第九章--金属塑性变形抗力(1)

第九章--金属塑性变形抗力(1)
第九章--金属塑性变形抗力(1)

金属塑性变形抗力的影响因素

学生姓名黄文博

学号20130603218

班级13材控 2

学院名称机电工程学院

专业名称材料成型及控制工程指导教师宋美娟

金属的塑性和变形抗力

从金属成形工艺的角度出发,我们总希望变形的金属或合金具有高的塑性和低的变形抗力。随着生产的发展,出现了许多低塑性、高强度的新材料,需要采取相应的新工艺进行加工。因此研究金属的塑性和变形抗力,是一个十分重要的问题。本章的目的在于阐明金属塑性和变形抗力的概念,讨论各种因素对它们的影响。

1. 塑性、塑性指标、塑性图和变形抗力的概念

所谓塑性,是指固体材料在外力作用下发生永久变形而又不破坏其完整性的能力。人们常常容易把金属的塑性和硬度看作成反比的关系,即认为凡是硬度高的金属其塑性就差。当然,有些金属是这样的,但并非都是如此,例如下列金属的情况:

Fe HB=80 ψ=80%

Ni HB=60 ψ=60%

Mg HB=8 ψ=3%

Sb HB=30 ψ=0%

可见Fe、Ni 不但硬度高,塑性也很好;而Mg、Sb 虽然硬度低,但塑性也很差。塑性是和硬度无关的一种性能。同样,人们也常把塑性和材料的变形抗力对立起来,认为变形抗力高塑性就低,变形抗力低塑性就高,这也是和事实不符合的。例如奥氏体不锈钢在室温下可以经受很大的变形而不破坏,既这种钢具有很高的塑性,但是使它变形却需要很大的压力,即同时它有很高的变形抗力。可见,塑性和变形抗力是两个独立的指标。

为了衡量金属塑性的高低,需要一种数量上的指标来表示,称塑性指标。塑性指标是以金属材料开始破坏时的塑性变形量来表示。常用的塑性指标是拉伸试验时的延伸率δ和断面缩小率ψ,δ和ψ由下式确定:

式中l0、F0——试样的原始标距长度和原始横截面积;lK、FK——试样断裂后标距长度和试样断裂处最小横截面积。实际上,这两个指标只能表示材料在单向拉伸条件下的塑性变形能力,金属的塑性指标除了用拉伸试验之外,还可以用镦粗试验、扭转试验等来测定。

镦粗试验由于比较接近锻压加工的变形方式,是经常采用的一种方法。试件做成圆柱体,高度H。为直径D。的l.5 倍(例如D0=20mm,H0=20mm)。取一组试样在压力机或锤上进行镦粗,分别依次镦粗到预定的变形程度,第一个出现表面裂纹

的试样的变形程度ε,即为塑性指标:

式中H0-试样原始高度;H K-第一个出现裂纹的试样镦粗后高度。为了减少试样的数量和试验工作量,可做一个楔形块当作试样(图 5.2)。这样。一个楔形块镦粗后便可获得预定的各种变形程度,以代替一组圆柱形试样。只要计算出第—条裂纹处的变形程度ε,就是材料镦粗时的塑性指标。如果把若干组试样(或者若干楔形块)分别加热到不同的预定温度,进行镦粗试验,则可测定金属和合金在不同温度下的塑性指标。

镦粗试验时试样裂纹的出现,是由于侧表面处拉应力作用的结果。工具与试样接触表面的摩擦力、散热条件、试样的几何尺寸等因素,都会影响到拉应力的大小。因此,用镦粗试验测定塑性指标时,为便于比较,必须制定相应的规程,说明试验的具体条件。

通常根据镦粗试验的塑性指标ε,材料可如下分类:ε>60~80%,为高塑性;ε=40~60%,为中塑性;ε=20~40%,为低塑性。塑性指标ε在20%以下,该材料实际上难以锻压加工。

钮转试验的塑性指标,是以试样扭断时的扭转角(在试样标距l0起点和终点两个截面间的相对扭转角)或扭转圈数来表示。由于

扭转时应力状态近于零静水压,且试样从试验开

始到破坏止,在其整个长度上塑性变形均匀地进

行,始终保持均匀的圆柱形,不象拉伸试验时会

出现颈缩和镦粗实验时会出现鼓形,从而消除了

变形不均匀性的影响,这对塑性理论的研究无疑

是很重要的。

将不同温度时,在各种试验条件下得到塑性

指标(δ、ψ、ε及αK等),以温度为横坐标,以塑

性指标为纵坐标,绘成函数曲线,这种曲线图,

称为塑性图。图 5.3 是碳钢的塑性图。一个完整的塑性图,应该给出压缩时的变形程度ε、拉伸时的强度极限ζb、延伸率δ、断面缩小率ψ、钮转时的钮角或转数、以及冲击韧性αK等机械性能和试验温度的关系,它是确定金属塑性加工热力规范的重要依据。

塑性加工时,使金属发生塑性变形的外力,称为变形力。金属抵抗变形之力,称为变形抗力。变形抗力和变形力数值相等,方向相反,一般用平均单位面积变形力表示其大小。当压缩变形时,变形抗力即是作用于施压工具表面的单位面积压力,故亦称单位流动压力。

变形抗力和塑性,如上所述,是两个不同的慨念,塑性反映材料变形的能力,变形抗力则反应材料变形的难易程度。

变形抗力的大小,不仅决定于材料的真实应力(流动应力),而且也决定于塑性成形时的应力状态、接触摩擦以及变形体的相对尺寸等因素(见下文)。只有在单向拉伸(或压缩)时,变形抗力等于材料在该变形温度、变形速度、变形程度下的真实应力。因此,离开上述具体的加工方法等条件所决定的应力状态、接触摩擦等因素,就无法评论金属和合金的变形抗力。为了研究问题时的方便,我们在讨论各种因素对变形抗力的影响时,在某些情况下姑且把单向拉伸(或压缩)时的真实应力(或强度极限)当作衡量变形抗力大小的指标。实际上也可以认为,塑性成形时变形抗力的大小,主要决定于材料本身的真实应力(或强度极限)。但是它们之间的概念不同,它们的数值在极大多数情况下也不相等。

2. 金属的化学成分和组织状态对塑性和变形抗力的影响

2.1 化学成分的影响

在碳钢中,铁和碳是基本元素。在合金钢中,除了铁和碳外,还有合金元素,如Si、Mn、Cr、Ni、W、Mo、V、Ti 等。此外,由于矿石、冶炼加工等方面的原因,在各类钢中还有一些杂质,如P、S、N、H、O 等。下面先以碳钢为例,讨论化学成分的影响。这些影响在其他各类钢中也大体相似。

碳碳对钢性能的影响最大。碳能固溶到铁里,形成铁素体和奥氏体,它们都具有良好的塑性和低的强度。当含碳量增大时,超过铁的溶解能力,多余的碳和铁形成化合物Fe3C,称渗碳体。它有很高的硬度,塑性几乎为零,对基体的塑性变形起阻碍作用,因而使碳钢的塑性降低,强度提高。随着含碳量的增大,渗碳体的数量也增加,塑性的降低和强度的提高也更甚(图 5.11)。

磷一般说,磷是钢中有害杂质。磷能溶于铁素体中,使钢的强度、硬度显著提高,塑性、韧性显著降低。当含磷量达0.3%时,钢完全变脆,冲击韧性接近于零,

称冷脆性。当然钢中含磷不会如此之多,但要注意,磷具有极大的偏析能力,会使钢中局部地区达到较高的磷含量而变脆。

钢中加入合金元素,不仅改变钢的使用性能,也改变钢的塑性和真实应力。由于各种合金元素对钢塑性和真实应力的影响十分复杂,需要结合具体钢种根据变形条件作具体的分析,不宜作一般性概括。

2.2 组织状态的影响

金属材料的组织状态和其化学成分有密切关系,但也不是完全由化学成分所决定,它还和制造工艺(如冶炼、浇铸、锻轧、热处理)有关。组织状态的影响分下面几点说明。

2.2.1基体金属对塑性,前己指出,基体金属是面心立方晶格(A1、Cu、γ—Fе、Ni),塑性最好;是体心立方晶格(α-Fe、Cr、W、V、Mo),塑性其次;是密排六方晶格(Mg、Zn、Cd、α-Ti),塑性较差。因为密排六方晶格只有三个滑移系,而面心立方晶格和体心立方晶格各有12个滑移系;又面心立方晶格每一滑移面上的滑移方向数比体心立方晶格每一滑移面上的滑移方向数多一个(参阅图 2.20),故其塑性最好。对真实应力,基体金属元素的类别,决定了原子间结合力的大小,对于各种纯金属,一般说原子间结合力大的,滑移阻力便大,真实应力也就大。

2.2.2 单相组织和多相组织

合金元素以固溶体形式存在只是一种方式,在很多情况下形成多相组织。单相固溶体比多相组织塑性好,例如护环钢(50Mnl8Cr4)在高温冷却时,700℃左右会析出碳化物,成为多相组织,使塑性降低,常要进行固溶处理。即锻后加热到1050~1100℃并保温,使碳化物固溶到奥氏体中,然后用水和空气交替冷却,使迅速通过碳化物析出的温度区间,最后单相固溶体的护环钢δ>50%。而45 号钢虽然合金元素含最少得多,但因是两相组织,δ=16%,塑性比护环钢低。对真实应力来说,则单相固溶体中合金元素的含量越高,真实应力便越高。这是因为,无论是间隙固溶体(例如碳在铁中)还是置换固溶体(例如镍、铬在铁中),都引起晶格的畸变。

加入的量越多,引起的晶格畸变越严重,金属的真实应力也就越大。单相固溶体和多相组织相比,一般说真实应力较低。

当多相组织时,对于塑性的影响,如果合金各相的塑性接近时,则影响不大;如果各相的性能差别很大,则使得合金变形不均匀,塑性降低;这时,第二相的性质、形状、大小、数量和分布状况起着重要的作用。如果第二相为低溶点化合物且分布于晶界时,例如FeS 和FeO 的共晶体,则是发生热脆的根源;如果第二相是硬而脆的化合物,则塑性变形主要在塑性好的基体相内进行,第二相对变形起阻碍作用,这

时如果第二相呈网状分布,分布在塑性相的晶界上,则塑性相被脆性相分割包围,其变形能力难以发挥,变形时易在晶界处产生应力集力,很快导致产生裂纹,使合金的塑性大大降低。脆性相数量越多,网的连续性越严重,合金的塑性就越差。如果硬而脆的第二相呈片状层状,分布于第一相晶粒内部,则合金塑性有一定程度的降低,对合金塑性变形的危害性较小。如果硬而跪的第二相呈细颗粒状弥散质点,均匀分布于第一相晶粒内,则对合金的塑性影响最小,因为如此分布的脆性相,几乎不影响基体的连续性,它可以随基体的变形而“流动”,本会导致明显的应力集中。对于真实应力的影响,在多相组织中,也和对塑性的影响相似,第二相的性质、形状、大小、数量和分布状况,起着重要的作用。一般说,硬而脆的第二相在基体相晶粒内呈颗粒状弥散质点均匀分布,合金的真实应力就高;第二相越细、越弥散、数量越多,则真实应力越高。因为这样,大量弥散均匀的细质点成为塑性变形的障碍物,阻碍着滑移过程的进行,使合金的真实应力显著提高。例如,硬铝LYl2在退火状态下强度为24 公斤/毫米2,淬火并时效后强度达到41.5 公斤/毫米2,主要原因是,在退火状态第二相集聚为较大颗粒,在淬火时效状态,则第二相以弥散质点分布在基体上。2.2.3晶粒大小

金属和合金晶粒越细化,塑性越好,原因是晶粒越细,在同一体积内晶粒数目越多,于是在一定变形数量下,变形分散在许多晶粒内进行,变形比较均匀,这样,比起粗晶粒的材抖,由于某些局部地区应力集中而出观裂纹以致断裂这一过程会发生得迟些,即在断裂前可以承受较大的变形量。同样,金属和合金晶粒越细化,同一体积内晶界就越多,由于室温时晶界强度高于晶内,所以金属和合金的真实应力就高。但在高温时,由于能发生晶界粘性流动,细晶粒的材料反而真实应力较低。

3. 变形温度、变形速度对塑性和变形抗力的影响

3.1 变形温度的影响

变形温度对金属和合金的塑性和变形抗力,有着重要影响。就大多数金属和合金来说,总的趋势是:随着温度升高,塑性增加,真实应力降低。但在升温过程中,在某些温度区间,某些合金的塑性会降低,真实应力会提高。由于金属和合金的种类繁多,很难用一种统一的规律,来概括各种材料在不同温度下的塑性和真实应力的变化情况。下面举几个例子来说明。

图 5.13 表明了碳钢延伸率δ和强度极限ζb随温度变化的情形。在大约-100℃时,钢的塑性几乎完全消失,因为是在钢的脆性转变温度以下。从室温开始,随着温度的上升,δ有些增加,ζb有些下降。大约200~350℃温度范围内发生相反的现象,δ明显下降,ζb明显上升,这个温度范围一般称为蓝脆区。这时钢的性能变坏,易于脆断,断口呈兰色。其原因说法不一,一般认为是由于氮化物、氧化物以沉淀形式在晶界、滑移面上析出所致。随后δ又继续增加,ζb继续降低,直至大约800℃一950℃范围,又一次出现相反的现象,即塑性稍有下降,强度稍有上升,这个温度范围称为热脆区。有的学者认为这与相变有关,钢由珠光体转变为奥氏体,由体心立方晶格转变为面心立方晶格,要引起体积收缩,产生组织应力;有的学者认为,这是由于分布在晶界的FeS 与FeO 形成的低熔点共晶体所致。过了热脆区,塑性继续上升,强度继续下降。一般当温度超过1250℃,由于钢产生过热,甚至过烧,δ和ζb 均急剧降低,此区称为高温脆区。

图 5.14 是高速钢的强度极限ζb和延伸率δ随温度变化的曲线。高速钢在900℃以下ζb很高,塑性很低;从珠光体向奥氏体转变的温度约为800℃,此时为塑性下降区。900℃以上,δ上升,ζb也迅速下降。约1300℃是高速钢奥氏体共晶组织的熔点,高速钢δ急剧下降。图 5.15 是黄铜H68 强度极限ζb和塑性ζ、ψ随温度变化的曲线。随温度的上升,ζb一直下降;δ、ψ开始也下降,约在300~500℃范围内降至最低,此区为H68 的中温脆区。在690℃一330℃范围内H68 的塑性最好。

下面从一般情况出发,分析温度升高时,金属和合金塑性增加和真实应力降低的原因。

1.随着温度的升高,发生了回复和再结晶。回复能使变形金属稍许得到软化,再结晶则能完全消除变形金属的加工硬化,使金属和合金塑性显著提高,真实应力显著降低。

2.温度升高,临界切应力降低,沿移系增加。因为温度升高,原子的动能就大,原子间的结合力就弱,使临界切应力降低。而且,在高温时,还可能出现新的滑移系。例如面心立方的铝,在室温时滑移面为(111),当400℃时,除了(111)面,(100)面也开始发生滑移,因此在450—550℃的温度范围内,铝的塑性最好。由于滑移系的增加,金属塑性也增加,并使多晶体内由于晶粒位向不一致对提高真实应力的影响减小。

3.金属的组织发生变化。可能由多相组织变为单相组织,或由滑移系个数少的晶格变为滑移系个数多的晶格。例如,碳钢在950—1250℃范围内塑性好,这与此时处于单相组织和转变为面心立方晶格有关。又如钛,在低温时呈密排六方晶格,只有3 个滑移系,当温度高于882℃时,转变为体心立方晶格,有12 个滑移系,塑性有

明显提高。

4.新的塑性变形方式——热塑性的发生。当温度升高时,原子热振动加剧,晶格中的原子处于不稳定的状态。当晶体受外力时,原子就沿应力场梯度方向,非同步地连续地由一个平衡位置转移到另一个平衡位置(并不是沿着一定的晶面和晶向),使金属产生塑性变形,这种变形方式称为热塑性(亦称扩散塑性)。热塑性是非晶体发生变形的唯一方式,对晶体来说,是一种附属方式。热塑性较多地发生在晶界和亚晶界,晶粒越细,温度越高,热塑性的作用越大。在回复温度以下,热塑性对金属塑性变形所起的作用并不显著,只有在很低的变形速度下才有考虑的必要。在高温时热塑性作用大为加强,因而增加了金属的塑性,降低了真实应力。

5.晶界性质发生变化,有利于晶间变形,并有利于晶间破坏的消除。因为晶界原子的排列是不规则的,有点近似于流体的性质,原子处于不稳定状态,原子的移动和扩散易于进行。当温度较高时,晶界的强度比晶粒本身下降得快。因此,不仅减小了晶界对晶内变形的阻碍作用,而且晶界本身在高温时就易于发生滑动变形。另外,在塑性变形过程中出观的晶界破坏,由于高温时原子的扩散作用加强,很大程度上得到消除。这一切,使金属和合金在高温下有良好的塑性和低的真实应力。

4. 变形速度对塑性和变形抗力的影响

4.1 热效应和温度效应

为了讨论变形速度对塑性和真实应力的影响,先要讨论一下热效应问题。塑性变形时物体所吸收的能量,将转化为弹性变形位能和塑性变形热能。这种塑性变形过程中变形能转化为热能的现象,称热效应。

塑性变形热能Am 与变形体所吸收的总能量 A 之比,称为排热率,根据有关资料介绍,在室温下塑性压缩的情况下,镁、铝、铜、铁等金属的排热率η =0.85~0.9,上述金属的合金η =0.75~0.85。可见η 值十分可观。

塑性变形热能Am 一部分散失于周围介质中,余者使变形体温度升高。这种由于塑性变形过程中产生的热量而使变形体温度升高的现象,称温度效应。温度效应首先决定于变形速度,变形速度越高,单位时间的变形量大,所产生的热量便多,热量的散失相对来说便少,因而温度效应也就越大。常可以看到这样的情况,锻造时使锻锤重击快击,毛坯温度不仅不会降低,反而会发亮升高。其次,变形体与工具接触面、周围介质的温差越小,热量散失就越少,温度效应也就越大。此外,温度效应与变形温度有关。温度越高,因材料真实应力降低,单位体积的变形能就越小,温度效应自然也越小。相反在冷塑性变形时,因材料真实应力高,单位体积变形功便高,温度效应也就高。

4.2 变形速度的影响

变形速度对金属塑性和真实应力的影响向是十分复杂的。

一般来说,变形速度大,由于没有足够的时间完成塑性变形,使金属的真实应力提高,塑性降低。弹性变形的扩展速度与音速相同(以钢为例,钢中音速约为5000 米/秒),这个速度远远大于变形时的加载速度,因此弹性变形总是来得及完成的,但是塑性变形的扩展速度要比弹性变形慢得多,这是由于塑性变形的机理比较复杂,需要有一定的时间来进行。例如,晶体的位错运动,沿移面由不利方向向有利方向转动,特别如热塑性更需要时间。如果变形速度大,则塑性变形来不及在整个体积内均匀地传播开,而更多地表现为弹性变形。根据虎克定律,弹性变形量越大,则应力越大,这样,就导致金属的真实应力增大。又经研究证明,金属的断裂应力与变形速度关系很小,既然真实应力随变形速度的增加而增加,而断裂应力却变化不大,那么金属就会较早地到达断裂阶段,即减小了金属断裂前的变形程度,也即使金属的塑性降低。

如果是在热变形条件下,变形进度大时,还可能由于没有足够的时间进行回复和再结晶,使金属的真实应力提高,塑性降低。这对于那些再结晶温度高、再结晶速度慢的高合金钢,尤为明显。

然而,变形速度大,有时由于温度效应显著,使金属温度升高,从而提高塑性,降低真实应力。这种现象在冷变形条件下比热变形时显著,因冷变形时温度效应强。但是某些材料(例如莱氏体高合金钢),会因变形速度大引起升温,进入高温脆区,反而使塑性降低。

此外,变形速度还可能通过改变摩擦系数,而对金属的塑性和变形抗力产生一定的影响。

所以,随着变形速度的增大,既有使塑性降低和真实应力提高的可能,有时也有使塑性提高和真实应力降低的可能;而且对于不同的金属和合金,在不同的变形温度下,变形速度的影响也不相同。下面,对变形速度的影响,从一般情况出发,加以概括和分析。

1.随变形速度的增大,金属和合金的真实应力(或强度极限)提高。但提高的程度,与变形温度有密切关系。冷变形时,变形速度的增大仅使真实应力有所增加或基本不变,而在热变形时,变形速度的增加会引起真实应力的明显增大。图 5.16 表示在不同温度下,变形速度对低碳钢强度极限的影响。变形速度对真实应力的最大影响,则是在不完全的热变形区与热变形区的过渡温度区间内。

随变形速度提高,塑性变化的一般趋势如图 5.18 所示。当变形速度不大时(图中ab段),增加变形速度使塑性降低。这是由于变形速度增加所引起的塑性降低,大于温度效应引起的塑性增加。当变形速度较大时(图中bc 段),由于温度效应显著,使塑性基本上不再随变形速度的增加而降低。当变形速度很大时(图中cd 段),则由于温度效应的显著作用,造成的塑性上升超过了变形硬化造成的塑性下降,使塑性回升。必须指出,图5.18 没有任何数量上的意义。冷变形和热变形时,该曲线各阶段的进程和变化的程度各不相同。冷变形时,随着变形速度的增加,塑性略有下降, 以后由于温度效应的作用加强,塑性可能会上升。热变形时,随着变形速度的增加,通常塑性有较显著的降低,以后由于温度效应增强而使塑性稍提高;但当温度效应很大,以致使变形温度由塑性区进入高温脆区,则金属和合金的塑性又急剧下降(如图中虚线段de)。就材料来说,化学成分越复杂,含量越多,再结晶速度就越低,故增大变形速度会使塑性降低。例如高速钢、高铬钢、不锈钢、高温合金以及镁合金、铝合金、钛合金等有色合金,在热变形时都表现出这种趋势,而对碳钢、合金结构钢的塑性影响不大。此外,变形速度对锻压工艺也有广泛的影响。提高变形速度,有下列影响:第一,降低摩擦系数,从而降低变形抗力,改善变形的不均匀性,提高工件质量;

第二,减少热成形时的热量散失,从而减少毛坯温度的下降和温度分布的不均匀性,这对工件形状复杂(如具有薄壁、高筋等),或材料的锻造温度范围较狭窄的情况,是有利的;

第三,提高变形速度,会由于“惯性作用”,使复杂工件易于成形。例如锤上模锻时上模型腔容易充填。

金属塑性成形原理习题集与答案解析

《金属塑性成形原理》习题(2)答案 一、填空题 1. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 2. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 3. 金属单晶体变形的两种主要方式有:滑移和孪生。 4. 等效应力表达式:。 5.一点的代数值最大的__ 主应力__ 的指向称为第一主方向,由第一主方向顺时针转所得滑移线即为线。 6. 平面变形问题中与变形平面垂直方向的应力σ z = 。 7.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。8.对数应变的特点是具有真实性、可靠性和可加性。 9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高。 10.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。 11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。 12.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性。 13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。 14.硫元素的存在使得碳钢易于产生热脆。 15.塑性变形时不产生硬化的材料叫做理想塑性材料。 16.应力状态中的压应力,能充分发挥材料的塑性。 17.平面应变时,其平均正应力σm 等于中间主应力σ2。

18.钢材中磷使钢的强度、硬度提高,塑性、韧性降低。 19.材料经过连续两次拉伸变形,第一次的真实应变为ε1=0.1,第二次的真实应变为ε2=0.25,则总的真实应变ε=0.35 。 20.塑性指标的常用测量方法拉伸试验法与压缩试验法。 21.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。 二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响 A 工件表面的粗糙度对摩擦系数的影响。 A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做 A 。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B 。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时, A 准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。 A、能量;B、力;C、应变; 6.硫元素的存在使得碳钢易于产生 A 。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的 B 应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力σm B 中间主应力σ2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A 。 A、纤维组织;B、变形织构;C、流线; 三、判断题 1.按密席斯屈服准则所得到的最大摩擦系数μ=0.5。(×) 2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。

影响碳钢的变形抗力和塑性的因素分析

影响碳钢的变形抗力和塑性的因素分析 一、金属的塑性与变形抗力 1.1金属之所以能进行压力加工主要是由于金属具有塑性这一特点。所谓塑性,是指金属在外力作用下,能稳定地产生永久变形而不破坏其完整性的能力。金属塑性的大小,可用金属在断裂前产生的最大变形程度来表示。一般通常称压力加工时金属塑性变形的限度,或“塑性极限”为塑性指标。 应当指出,不能把塑性和柔软性混淆起来。不能认为金属比较软,在塑性加工过程中就不易破裂。柔软性反映金属的软硬程度,它用变形抗力的大小来衡量,表示变形的难易。不要认为变形抗力小的金属塑性就好,或是变形抗力大的金属塑性就差。例如:室温下奥氏体不锈钢的塑性很好,能经受很大的变形而不破坏,但它的变形抗力却非常大;工业纯铁的变形抗力很低,柔软性很好,对于过热和过烧的金属与合金来说,其塑性很小,甚至完全失去塑性变形的能力,而变形抗力也很小;也有些金属塑性很高而变形抗力又小,如室温下的铅等。 金属的塑性不仅受金属内在的化学成分与组织结构的影响,也和外在的变形条件有密切关系。同一金属或合金,由于变形条件不同,可能表现有不同的塑性,甚至由塑性物体变为脆性物体,或由脆性物体转变为塑性物体。例如受单位拉伸的大理石是脆性物体,但在较强的平均应力下压缩时,却能产生明显的塑性变形而不破坏。对金属与合金塑性的研究,是压力加工理论与实践的重要课题之一。研究的目的在于选择合适的变形方法,确定合理的变形温度、速度条件以及采用的最大变形量,以便使低塑性难变形的金属与合金能顺利实现成型过程。 1.2金属塑性的测定方法 由于变形力条件对金属的塑性有很大影响,所以目前还没有一种实验方法能测出可表示所有压力加工方式下金属塑性的指标。为了正确选择变形温度、速度条件和最大变形量,必须测定金属在不同条件下允许的极限变形量—塑性指标。每种实验方法测定的塑性指标,虽然只能表明金属在该变形过程中所具有的塑性,但也不应否定一般测定方法的应用价值,因为这些实验可以得到相对的和可比较的塑性指标。这些数据可定性地说明在一定变形条件下,各种金属塑性的高低;对同一金属,能反映哪种变形条件下的塑性高。这对

第九章--金属塑性变形抗力(1)

金属塑性变形抗力的影响因素 学生姓名黄文博 学号20130603218 班级13材控 2 学院名称机电工程学院 专业名称材料成型及控制工程指导教师宋美娟

金属的塑性和变形抗力 从金属成形工艺的角度出发,我们总希望变形的金属或合金具有高的塑性和低的变形抗力。随着生产的发展,出现了许多低塑性、高强度的新材料,需要采取相应的新工艺进行加工。因此研究金属的塑性和变形抗力,是一个十分重要的问题。本章的目的在于阐明金属塑性和变形抗力的概念,讨论各种因素对它们的影响。 1. 塑性、塑性指标、塑性图和变形抗力的概念 所谓塑性,是指固体材料在外力作用下发生永久变形而又不破坏其完整性的能力。人们常常容易把金属的塑性和硬度看作成反比的关系,即认为凡是硬度高的金属其塑性就差。当然,有些金属是这样的,但并非都是如此,例如下列金属的情况: Fe HB=80 ψ=80% Ni HB=60 ψ=60% Mg HB=8 ψ=3% Sb HB=30 ψ=0% 可见Fe、Ni 不但硬度高,塑性也很好;而Mg、Sb 虽然硬度低,但塑性也很差。塑性是和硬度无关的一种性能。同样,人们也常把塑性和材料的变形抗力对立起来,认为变形抗力高塑性就低,变形抗力低塑性就高,这也是和事实不符合的。例如奥氏体不锈钢在室温下可以经受很大的变形而不破坏,既这种钢具有很高的塑性,但是使它变形却需要很大的压力,即同时它有很高的变形抗力。可见,塑性和变形抗力是两个独立的指标。 为了衡量金属塑性的高低,需要一种数量上的指标来表示,称塑性指标。塑性指标是以金属材料开始破坏时的塑性变形量来表示。常用的塑性指标是拉伸试验时的延伸率δ和断面缩小率ψ,δ和ψ由下式确定: 式中l0、F0——试样的原始标距长度和原始横截面积;lK、FK——试样断裂后标距长度和试样断裂处最小横截面积。实际上,这两个指标只能表示材料在单向拉伸条件下的塑性变形能力,金属的塑性指标除了用拉伸试验之外,还可以用镦粗试验、扭转试验等来测定。 镦粗试验由于比较接近锻压加工的变形方式,是经常采用的一种方法。试件做成圆柱体,高度H。为直径D。的l.5 倍(例如D0=20mm,H0=20mm)。取一组试样在压力机或锤上进行镦粗,分别依次镦粗到预定的变形程度,第一个出现表面裂纹

钢热轧典型钢种中温区变形抗力研究.

第30卷第2期2008年4月四川冶金 Sichuan Metallurgy Vol .30No .2Ap ril,2008 作者简介:熊钰梅,女,自动化设备,助理工程师;联系电话:139********E 2mail:xujinghuang2004@https://www.360docs.net/doc/1a15713553.html, 攀钢热轧典型钢种中温区变形抗力研究 熊钰梅 (攀钢热轧板厂,四川攀枝花617000 【摘要】利用Gleeble -1500热模拟试验机对攀钢各系列典型钢种进行了卷取温度区间(400~800℃变形抗力的试验研究,得到变形抗力试验曲线及图表,并分析了变形温度、变形速率、变形程度对变形抗力的影响,为攀钢热轧三期改造中卷取机力能参数的确定及卷取工艺制度的优化提供依据。 【关键词】热轧变形抗力变形速度指数强化强度 STU DY OF RESI STANCE T O DEF OR MATI ON IN M I DDLE TE M PERATURE RANGE OF T YPI CAL H OT 2R OLLE D STEE LS IN PZH STEE L Xi ong Yumei (Hot SteelM ill of Panzhihua Steel Gr oup Company,Panzhihua 617000,Sichuan,China [Abstract]By Gleeble -1500ther mal si m ulati on testing machine,the resistance t o defor mati on in coi 2ling te mperature range (400~800℃of series typ ical steels in PZ

第五章--金属的塑性与变形抗力

金属的塑性变形抗力 摘要:塑性加工时,使金属发生塑性变形的外力,称为变形力。金属抵抗变形之力,称为变形抗力。变形抗力和变形力数值相等,方向相反,一般用平均单位面积变形力表示其大小。当压缩变形时,变形抗力即是作用于施压工具表面的单位面积压力,故亦称单位流动压力。 关键字:塑性 变形抗力 1、金属塑性的概念 所谓塑性,是指金属在外力作用下,能稳定地产生永久变形而不破坏其完整性的能力。 金属塑性的大小,可用金属在断裂前产生的最大变形程度来表示。一般通常称压力加工时金属塑性变形的限度,或“塑性极限”为塑性指标 2、塑性和柔软性 应当指出,不能把塑性和柔软性混淆起来。不能认为金属比较软,在塑性加工过程中就不易破裂。柔软性反映金属的软硬程度,它用变形抗力的大小来衡量,表示变形的难易。不要认为变形抗力小的金属塑性就好,或是变形抗力大的金属塑性就差。 3、塑性指标 表示金属与合金塑性变形性能的主要指标有: (1)拉伸试验时的延伸率(δ)与断面收缩率(ψ)。 (2)冲击试验时的冲击韧性αk 。 (3)扭转试验的扭转周数n 。 (4)锻造及轧制时刚出现裂纹瞬间的相对压下量。 (5)深冲试验时的压进深度,损坏前的弯折次数。 4、一些因素对塑性的影响规律 A 化学成分的影响 (1)碳 %L L l -=δ%00F F F -=ψ

随着含碳量的增加,渗碳体的数量也增加,塑性的降低 (2)磷 磷一般说来是钢中有害杂质,磷能溶于铁素体中,使钢的强度、硬度增加,但塑性、韧性则显著降低。这种脆化现象在低温时更为严重,故称为冷脆。 (3)硫 硫是钢中有害杂质,它在钢中几乎不溶解,而与铁形成FeS,FeS与Fe的共晶体其熔点很低,呈网状分布于晶界上。当钢在800~1200℃范围内进行塑性加工时,由于晶界处的硫化铁共晶体塑性低或发生熔化而导致加工件开裂,这种现象称为热脆(或红脆)。另外,硫化物夹杂促使钢中带状组织形成,恶化冷轧板的深冲性能,降低钢的塑性。 (4)氮 590℃时,氮在铁素体中的溶解度最大,约为0.42%;但在室温时则降至0.01%以下。若将含氮量较高的钢自高温较快地冷却时,会使铁素体中的氮过饱和,并在室温或稍高温度下,氮将逐渐以Fe4N形式析出,造成钢的强度、硬度提高,塑性、韧性大大降低,使钢变脆,这种现象称为时效脆性。 (5)氢 对于某些含氢量较多的钢种(即每100克钢中含氢达2毫升时就能降低钢的塑性),热加工后又较快冷却,会使从固溶体析出的氢原子来不及向钢表面扩散,而集中在晶界、缺陷和显微空隙等处而形成氢分子(在室温下原子氢变为分子氢,这些分子氢不能扩散)并产生相当大的应力。在组织应力、温度应力和氢析出所造成的内应力的共同作用下会出现微细裂纹,即所谓白点,该现象在中合金钢中尤为严重。 (6)铜 实践表明,钢中含铜量达到0.15%~0.30%时,钢表面会在热加工中龟裂。 (7)硅 含硅量在0.5%以上时,由于加强了形成铁素体的趋势,对塑性产生不良影响。在硅钢中,当含硅量大于2.0%时,使钢的塑性降低。当含硅量达到4.5%

金属塑形作业题答案

一、填空题(括号内为参考答案) 1、板料冲压成形的主要工序有冲裁、弯曲、拉深、(起伏、胀形、翻边)等。 2、衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 3、金属单晶体变形的两种主要方式有滑移和孪晶。 4、金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 5、研究塑性力学时,通常采用的基本假设有连续性假设、均匀性假设、初应力为零、体积力为零、各向同性假设、体积不变假设。 6、金属塑性成形方法主要有拉拔、挤压、锻造、拉深、弯曲等。(冲孔、落料、翻边、、) 7、金属的超塑性可分为微细晶粒(恒温)超塑性和相变(变态)超塑性两大类。 8、金属单晶体变形的两种主要方式有:滑移和孪生。 9、影响金属塑性的主要因素有:化学成分,组织状态,变形温度,应变速率,变形力学条件。 10、平面变形问题中与变形平面垂直方向的应力σz =(σx +σy)/2 = σm 。 11、主应力法的实质是将平衡微分方程和屈服方程联立求解。 二、判断题 1、促使材料发生塑性变形的外力卸除后,材料发生的塑性变形和弹性变形都将保留下来,成为永久变形。 ( F ) 2、为了消除加工硬化、减小变形抗力,拉拔成形时应该将坯料加热到再结晶温度以上。金属材料在塑性变形时,变形前与变形后的体积发生变化。 ( F ) 3、弹性变形时,应力球张量使物体产生体积的变化,泊松比ν<。 ( T ) 4、理想塑性材料在发生塑性变形时不产生硬化,这种材料在中性载荷时不可产生塑性变形。 ( F ) 5、由于主应力图有九种类型,所以主应变图也有九种类型。 ( F ) 6、八面体平面的方向余弦为l=m=n=1/3。(±) ( F ) 7、各向同性假设是指变形体内各质点的组织、化学成分都是均匀而且相同的,即各质点的物理性能均相同,且不随坐标的改变而变化。(这是均匀性假设) ( F ) 8、金属材料在塑性变形时,变形前与变形后的体积发生变化。 ( F ) 9、金属材料在完全热变形条件下无法实现拉拔加工。 ( T )

第四章 塑性变形(含答案)

第四章塑性变形(含答案) 一、填空题(在空白处填上正确的内容) 1、晶体中能够产生滑移的晶面与晶向分别称为________和________,若晶体中这种晶面与晶向越多,则金属的塑性变形能力越________。 答案:滑移面、滑移方向、好(强) 2、金属的再结晶温度不仅与金属本身的________有关,还与变形度有关,这种变形度越大,则再结晶温度越________。 答案:熔点、低 3、晶体的一部分沿一定晶面和晶向相对于另一部分发生滑动位移的现象称为________。答案:滑移 4、由于________和________的影响,多晶体有比单晶体更高的塑性变形抗力。 答案:晶界、晶粒位向(晶粒取向各异) 5、生产中消除加工硬化的方法是________。 答案:再结晶退火 6、在生产实践中,经冷变形的金属进行再结晶退火后继续升高温度会发生________现象。答案:晶粒长大 7、金属塑性变形后其内部存在着残留内应力,其中________内应力是产生加工硬化的主要原因。 答案:第三类(超微观) 8、纯铜经几次冷拔后,若继续冷拔会容易断裂,为便于继续拉拔必须进行________。 答案:再结晶退火 9、金属热加工时产生的________现象随时被再结晶过程产生的软化所抵消,因而热加工带来的强化效果不显著。 答案:加工硬化 10、纯铜的熔点是1083℃,根据再结晶温度的计算方法,它的最低再结晶温度是________。答案: 269℃ 11、常温下,金属单晶体塑性变形方式有________和________两种。 答案:滑移、孪生 12、金属产生加工硬化后会使强度________,硬度________;塑性________,韧性________。答案:提高、提高、降低、降低 13、为了合理地利用纤维组织,正应力应________纤维方向,切应力应________纤维方向。答案:平行(于)、垂直(于) 14、金属单晶体塑性变形有________和________两种不同形式。 答案:滑移、孪生 15、经过塑性变形的金属,在随后的加热过程中,其组织、性能和内应力将发生一系列变化。大致可将这些变化分为________、________和________。 答案:回复、再结晶、晶粒长大 16、所谓冷加工是指金属在________以下进行的塑性变形。 答案:再结晶温度

金属塑性加工原理习题

绪论 0-1 请选择你生活学习中所接触的五种物品,写一篇约五千字的调研笔记,调查其从原料到该物品制造的全过程,运用你所学的知识分析制造这些物品所涉及的学科知识。 第一章应力分析与应变分析 1-1 塑性加工的外力有哪些类型? 1-2 内力的物理本质是什么?诱发内力的因素有哪些? 1-3 何谓应力、全应力、正应力与切应力?塑性力学上应力的正、负号是如何规定的? 1-4 何谓应力特征方程、应力不变量? 1-5何谓主切应力、八面体应力和等效应力?它们在塑性加工上有何意义? 1-6 何谓应力张量和张量分解方程?它有何意义? 1-7 应力不变量(含应力偏张量不变量)有何物理意义? 1-8 塑性变形的力学方程有哪几种?其力学意义和作用如何? 1-9 锻造、轧制、挤压和拉拔的主力学图属何种类型? 1-10变形与位移有何关系?何谓全量应变、增量应变?它们有何联系和区别? 1-11简述塑性变形体积不变条件的力学意义。 1-12何谓变形速度?它们与工具速度、金属质点运动速度有何区别和联系? 1-13何谓变形力学图?如何根据主应力图确定塑性变形的类型? 1-14锻造、轧制、挤压和拉拔的变形力学图属何种类型? 1-15塑性加工时的变形程度有哪几种表示方法?各有何特点? 1-16已知一点的应力状态MPa,试求该应力空间中 的斜截面上的正应力和切应力为多少? 1-17现用电阻应变仪测得平面应力状态下与x轴成0°,45°,90°角方向上的应力值分别为,试问该平面上的主应力各为多少? 1-18 试证明: (1) (2)

1-19 一圆形薄壁管,平均半径为R,壁厚为t,二端受拉力P及扭矩M的作用,试求三个主应力 的大小与方向。 1-20 两端封闭的薄壁圆管。受轴向拉力P,扭矩M,内压力ρ作用,试求圆管柱面上一点的主应力 的大小与方向。其中管平均半径为R,壁厚为t,管长为l。 1-21已知平面应变状态下,变形体某点的位移函数为, ,试求该点的应奕分量,并求出主应变的大小与方向。1-22 为测量平面应变下应变分量将三片应变片贴在与x轴成0°,60°,120°夹角的方向上,测得它们的应变值分别为。试求以及主应变的大小与方向。 1-23 已知圆盘平锤均匀压缩时,质点的位移速度场为,,,其中 为全锤头压下速度,h为圆盘厚度。试求应变速度张量。 1-24 一长为l的圆形薄壁管,平均半径为R,在两端受拉力P,扭矩M作用后,管子的长度变成l1,两端的相对扭转角为,假设材料为不可压缩的。在小变形条件下给出等效应变与洛德参数的表达式。 1-25某轧钢厂在三机架连轧机列上生产h×b×l=1.92×500×100,000mm的A3带钢产品(见图1-14),第1、3机架上的压下率为20%,第2机架上为25%,若整个轧制过程中带材的宽度b保持不变,试求带钢在该连轧机列上的总压下量及每机架前后带钢的尺寸为多少? 图1-25 三机架连轧机列示意图 第二章金属塑性变形的物性方程

影响碳钢变形抗力、塑性的因素

论文目录 绪论 (3) 1.金属塑性的基本概念 (3) 2.影响塑性的因素及提高塑性的途径 (3) 2.1金属的自然性质(内在) (3) 2.2变形温度对塑性的影响 (6) 2.3变形速度的影响 (6) 2.4变形力学条件对塑性的影响 (6) 2.5其他因素对塑性的影响 (7) 2.6提高塑性的途径 (8) 3变形抗力 (8) 3.1变形抗力的几个概念 (8) 3.2影响变形抗力的因素 (8) 3.3热轧时的真实变形抗力 (11) 3.4降低变形抗力常用的工艺措施 (11)

影响碳钢变形抗力、塑性的因素 摘要:金属的塑性与变形抗力对金属的加工和金属的质量等问题有着很重要的影响。本文阐述了影响塑性的几个因素及提高塑性的途径,影响变形抗力的因素以及降低变形抗力常用的工艺措施。 关键词:塑性变形抗力三向压应力热轧 绪论 21世纪世界钢铁工业发展的一个显著特点是钢材市场竞争愈演愈烈,竞争的焦点是钢材的质量逐步提高而成本降低。随着社会的发展,对钢材的质量要求越来越高,然而金属的质量问题是无法避免的,如金属加工时塑性较低,容易断裂;金属变形抗力大,不易加工。因此,本文针对如何提高金属的塑性和降低变形抗力的常用工艺措施进行了分析。 1、金属塑性的基本概念 金属之所以能进行压力加工主要是由于金属具有塑性这一特点。所谓塑性,是指金属在外力作用下,能稳定地产生永久变形而不破坏其完整性的能力。金属塑性的大小,可用金属在断裂前产生的最大变形程度来表示。一般通常称压力加工时金属塑性变形的限度,或“塑性极限”为塑性指标。 应当指出,不把塑性塑性和柔软性混淆起来。不能认为金属比较软,在塑型加工过程中就不易破裂。柔软性反应金属的软硬程度,它用变形抗力的大小来衡量,表示变形的难易。不要认为变形抗力小的金属塑性就好,或是变形抗力大的金属塑性就差。例如:室温下奥氏体不锈钢的塑性很好,能经受很大的变形而不破坏,但它的变形抗力却非常大;对于过热或过烧的金属与合金来说,其塑性很小,甚至完全失去塑性变形的能力,而变形抗力也很小;也有些金属塑性很高而变形抗力又小,如室温下的铅等。 金属的塑性不仅受金属内在的化学成分与组织结构的影响,也和外在的变形条件有密切关系。同一金属或合金,由于变形条件不同,可能表现有不同的塑性,甚至由塑性物体变为脆性物体,或由脆性物体转变为塑性物体。例如受单向拉伸的大理石是脆性物体,但在较强的平均应力下压缩时,却能产生明显的塑性变形而不破坏。对金属与合金塑性的研究,是压力加工理论与实践上的重要课

热轧变形抗力

3.5.3 热轧金属塑性变形阻力 金属塑性变形阻力是指单向应力状态下金属材料产生塑性变形所需单位面积上的力,它的大小不仅与金属材料的化学成分有关,而且还取决于塑性变形的物理条件(变形温度、变形速度和变形程度)。 由于变形阻力是轧制力计算公式中的一个重要的物理参数,因此几十年来不少学者致力于金属塑性变形阻力的实验研究工作,发表了一些有用的数据。 迄今为止,在变形阻力研究中都采用以下函数形式: σ=f(T,u,ε) 式中T——变形温度,K。 至于化学成分的影响,目前往往采用对每一种钢种积累一套σ=f(T,u,ε)数据的方法,或在公式的系数中对成分加以考虑。 20多年来,各国比较著名的工作有: P.M.库克(Cook)的变形阻力数据,库克采用凸轮式形变机对12个钢种进行了试验,试验范围:T=1173~1473K;u=1~100s-1,e=0.05~0.7。它的数据以σ=f(e)曲线作为基础,绘出了不同变形温度、不同变形速度下的变形阻力随变形程度变化的曲线。图3-21给出了库克的中碳钢(ωc=0.56%)变形阻力曲线。 A.A.金尼克也采用凸轮式形变机对15种钢种进行了试验,其范围为T=1073~1473K;u=2~41s-1(低于2s-1的试验在材料机上进行,高于41s-1的试验在落锤式装置上进行)。实验数据采用了不同温度下的σ=f(u)曲线形式(此σ相当于变形程度为ε=0.30的数据)。图3-22给出GCr15轴承钢的变形阻力数据。变形程度对变形阻力的影响用图左上角的辅助曲线表示。 随着计算机控制数学模型的发展,60年代中期开始出现了一批采用变形阻力公式而发表的数据,公式的结构大同小异,有以下几种形式: σ=exp(a+bT)u(c+dT)e n 1

第五章 金属及合金的塑性变形 -答案

第五章金属及合金的塑性变形与断裂一名词解释 固溶强化,应变时效,孪生,临界分切应力,变形织构 固溶强化:固溶体中的溶质原子溶入基体金属后使合金变形抗力提高,应力-应变曲线升高,塑性下降的现象; 应变时效:具有屈服现象的金属材料在受到拉伸等变形发生屈服后,在室温停留或低温加热后重新拉伸又出现屈服效应的情况; 孪生:金属塑性变形的重要方式。晶体在切应力作用下一部分晶体沿着一定的晶面(孪晶面)和一定的晶向(孪生方向)相对于另外一部分晶体作均匀的切变,使相邻两部分的晶体取向不同,以孪晶面为对称面形成镜像对称,孪晶面的两边的晶体部分称为孪晶。形成孪晶的过程称为孪生; 临界分切应力:金属晶体在变形中受到外力使某个滑移系启动发生滑移的最小

分切应力; 变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构。 二填空题 1.从刃型位错的结构模型分析,滑移的 移面为{111},滑移系方向为<110>,构成12 个滑移系。P166. 3. 加工硬化现象是指随变形度的增 大,金属强度和硬度显著 提高而塑性和韧性显著下降的现象 ,加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的

根本原因是位错密度提高,变形抗 力增大。 4.影响多晶体塑性变形的两个主要因素是晶界、晶格位向差。 5.金属塑性变形的基本方式是滑移和孪生,冷变形后金属的 强度增大,塑性降低。6.常温下使用的金属材料以细小晶粒为好,而高温下使用的金属材 料以粗一些晶粒为好。对于在高温下工作的金属材料,晶粒应粗一些。因为在高温下原子沿晶界 的扩散比晶内快,晶界对变形的阻 力大为减弱而致 7.内应力可分为宏观内应力、微观内应力、点阵畸变三种。 三判断题 1.晶体滑移所需的临界分切应力实测值比理论值小得多。(√) 2 在体心立方晶格中,滑移面为{111}×6,滑移方向为〈110〉×2,所以其滑

塑性变形对金属组织和性能的影响

塑性变形对组织结构的影响 多晶体金属塑性变形后,除晶粒内出现滑移带和孪晶等特征外 ()一晶粒形状的变化 1. 外形尺寸改变是内部晶粒变形的总和 2. 晶粒形状发生变化,变形方式和变形量不同,晶粒形状变化也不同 3. 如轧制时 a) 晶粒沿变形方向伸长 b) 变形程度越大,伸长程度越大 c) 变形量很大时,形成纤维组织,纤维组织的方向就是金属的伸展方向 d) 当金属中含有杂质时,杂质沿变形方向被拉长为细带状或粉碎成链状, 在光滑显微镜下分辨不出晶粒和杂质 ()二亚结构的细化 亚结构的细化数据 1. 铸态金属的亚结构直径为cm 210- 2. 冷塑性变形后亚结构直径为cm 6410~10-- 凸6.30为低碳钢的形变亚结构 形变亚结构元素: 1. 形变亚结构的边界和内部: 2. 胞块间的夹角和胞壁的厚度: 3. 位错的分布: 4. 变形量越大,胞块数量越多,胞块尺寸越小,胞块间取向差越大 5. 胞状亚结构的形状随晶粒形状改变而改变,沿变形方向伸长

形变亚结构: 高密度缠结位错分割开的位错密度较低的区域 形变亚结构的形成原因: 位错源产生的位错在运动过程中遇到各种障碍物如晶界,第二相颗粒及割阶等形成位错缠结,便形成高密度缠结位错分割开的位错密度较低的区域 ()三形变织构 晶粒择优取向现象 多晶体塑性变形也会发生转动,当变形量很大时原来任意取向的晶粒逐渐趋于一致,这种现象就叫做晶粒的择优取向 织构和形变织构 1.具有择优取向的组织就叫做织构 2.在金属变形后形成的织构就叫做形变织构,当然还有其他的织构 同一种材料加工方式不同类型织构类型不同 1.丝织构:拉拔时形成,各晶粒的某一晶向平行或近似平行拉拔方向 2.板织构:轧制时形成,各晶粒的某一晶面平行于轧制平面,某一晶向平行于 轧制方向 表6.3常见金属的丝织构与板织构 织构的出现: 1.多晶体组织性能出现各向异性,例如 2.但在某些情况下织构的存在是有利的,例如 将有织构的板材冲压成杯状零件产生制耳现象: 板材各方向变形能力不同工件边缘不齐壁厚不均匀

金属塑性变形抗力计算的意义及方法

金属塑性变形抗力计算的意义及方法 摘要:变形抗力作为材料的一种特性,反映了热变形过程中显微组织变化情况,因此,如果金属塑性变形中的变形抗力能够准确地测量出来,那么伴随变形过程的显微组织变化,就能够通过变形抗力的变化而预报出来。从而能够在变形后不进行性能测试的情况下,预测工件的力学性能。本文着重介绍金属塑性变形抗力及其计算的意义及方法。 关键词:塑性变形抗力;变形抗力;计算方法;意义 金属材料的变形抗力是指金属在一定的变形条件下进行塑性变形时,在单位横截面积上抵抗此变形的能力。变形抗力是表征金属和合金压力加工性能的一个基本量。变形抗力的研究起步很早,由于实验条件有限,20世纪40年代以前属于研究的萌芽阶段,20世纪40年代以后随着热模拟技术的应用对变形抗力的研究才有了很大的进步。 1 变形抗力的测定方法 简单应力状态下,应力状态在变形物体内均匀分布 1.1 拉伸试验法: /pl P F ε= ()0ln /l l ε= 1.2 压缩试验法: /pc P F ε= ()0ln /h h ε= 1.3 扭转试验法: 圆柱体试样4032M r d τπ=? 空心管试样02M F d τ=平 2 影响变形抗力的主要因素 2.1金属的化学成分及组织对塑性变形抗力的影响 2.1.1化学成分对塑性变形抗力的影响 对于各种纯金属,原子间结合力大的,滑移阻力大,变形抗力也大。 同一种金属,纯度愈高,变形抗力愈小。合金元素的存在及其在基体中存在的形式对变形抗力有显著影响。原因:1)溶入固溶体,基体金属点阵畸变增加;2)形成化合物;3)形成第二相组织,使变形抗力增加。

2.1.2组织对塑性变形抗力的影响 1)基体金属原子间结合力大,变形抗力大。单相组织合金含量越高,S σ越大。原因:晶格畸变。单相组织变形抗力大于多相组织。硬而脆第二相在基体相晶粒内呈颗粒状弥散质点均匀分布,则S σ高。 2)第二相越细、分布越均匀、数量越多,则S σ越高。质点阻碍滑移。 3)晶粒直径越大,变形抗力越大。 4)夹杂物的存在:变形抗力越大。合金变形抗力大于纯金属。 2.2应力状态对塑性变形抗力的影响 挤压变形抗力大于轧制变形抗力;孔型中轧制变形抗力大于平辊轧制变形抗力;模锻变形抗力大于平锤头锻造变形抗力;压应力状态越强,变形抗力越大。挤压下的变形抗力大于拉拔变形抗力。金属的变形抗力在很大程度上取决于静水压力。静水压力从0增加到5000MPa 时,变形抗力可增加一倍。静水压力有明显影响的情况:1)金属合金中的已有组织或在塑性变形过程中发生的组织转变有脆性倾向。2)金属合金的流变行为与粘-塑性体行为相一致。(在一定温度-速度条件下,特别是在温度接近熔点且变形速度不大时)。 静水压力可以使金属变得致密,消除可能产生的完整性的破坏,既提高金属塑性,又提高变形抗力。金属越倾向于脆性状态,静水压力的影响越显著;静水压力可使金属内的空位数减少,使塑性变形困难。变形速度大时影响大;空位数多时影响大。 2.3温度对塑性变形抗力的影响 温度升高,变形抗力降低的原因主要有软化效应、某种物理-化学转变的发生及其它塑性变形机构的参与 1) 软化效应:发生了回复和再结晶 从绝对零度到熔点M T 可分为三个温度区间:完全硬化区间:0~0。3M T 、部分软化区间:0.3M T ~0.7M T 、完全软化区间:0.7M T ~1.0M T 、回复温度:(0.25~0.3)M T 、再结晶温度:> 0.4M T 。温度越高、变形速度越小,软化程度越大。 2) 某种物理-化学转变的发生 在某些情况下,由于某种物理-化学转变的发生,即使温度大大超过0。3TM 的相应温度,金属也会发生硬化现象,且此硬化现象可以稳定保留下来。 3) 其它塑性变形机构的参与 温度升高,原子动能大,结合力弱,临界切应力低,滑移系增加,由于晶粒

2019金属塑形作业题答案

. 一、填空题(括号内为参考答案) 1、板料冲压成形的主要工序有冲裁、弯曲、拉深、(起伏、胀形、翻边)等。 2、衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 3、金属单晶体变形的两种主要方式有滑移和孪晶。 4、金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 5、研究塑性力学时,通常采用的基本假设有连续性假设、均匀性假设、初应力为零、体积力为零、各向同性假设、体积不变假设。 6、金属塑性成形方法主要有拉拔、挤压、锻造、拉深、弯曲等。(冲孔、落料、翻边、、) 7、金属的超塑性可分为微细晶粒(恒温)超塑性和相变(变态)超塑性两大类。 8、金属单晶体变形的两种主要方式有:滑移和孪生。 9、影响金属塑性的主要因素有:化学成分,组织状态,变形温度,应变速率,变形力学条件。 10、平面变形问题中与变形平面垂直方向的应力σz =(σx +σy)/2 = σm 。 11、主应力法的实质是将平衡微分方程和屈服方程联立求解。 二、判断题 1、促使材料发生塑性变形的外力卸除后,材料发生的塑性变形和弹性变形都将保留下来,成为永久变形。 ( F ) 2、为了消除加工硬化、减小变形抗力,拉拔成形时应该将坯料加热到再结晶温度以上。金属材料在塑性变形时,变形前与变形后的体积发生变化。 ( F ) 3、弹性变形时,应力球张量使物体产生体积的变化,泊松比ν<0.5。 ( T ) 4、理想塑性材料在发生塑性变形时不产生硬化,这种材料在中性载荷时不可产生塑性变形。( F ) 5、由于主应力图有九种类型,所以主应变图也有九种类型。 ( F ) 6、八面体平面的方向余弦为l=m=n=1/3。(±) ( F ) 7、各向同性假设是指变形体内各质点的组织、化学成分都是均匀而且相同的,即各质点的物理性能均相同,且不随坐标的改变而变化。(这是均匀性假设) ( F ) 8、金属材料在塑性变形时,变形前与变形后的体积发生变化。 ( F ) 9、金属材料在完全热变形条件下无法实现拉拔加工。 ( T ) 10、塑性变形时,应力偏张量使物体产生体积的变化,泊松比ν<0.5。 ( F ) 11、理想刚塑性材料在指在研究塑性变形时,不考虑弹性变形,也不考虑变形过程中产生加工硬化

第五章 金属的塑性与变形抗力

第五章 金属的塑性与变形抗力 1、金属塑性的概念 所谓塑性,是指金属在外力作用下,能稳定地产生永久变形而不破坏其完整性的能力。 金属塑性的大小,可用金属在断裂前产生的最大变形程度来表示。一般通常称压力加工时金属塑性变形的限度,或“塑性极限”为塑性指标 2、塑性和柔软性 应当指出,不能把塑性和柔软性混淆起来。不能认为金属比较软,在塑性加工过程中就不易破裂。柔软性反映金属的软硬程度,它用变形抗力的大小来衡量,表示变形的难易。不要认为变形抗力小的金属塑性就好,或是变形抗力大的金属塑性就差。 3、塑性指标 表示金属与合金塑性变形性能的主要指标有: (1)拉伸试验时的延伸率(δ)与断面收缩率(ψ)。 (2)冲击试验时的冲击韧性αk 。 (3)扭转试验的扭转周数n 。 (4)锻造及轧制时刚出现裂纹瞬间的相对压下量。 (5)深冲试验时的压进深度,损坏前的弯折次数。 4、一些因素对塑性的影响规律 A 化学成分的影响 (1)碳 随着含碳量的增加,渗碳体的数量也增加,塑性的降低 (2)磷 磷一般说来是钢中有害杂质,磷能溶于铁素体中,使钢的强度、硬度增加,但塑性、韧性则显著降低。这种脆化现象在低温时更为严重,故称为冷脆。 (3)硫 硫是钢中有害杂质,它在钢中几乎不溶解,而与铁形成FeS ,FeS 与Fe 的共晶体其熔点很低,呈网状分布于晶界上。当钢在800~1200℃范围内进行塑性加工时,由于晶界处的硫化铁共晶体塑性低或发生熔化而导致加工件开裂,这种现象称为热脆(或红脆)。另外,硫化物夹杂促使钢中带状组织形成,恶化冷%L L l -=δ%00F F F -=ψ

轧板的深冲性能,降低钢的塑性。 (4)氮 590℃时,氮在铁素体中的溶解度最大,约为0.42%;但在室温时则降至0.01%以下。若将含氮量较高的钢自高温较快地冷却时,会使铁素体中的氮过饱和,并在室温或稍高温度下,氮将逐渐以Fe4N形式析出,造成钢的强度、硬度提高,塑性、韧性大大降低,使钢变脆,这种现象称为时效脆性。 (5)氢 对于某些含氢量较多的钢种(即每100克钢中含氢达2毫升时就能降低钢的塑性),热加工后又较快冷却,会使从固溶体析出的氢原子来不及向钢表面扩散,而集中在晶界、缺陷和显微空隙等处而形成氢分子(在室温下原子氢变为分子氢,这些分子氢不能扩散)并产生相当大的应力。在组织应力、温度应力和氢析出所造成的内应力的共同作用下会出现微细裂纹,即所谓白点,该现象在中合金钢中尤为严重。 (6)铜 实践表明,钢中含铜量达到0.15%~0.30%时,钢表面会在热加工中龟裂。(7)硅 含硅量在0.5%以上时,由于加强了形成铁素体的趋势,对塑性产生不良影响。在硅钢中,当含硅量大于2.0%时,使钢的塑性降低。当含硅量达到4.5%时,在冷状态下钢已变的很脆,如果加热到100℃左右,塑性就有显著改善。一般冷轧硅钢片的含硅量都限定在3.5%左右。 (8)铝 铝对钢及低合金钢的塑性起有害作用。这可能是由于在晶界处形成氮化铝所致。铝作为合金元素加入钢中是为了得到特殊性能。含铝量较高的铬铝合金,在冷状态下塑性较低。 B 组织的影响 (1)单相组织(纯金属或固溶体)比多相组织塑性好 (2)晶粒细化有利于提高金属的塑性 (3)化合物杂质呈球状分布对塑性较好;呈片状、网状分布在晶界上时,使金属的塑性下降。 (4)经过热加工后的金属比铸态金属的塑性高。 C 变形温度对不同的钢种塑性的影响 (1)温度对合金钢塑性的影响

相关文档
最新文档