5金属的塑性与变形抗力-新

合集下载

13.4影响塑性和变形抗力的因素

13.4影响塑性和变形抗力的因素

7,其它元素:主要是降低钢的塑性,提高变形抗力
合金元素对铁素体伸长率和韧性的影响
(二)组织状态对金属塑性的影响
晶格类型的影响 面心立方——12个滑移系,同一滑移面上3个滑移方向, 塑性最好,如铝,铜和镍等. 体心立方——12个滑移系,同一滑移面上2个滑移方向, 塑性较好,如钒,钨,钼等. 密排六方——3个滑移系,塑性最差,如镁,锌,钙等. 晶粒度的影响 晶粒度越小,越均匀,塑性越高.
第四节影响塑性和变形抗力的因素
一,塑性,塑性指标和塑性图 塑性:金属在外力作用下发生永久变形而不破坏其完整性的 能力. 1,塑性反映了材料产生塑性变形的能力; 2,塑性不是固定不变的,同一种材料,在不同的变形条件 下,会表现出不同的塑性. 3,影响金属塑性的因素主要有两方面: 1)内因:金属本身的晶格类型,化学成分和金相组织等; 2)外因:变形时外部条件,如变形温度和受力状况等.
A0 ,Ak
塑性指标还可以用镦粗实验和扭转试验测定. 镦粗试验(试样的高度为直径的1.5倍)中,以出现 第一条裂纹时的变形程度为塑性指标:
εc
,
H0 Hk = H0
×
100%
试样原始高度和表面出现第一条裂纹 时的高度
注:只有相同的指标才能相互比较
原始样
出现裂纹后的试样
镦粗试验
塑性图: 在不同的变形速度下,以不同温度下的各 种塑性指标( , , , ,ak等)为纵坐标, 以温度为横坐标绘制成的函数曲线.
碳钢的塑性随温度的变化曲线
(四)应变速率对塑性的影响
一方面,随变形速率的增大,金属的塑性降低:没有足 够的时间进行回复或再结晶,软化过程进行得不充分. 另一方面,随着变形速率的增加,在一定程度上使金属 的温度升高,温度效应显著,从而提高金属的塑性.但 对于有脆性转变的金属,则应变速率的增加可能引起塑 性的下降.

第五章 金属的塑性

第五章 金属的塑性

§5.3.1 影响塑性的内部因素
(2)合金元素 取决于加入元素的特性, 加入数量、元素之间的相互 作用。 当加入的合金元素与基体 作用使在加工温度范围内形 成单相固溶体时,则有较好 塑性;如形成过剩相(尤其是 脆性相),或使在加工温度范 围内两相共存,则塑性降低。
2.组织结构
外加应力低于原子间结合力极限
正应力使晶格沿应力方向伸长,切应力使晶格沿某晶面和晶向相对移动, 外力去除后晶格恢复原状
外加应力大于原子间结合力极限
正应力使晶体发生断裂,切应力使晶体的原子沿某晶面和晶向迁移到新 的平衡位置,外力去除原子停留在新的平衡位置
为什么金属晶体能够产生相对移动而不发生破坏呢?
金属原子之间特殊的结合方式 — 金属键
第三篇 塑性变形材料学基础
第5章 金属的塑性
§5.1 金属的塑性 §5.2 金属多晶体塑性变形的主要机制
§5.3 影响金属塑性的因素
§5.4 金属的超塑性
§5.1 金属的塑性
§5.1.1 塑性的基本概念 §5.1.2 塑性指标及其测量方法
§5.1.3 塑性状态图及其应用
§5.1.1 塑性的基本概念
(4)滑移的临界分切应力
F 横截面积 A
某一滑移系上的分切应力

F cos A / cos
滑 移 方 向

M

滑 移 面 法 向
F cos cos A
cos cos
滑移面
取向因子
F 分切应力计算分析图
cos cos
其中任何一个角度为90°时,分切应力为零,晶体不可能 滑移 当两个角度都为45°时,取向因子最大(为0.5),该滑 移系处于最有利取向 只有当分切应力τ≥临界分切应力τk时,滑移才能开始

金属材料的塑性

金属材料的塑性

塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。

金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。

金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。

一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。

塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。

此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。

因此,选择金属材料作机械零件时,必须满足一定的塑性指标。

字串2编辑本段金属材料的硬度硬度表示材料抵抗硬物体压入其表面的能力。

它是金属材料的重要性能指标之一。

一般硬度越高,耐磨性越好。

常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

2.洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。

它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。

根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。

HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。

HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。

金属的塑性变形、纤维组织及其对金属性能的影响

金属的塑性变形、纤维组织及其对金属性能的影响

金属的塑性变形、纤维组织及其对金属性能的影响一、金属的塑性变形金属受力时,其原子的相对位置发生改变,宏观上表现为形状、尺寸的变化,此种现象称为变形。

金属变形按其性质分为弹性变形和塑性变形。

当受力不大时,去除外力后原子立即恢复到原来的平衡位置,变形立即消失,这种变形称为弹性变形。

当应力超过一定值时(≥бs),金属在弹性变形的同时还会产生塑性变形。

1、单晶体的塑性变形单晶体的塑性变形,主要是以滑移的方式进行的,即晶体的一部分沿着一定的晶面和晶向相对于另一部分发生滑动,滑动后原子处于新的稳定位置,不再回到原来位置。

研究表明,滑移总是优先沿晶体中一定的晶面和晶向发生,晶体中能够发生滑移的晶面和晶向称为滑移面和滑移方向。

滑移面和滑移方向越多,金属的塑性越好。

晶体的滑移是借助于位错的移动来实现的。

大量的位错移出晶体表面,就产生了宏观的塑性变形。

2、多晶体的塑性变形常用金属材料都是多晶体。

每个晶粒内的塑性变形主要仍以滑移方式进行。

但多晶体中各相邻晶粒的位向不同,各晶粒之间有一晶界相连接,因此,具有下列特点:(1)晶粒位向的影响由于多晶体中各个晶粒的位向不同,在外力作用下,有的晶粒处于有利于滑移的位置,有的晶粒处于不利位置。

产生滑移的晶粒必然会受到周围位向不同晶粒的阻碍,使滑移阻力增加,从而提高了塑性变形的抗力。

所以多晶体的塑性变形是逐步扩展和不均匀的,其结果之一便是产生内应力。

(2)晶界的作用晶界对塑性变形有较大的阻碍作用。

试样在晶界附近不易发生变形,出现所谓“竹节”现象。

这是因为晶界处原子排列比较紊乱,阻碍位错的移动,因而阻碍了滑移的缘故。

很显然,晶界越多,多晶体的塑性变形抗力越大。

(3)晶粒大小的影响在一定体积的晶体内晶粒数目越多,晶粒越细,晶界越多,不同位向的晶粒也越多。

因而塑性变形抗力也就越大,表现出较好的塑性和韧性。

故生产中都尽一切努力细化晶粒。

二、金属的冷塑性变形对性能的影响冷塑性变形对金属性能的主要影响是造成加工硬化,即随着变形度的增加,金属强度、硬度提高,而塑性、韧性下降的现象。

第5章 金属的塑性变形

第5章 金属的塑性变形
第四章 金属的塑性变形
塑性变形及随后的加热,对金属材料组织和性能有 显著的影响。了解塑性变形的本质、塑性变形及加 热时组织的变化,有助于发挥金属的性能潜力,正 确确定加工工艺
单晶体的塑性变形 多晶体的塑性变形 变形后金属的回复与再结晶 金属的热塑性变形
1
第一节 单晶体的塑性变形 一、单晶体纯金属的塑性变形
T再与ε的关系
如Fe:T再=(1538+273)×0.4–273=451℃
39
2)、金属的纯度 金属中的微量杂质或合金元素,尤其高熔点元素, 起阻碍扩散和晶界迁移作用,使再结晶温度显著 提高。
40
3)、再结晶加热速度和加热时间 提高加热速度会使再结晶推迟到较高温度发生;
延长加热时间,使原子扩散充分,再结晶温度降低。
3、产生织构:金属中的晶粒的取向一般是无规则的随机排列,尽管每个 晶粒是各向异性的,宏观性能表现出各向同性。当金属经受大量(70% 以上)的一定方向的变形之后,由于晶粒的转动造成晶粒取向趋于一致, 形成了“择优取向”,即某一晶面 (晶向)在某个方向出现的几率明 显高于其他方向。金属大变形后形成的这种有序化结构叫做变形织构, 它使金属材料表现出明显的各向异性。 24
在应力低于弹性极限σ e时, 材料发生的变形为弹性变形; 应力在σ e到σ b之间将发生的变 形为均匀塑性变形;在σ b之后 将发生颈缩;在K点发生断裂。
s e
弹性变形的实质是:在应力的作用下,材料内部的原子偏离了平衡位 置,但未超过其原子间的结合力。晶格发生了伸长(缩短)或歪扭。 原子的相邻关系未发生改变,故外力去除后,原子间结合力便可 2 以使变形的塑性:fcc>bcc>chp
8
哪个滑移系先滑移?
当作用于滑移面上滑移方向的切应力分量c(分切应力)大于等于一定的 临界值(临界切应力,决定于原子间结合力),才可进行。

材料成形技术基础复习思考题-塑性成形部分-题

材料成形技术基础复习思考题-塑性成形部分-题

《材料成形技术基础》总复习思考题一、基本概念加工硬化、轧制成形、热塑性成形、冷塑性成形、变形速度、塑性变形能力(可锻性)、自由锻造、模型锻造、敷料(余块)、锻造比、镦粗、拔长、冲孔、落料、拉深、拉深系数、反挤压成形、正挤压。

二、是非判断1、塑性是金属固有的一种属性,它不随变形方式或变形条件的变化而变化。

()2、对于塑性较低的合金材料进行塑性加工时拟采用挤压变形方式效果最好。

()3、自由锻是生产单件小批量锻件最经济的方法,也是生产重型、大型锻件的惟一方法。

()4、锻件图上的敷料或余块和加工余量都是在零件图上增加的部分,但两者作用不同。

()5、模膛深度越深,其拔模斜度就越大。

()6、对正方体毛坯进行完全镦粗变形时,可得到近似于圆形截面的毛坯。

()7、对长方体毛坯进行整体镦粗时,金属沿长度方向流动的速度大于横向流动的速度。

()8、塑性变形过程中一定伴随着弹性变形。

()9、金属在塑性变形时,压应力数目越多,则表现出的塑性就越好。

()10、金属变形程度越大,纤维组织越明显,导致其各向异性也就越明显。

()11、金属变形后的纤维组织稳定性极强,其分布状况一般不能通过热处理消除,只能通过在不同方向上的塑性成形后才能改变。

()12、材料的变形程度在塑性加工中常用锻造比来表示。

()13、材料的锻造温度范围是指始锻温度与终锻温度之间的温度。

()14、加热是提高金属塑性的常用措施。

()15、将碳钢加热到250℃后进行的塑性变形称为热塑性变性。

()16、自由锻造成形时,金属在两砧块间受力变形,在其它方向自由流动。

()17、镦粗、拔长、冲孔工序属于自由锻的基本工序。

()18、模锻件的通孔可以直接锻造出来。

()19、可锻铸铁可以进行锻造加工。

()20、始锻温度过高会导致锻件出现过热和过烧缺陷。

()21、热模锻成形时,终锻模膛的形状与尺寸与冷锻件相同。

()22、金属的锻造性与材料的性能有关,而与变形的方式无关。

()23、模锻件的精度取决于终锻模膛的精度。

工程材料 5 塑性变形

工程材料 5 塑性变形

(c) 变形80%
2. 亚组织的细化 塑性变形使晶粒碎化,内部 形成更多位向略有差异的亚晶粒 (亚结构),在其边界上聚集着 大量位错。 3. 产生形变织构 由于塑性变形过程中 晶粒的转动,当变形量达 到一定程度(70%~90%) 以上时,会使绝大部分晶 粒的某一位向与外力方向 趋于一致,形成织构。
产生加工硬化
由于塑性变形的变形度增加, 使金属的强度、硬度提高,而塑 性下降的现象称为加工硬化。
二、冷塑性变形对金属组织的影响 1. 形成纤维组织 金属在外力作用下产生塑性变形时,随着外形变化,而且其 内部的晶粒形状也相应地被拉长或压偏。当变形量很大时,晶粒 将被拉长为纤维状。
(a) 未变形
(b) 变形40%
2. 再结晶退火
把冷变形金属加热到再结晶温度以上,使其产生再结晶的热处 理称为再结晶退火。 生产中金属的再结晶退火温度比其再结晶温度高100~200℃。
三、晶粒长大
再结晶完成后,若继续升高加热温度或延长保温时间,金 属晶粒将继续长大是通过晶界的迁移进行的,是大晶粒吞食小 晶粒的过程。这是一个自发的过程。 影响晶粒大小的因素除加热温度和保温时间外,还有晶粒 原始尺寸、杂质的分布、预先变形度等。加热温度和预先变形 度影响最大。
晶粒粗大会使金属的强度,特别是塑性和冲击韧性降低。
1. 加热温度和保温时间的影响 加热温度越高,保温时间越长, 金属晶粒越粗大。
黄铜再结晶后晶粒的长大
580º C保温8秒后的组织
580º C保温15分后的组织
700º C保温10分后的组织
2. 预变形度的影响
对一般金属,当变形度为2%~10%时,由于变形很不均匀, 会造成晶粒异常长大,应予避免。变形度过大(>90%),因织 构,晶粒也会粗大。通常变形度为30%~60%。

工程材料与热加工复习资料-学生(含部分答案)

工程材料与热加工复习资料-学生(含部分答案)

工程材料与热加工复习资料第1章材料的力学性能疲劳断口的三个区域。

疲劳源区、疲劳裂纹扩展区和最后断裂区三部分组成5.金属塑性的2个主要指标。

伸长率和断面收缩率6.金属的性能包括力学性能、_物理___性能、_化学_性能和__工艺_性能。

7.材料的工艺性能包括哪些?包括铸造性、焊接性、锻压性、切削性以及热处理性。

第2章金属的晶体结构与结晶二、问答题1.金属中常见的晶体结构有哪几种?(α-Fe、γ-Fe是分别是什么晶体结构)。

体心立方体晶格、面心立方体晶格、密排六方晶格。

α-Fe 是体心立方体晶格结构γ-Fe是面心立方体晶格结构晶体和非晶体的特点和区别。

2.实际晶体的晶体缺陷有哪几种类型?点缺陷、线缺陷、面缺陷。

3点缺陷分为:空位、间隙原子、置换原子4.固溶体的类型有哪几种?置换固溶体、间隙固溶体5.纯金属的结晶是由哪两个基本过程组成的?晶体的形成、晶体的长大6.何谓结晶温度、过冷现象和过冷度?纯金属液体在无限缓慢的冷却条件下的结晶温度,称为理论结晶温度金属的实际结晶温度低于理论结晶温度的现象称为过冷现象理论结晶温度与实际结晶温度的差叫做过冷度过冷度与冷却速度有何关系?结晶时冷却的速度越大,过冷度越大,金属的实际结晶温度就越低。

7.晶粒大小对金属的力学性能有何影响?在一般情况下,晶粒越细,金属的强度、塑性和韧性就越好。

细化晶粒的常用方法有哪几种?增加过冷度、变质处理、振动或搅拌8.什么是共析转变?在恒定温度下,有一特定成分的固相同时分解成两种成分和结构均不同的新固相的转变成为共析转变二、填空题1.珠光体是由___铁素体_____和____渗碳体_____组成的机械混合物(共析组织)。

2.莱氏体是由_____奥氏体___和____渗碳体_____组成的机械混合物(共晶组织)。

3.奥氏体在1148℃时碳的质量分数可达____2.11%______,在727℃时碳的质量分数为____0.77%___。

4. 根据室温组织的不同,钢可分为___共_____钢、____亚共____钢和____过共___钢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、测定方法
基本方法有:拉伸法、压缩法和扭转法。
(1)拉伸法
使用圆柱试样,认为在拉伸过程中在试样出现细 颈前,在其标距内工作部分的应力状态为均匀分布的 单向拉应力状态。这时,所测出的拉应力便为变形物 体在此变形条件下的变形抗力。

F
此时变形物体的真实变形应为:
ln l
L
特点: 测量精确,方法简单,但变形程度不应大于 20%~30%。
室温下的铅,塑性很高而变形抗力又小。
二、 金属塑性指标及测定方法
1、塑性指标
表示金属与合金塑性变形性能的主要指标有:
1)拉伸试验时延伸率(%)与断面收缩率(%)
2)扭转试验的扭转周数。
3)冲击试验时的冲击韧性 4)锻造及轧制时刚出现裂纹瞬间的相对压下量 5)深冲试验时的压进深度,损坏前的弯折次数。
3 、 铸造组织的影响
铸坯的塑性低、性能不均匀。 造成原因: (1)铸态材料的密度较低,因为在接近铸锭的头部 和轴心部分,分布有宏观和微观的孔隙,沸腾钢钢锭 有皮下气泡。 (2)用一般方法熔炼的钢锭,经常发现有害杂 质(如硫、磷等)的很大偏析,特别是在铸锭的头部 和轴心部分。
(3)对于大钢锭,枝晶偏析会有较大的发展。
(7)磷
钢中P<1~1.5%时,在热加工范围内对塑性影响不 大。 在冷状态下,磷使钢的强度增加塑性降低,产生 “冷脆”现象。
(8)铅、锡、砷、锑、铋
钢中五大有害元素,它们在加热时熔化,使金属 失去塑性。 (9)氧、氮、氢 氧能使钢的塑性降低,氮也会使钢的塑性变差, 氢对钢的塑性无明显的影响。 (10)稀土元素 适当加入一些,能使钢的塑性得到改善。
s k k kt 0
0的获得条件 :t=1000°C; =0.1 =10s-1

5.4 影响变形抗力的主要因素
一、化学成分和显微组织的影响 1、化学成分的影响
(1)碳
在较低的温度下随着钢中含碳量的增加,钢的变 形抗力升高。温度升高时其影响减弱。
在不同变形温度和变形速度下含碳量对碳钢变形抗力的影响 (实线为静压缩,虚线为动压缩)
试验时,将圆柱形试样的—端固定,另一端扭转, 用破断前扭转的转数(n)表示塑性的大小。
图5-1 W18Cr4V高速钢破断前扭转转数与试验温度的关系
3)冲击弯曲试验。
冲击韧性值aK 不完全是一种塑性指标,它是弯曲 变形抗力和试样弯曲挠度的综合指标。
(2)模拟试验法
1)顶锻试验:也称镦粗试验
是将圆柱形试样在压力机或落锤上镦粗,把试样 侧面出现第—条可见裂纹时的变形量,作为塑性指标 即 H h 100% H 式中 H ——试样的原始高度,mm。
5
金属的塑性与变形抗力
5.1 金属塑性的概念及测定方法
一、 金属塑性的基本概念
所谓塑性,是指金属在外力作用下,能稳定地 产生永久变形而不破坏其完整性的能力。 金属塑性的大小,用金属在断裂前产生的最大变 形程度来表示。它表示塑性加工时金属塑性变形的限 度,叫“塑性极限”或“塑性指标”。
注意: 不能把塑性和柔软性混淆起来。
(5)经过热加工后的金属比铸态金属的塑性高
2 、 化学成分的影响
(1)铁、硫、锰
化学纯铁具有很高的塑性,工业纯铁在9000C左 右时,塑性突然下降。 硫是钢中有害杂质,易产生“红脆”现象
锰可提高钢的塑性,但锰钢对过热的敏感性强, 在加热过程中晶粒容易粗大,使钢的塑性降低。
各种硫化物和共晶体熔点
(2)碳
三、 变形速度的影响
在热变形时,通常随变形速度的提高变形抗力增大

根据加工硬化和恢复理论,认为塑性变形过程中在 变形金属内部有两个相反的过程——强化和软化过程 (恢复和再结晶)同时存在。由于软化过程以一定速 度在进行,变形速度愈大软化过程愈来不及进行(轧 制时的平均变形速度一般为l~103s),金属强化的愈 严重。因此随变形速度的提高变形抗力增大,
2 、 变形状态的影响
主变形图中压缩分量越多,对充分发挥金属的塑 性越有利。 两向压缩一向延伸的变形图最好,一向压缩一向 延伸次之,两向延伸一向压缩的主变形图最差。
四、其他因素对塑性的影响
1、不连续变形的影响 当热变形时,不连续变形可提高金属的塑性。 2、尺寸(体积)因素的影响
随着物体体积的增大塑性有所降低,但降低一定 程度后,体积再增加其影响减小。
如1200℃时
则1100℃时 1000℃时 800℃时 常温时
变形抗力为1.0
变形抗力为2.7 变形抗力为4.0 变形抗力为6.7 变形抗力为20
温度升高,金属变形抗力降低的原因有以下几个 方面:
(1)发生了回复与再结晶 , (2)临界剪应力降低 , (3)金属的组织结构发生变化, (4)随温度的升高,新的塑性变形机制参与作用
五、 提高塑性的途径
提高塑性的主要途径有以下几个方面: (1)控制金属的化学成份,改善组织结构。 (2)采用合适的变形温度-速度制度。 (3)选用三向压应力较强的变形过程。 (4)尽量造成均匀的变形过程。 (5)避免加热和加工时周围介质的不良影响。
5.3 变形抗力
一、 变形抗力概念
所谓变形抗力,是指金属地抗塑性变形的能力。
(3)晶粒体积相同时,晶粒细长者较等轴晶粒 结构的变形抗力为大; (4)晶粒尺寸不均匀时,又较均匀晶粒结构时为 大; (5)金属中的夹杂物对变形抗力也有影响,在一 般情况下,夹杂物会使变形抗力升高;钢中有第二相 时,变形抗力也会相应提高。
二、变形温度的影响
在加热及轧制过程中,温度对钢的变形抗力影响非 常大。随着钢的加热温度的升高,变形抗力降低。 钢的变形抗力和温度的关系如下:
h——试样的变形后高度,mm。
2)楔形轧制试验
一种是在平辊上将楔形试样轧成扁平带状。 轧后观察测量首先出现裂纹处的变形量(Δ h/H) 此变形量就表示轧成楔形。
根据厚度变化的楔形件最初出现裂纹处的变形 量Δ h/H来确定其塑性大小。
3 、塑性图
(1)定义
(5)镍
镍在钢中可使变形抗力稍有提高。但对25NiA、 30NiA和13Ni2A等钢来讲,其变形抗力与碳钢相差不 大。当含镍量较高时,例如Ni25~Ni28钢,其变形抗 力与碳钢相比有很大的差别。
2、 金属的变形抗力与其显微组织有密切关系
(1)一般情况时,晶粒越细小,变形抗力越大
(2)单相组织比多相组织的变形抗力要低;
(4)铬
对含铬量为0.7%~1.0%的铬钢来讲,影响其变形 抗力的主要不是铬,而是钢中的含碳量,这些钢的变 形抗力仅比具有相应含碳量的碳钢高5%~10%。对 高碳铬钢GCr6~GCrl5(含铬量0.45%~1.65%),其 变形抗力虽稍高于碳钢,但影响变形抗力的也主要是 碳。高铬钢1Cr13~4Cr13,Cr17,Cr23等在高速下变 形时,其变形抗力大为提高。特别对含碳量较高的铬 钢(如Crl2等)更是如此。
(2)锰
由于钢中含锰量的增多,可使钢成为中锰钢和高 锰钢。其中中锰结构钢(15Mn~50Mn)的变形抗力 稍高于具有相同含碳量的碳钢,而高锰钢(Mnl2) 有更高的变形抗力。
(3)硅
钢中含硅对塑性变形抗力有明显的影响。用硅使 钢合金化时,可使钢的变形抗力有较大的提高。例如 ,含硅量为1.5%~2.0%的结构钢(55Si2、60Si2)在 一般的热加工条件下,其变形抗力比中碳钢约高出20 %~25%,含硅量高达5%~6%以上时,热加工较为 困难。
(4)在双相和多相的钢与合金中,第二相组织成粗 大的夹杂物,常常分布在晶粒边界上。
二、 变形温度、速度对塑性的影响
1、变形温度的影响 一般是随着温度的升高,塑性增加。但并不是直 线上升的。
现以温度对碳钢塑性的影响的一般规律分析说明:
温度对碳素钢塑性的影响
用Ⅰ、Ⅱ、Ⅲ、Ⅳ表示塑性降低区,
1、2、3表示塑性增高区 。
1区——位于100~200℃之间,塑性增加是由于在 冷变形时原子动能增加的缘故(热振动)。 2区——位于700~800℃之间,由于有再结晶和扩 散过程发生,这两个过程对塑性都有好的作用。
3区——位于950~1250℃的范围内,在此区域中 没有相变,钢的组织是均匀一致的奥氏体。
热轧时应尽可能地使变形在3区温度范围内进 行,而冷加工的温度则应为1区。
Ⅰ区——钢的塑性很低,在零下200℃时塑性几乎 完全丧失,这大概是由于原子热运动能力极低所致。 Ⅱ区——位于200~400℃之间,此区域亦称为兰 脆区,即在钢材的断裂部分呈现兰色的氧化色,因此 称为“兰脆”。
Ⅲ区——位于800~950℃之间,称为热脆区。 Ⅳ区——接近于金属的熔化温度,此时晶粒迅速 长大,晶间强度逐渐削弱,继续加热有可能使金属产 生过热或过烧现象。
大致可分三个方面: 金属的自然性质 变形的温度、速度条件 变形的力学条件
一、 金属的自然性质对塑性的影响
1、组织状态的影响
(1)纯金属有最好的塑性
(2)单相组织(纯金属或固溶体)比多相组织塑性 好 (3)晶粒细化有利于提高金属的塑性
(4)化合物杂质呈球状分布对塑性较好;呈片状、 网状分布在晶界上时,使金属的塑性下降
变形速度对碳钢变形抗力的影响 压下率:-50%;-10%;-2%
四、 变形程度对变形抗力的影响
在冷状态下,由于金属的强化(加工硬化),变 形抗力随着变形程度的增大而显著提高。 在热状态下,变形程度对变形抗力的影响较小, 一般随变形程度增加,变形抗力稍有增加。
碳在碳钢中含碳量越高,塑性越差,热加工温 度范围越窄。当C<1.4%时,有很好的塑性。 (3)镍 镍能提高钢的强度和塑性,减慢钢在加热时晶粒 的长大。 (4)铬
铬能使钢的塑性和导热性降低。
(5)钨、钼、钒
都能使塑性降低。
(6)硅、铝
在奥氏体钢中,Si>0.5%时,对塑性不利, Si>2.0%时,钢的塑性降低, Si>4.5%时,在冷状态下 塑性很差。 铝对钢的塑性有害。
相关文档
最新文档