5,2,{}5,3,{}5,3,1. (Ⅱ){}2,1,,......,4,3,2,1++k k k 的T 子集可分为两类: 第一类子集中不含有2+k ,这类子集有1+k a 个;第二类子集中含有2+k ,这类子集成为{}k ,......,4,3,2,1的T 子集与{}2+k 的并,或为{}k ,......,4,3,2,1的单元素子集与{}2+k 的并,共有k a k +个. 所以k a a a k k k ++=++12. 因为13=a ,34=a ,所以75=a ,146=a ,267=a ,468=a ,799=a ,13310=a .1.2命题及充分必要条件一、选择题1、★(2014丰台一模) “1>>n m ”是 “2log 2log n m <”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 1、答:A2、★(2014海淀一模)在数列{}n a 中,“12,2,3,4,n n a a n -==L ”是“{}n a 是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2、答:B3、★(2014西城一模)“8m <”是“方程221108x y m m -=--表示双曲线”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件3、答:A4、★(2014朝阳一模)在ABC △中,π4A =,BC =“AC =是“π3B =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4、答:B5、★(2014西城二模)设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 5、答:B6、★(2014顺义二模)“0=ϕ”是“函数()ϕ+=x y sin 为奇函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6、答:A7、★(2014海淀高三期中)若a ∈R ,则“2a a >”是“1a >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件7、答:B8、★(2013海淀二模)在四边形ABCD 中,“R ∈∃λ,使得AB CD AD BC λλ==u u u r u u u r u u u r u u u r,”是“四边形ABCD 为平行四边形”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 8、答:C9、★(2013丰台二模)已知数列{}n a , 则“{}n a 为等差数列”是“2312a a a =+”的( ) (A )充要条件 (B )必要而不充分条件 (C )充分而不必要条件 (D )既不充分又不必要条件 9、答:C10、★(2013东城一模)已知复数()()()R 212∈-+-=a i a a z ,则“1=a ”是“z 为纯虚数”的( )A .充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 非充分非必要条件 10、答:A11、★(2012西城一模)等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 11、答:B12、★★(2011海淀一模)已知函数221, 1,()1, 1,x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩ 则“20a -≤≤”是“()f x 在R 上单调递增”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 12、答:B13、★★(2012丰台一模)已知a b <,函数()sin ,()cos .f x x g x x ==命题:()()0p f a f b ⋅<,命题:()(,)q g x a b 在内有最值,则命题p 是命题q 成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13、答:A 二、填空题14、★★(北京101中学2014届高三上学期10月阶段性考试) “函数()3+=ax x f 在[]2,1-上存在零点”的充要条件是 . 14、答:3≥a 或23-≤a1.3简单逻辑连接词及量词1、★(2014海淀二模)已知命题1e 0, :≥>∀aa p 有“成立”,则p ⌝为( ) A. 0≤∃a ,有1≤ae 成立 B. 0≤∃a ,有1≥ae 成立 C. 0 >∃a ,有1<ae 成立 D. 0 >∃a ,有1≤ae 成立 1、答:C2、★(2012西城期末)已知函数2()cos sin f x x x =+,那么下列命题中假命题...是( ) A.()f x 既不是奇函数也不是偶函数 B.()f x 在[,0]π-上恰有一个零点C.()f x 是周期函数D.()f x 在(,2π5π)6上是增函数2、答:B3、★(2013昌平二模)已知命题 2R :≥∈∀x x p ,,那么下列结论正确的是 ( )A. 命题2R :≤∈∀⌝x x p , B .命题2R :<∈∃⌝x x p , C .命题2R :-≤∈∀⌝x x p , D .命题2R :-<∈∃⌝x x p ,3、答:B4、★(2013房山二模)若q p ∨⌝是假命题,则( )A. q p ∧是假命题B. q p ∨是假命题C. p 是假命题D. q ⌝是假命题 4、答:A5、★(2012丰台期末)命题p :x R ∃∈,2lg x x ->,命题q :x R ∀∈,20x >,则( )A.命题p q ∨是假命题B.命题p q ∧是真命题C.命题()p q ∨⌝是假命题D.命题()p q ∧⌝是真命题5、答:D6、★(2011丰台二模)下列四个命题中,假命题为( )A. x ∀∈R ,20x >B. x ∀∈R ,2310x x ++>C. x ∃∈R ,lg 0x >D. x ∃∈R ,122x =6、答:B7、★(2012房山一模)命题:p ∀x ∈R ,012>+x ,:q R ∈∃θ,22sin cos 1.5θθ+=,则下列命题中真命题是 ( )A.q p ∧B.q p ∧⌝C.q p ∨⌝D.)(q p ⌝∧ 7、答:D8、★(2012朝阳一模)已知命题p :01R,2>-+∈∀x x x ;命题q :2cos sin R =+∈∃x x x ,.则下列判断正确的是( )A.p ⌝是假命题B.q 是假命题C.q p ⌝∨是真命题D.()q p ∧⌝是真命题8、答:D9、★(2012昌平期末)已知α、β是两个不同平面,m 、n 是两条不同直线,下列命题中假命题...是( ) A.若m ∥n ,m α⊥, 则n α⊥ B.若m ∥α,n αβ=I , 则m ∥n C.若m α⊥,m β⊥, 则α∥β D.若m α⊥,m β⊂, 则α⊥β9、答:B10、★★(2011丰台二模)已知函数2()2f x x x =-,()2g x ax =+(a >0),若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得f (x 1)= g (x 2),则实数a 的取值范围是( )A. 1(0,]2 B 1[,3]2C. (0,3]D. [3,)+∞10、答:D11、★★(2012丰台一模)已知命题:(0,),32xxp x ∀∈+∞>;命题:(,0),32q x x x ∃∈-∞>,则下列命题为真命题的是( )A.p q ∧B.()p q ∧⌝C.()p q ⌝∧D.()()p q ⌝∧⌝ 11、答:B 二、填空题12、★(2012东城一模理)命题“000(0,),tan sin 2x x x π∃∈>”的否定是 12、答: (0,),tan sin 2x x xπ∀∈≤。