波谱分析之核磁共振谱基础
有机化合物波谱解析第三章 核磁共振(NMR)

• 目的要求 • 1. 掌握核的能级跃迁与电子屏蔽效应的关系以及
影响化学位移的主要因素,能根据化学位移值初步 推断氢或碳核的类型 • 2. 掌握磁不等同的氢或碳核、1H-NMR谱裂分情况、 偶合常数
• 3. 掌握低级偶合中相邻基团的结构特征,并能初 步识别高级偶合系统
• 4. 掌握常见13C-NMR谱的类型及其特征 • 5. 熟悉发生核磁共振的必要条件及其用于有机化
合物结构测定的基本原理
• 6. 了解脉冲傅立叶变换核磁共振测定方法的原理 • 7. 了解1H-NMR及13C-NMR的测定条件以及简化图谱
的方法,并能综合应用图谱提供的各种信息初步判 断化合物的正确结构
主要内容
• 1. 核磁共振原理 • 2. 核磁共振仪器 • 3. 氢核磁共振(1H-NMR) • 碳核磁共振(13C-NMR) •
然而,要给出尖锐的NMR峰,以提高分 辨率,需要驰豫时间长,互相矛盾,最佳 半衰期范围在0.1-1秒,相应的谱线宽度为 1cps。
4)核的进动与核的共振
质子在外加磁场作用下,产生怎样的动力方式呢? E=μHB0
ΔE0
E=-μHB0 HB00 陀螺在与重力作用方向吸偏差时,就产生摇头动力, 称为进动。核磁矩在静磁场环境中围绕B0以ω角频 率进动,称之为拉摩尔(Larmor)进动.
• BN = B0 - ·B0
• BN = B0·(1 - ) • 氢核外围电子云密度的大小,与其相邻
原子或原子团的亲电能力有关,与化学 键 子 高 ·B的 云 场0亦类密;小C型度H;有大3-共关,O,振。·氢吸B如0核收大CH外出,3-围现共Si电振在,子吸低氢云收场核密出。外度现围小在电,
B0
二、产生核磁共振的必要条件
第十二章 核磁共振波谱分析

4.3实验部分实验4-1 有机化合物的氢核磁共振谱一、实验目的1. 学习核磁共振波谱的基本原理及基本操作方法。
2. 学习1H核磁共振谱的解析方法。
3. 了解电负性元素对邻近氢质子化学位移的影响。
二、基本原理一张NMR波谱图,通常会提供化学位移值、耦合常数和裂分峰形以及各峰面积的积分线的信息,据此,我们可以推测有机化合物的结构。
化学位移值主要用于推测基团类型及所处化学环境。
化学位移值与核外电子云密度有关,凡影响电子云密度的因素都将影响磁核的化学位移,其中包括邻近基团的电负性、非球形对称电子云产生的磁各向异性效应、氢键以及溶剂效应等,这种影响有一定规律可循,测试条件一定时,化学位移值确定并重复出现,前人也已总结出了多种经验公式,用于不同基团化学位移值的预测。
耦合常数和裂分峰形主要用于确定基团之间的连接方式。
对于1H NMR,邻碳上的氢耦合,即相隔三个化学键的耦合最为重要,自旋裂分符合向心规则和n+1规则。
裂分峰的裂距表示磁核之间相互作用的程度,称作耦合常数J,单位为赫兹,是一个重要的结构参数,可从谱图中直接测量,但应注意从谱图上测得的裂距是以化学位移值表示的数据,将其乘以标准物质的共振,即仪器的频率,才能得到以赫兹为单位的耦合常数。
积分曲线的高度代表相应峰的面积,反映了各种共振信号的相对强度,因此与相应基团中磁核数目成正比。
通过对1H-NMR积分高度的计算,可以推测化合物中各种基团所含的氢原子数和总的氢原子数。
核磁共振谱图的解析就是综合利用上述三种信息推测有机物的结构。
用1H-NMR波谱图上的化学位移值(δ或τ),可以区别烃类不同化学环境中的氢质子,如芳香环上的氢质子、与不饱和碳原子直接相连的氢质子、与芳香环直接相连-CH2或-CH3上氢质子、与不饱和碳原子相连的-CH2或-CH3上的氢质子、正构烷烃,支链烃和环烷烃上的氢质子。
化学位移的产生是由于电子云的屏蔽作用,因此,凡能影响电子云密度的因素,均会影响化学位移值。
核磁共振波谱分析

核磁共振波谱分析1.基本原理核磁共振是在电磁波的作用下,原子核在外磁场中的磁能级之间的共振跃迁现象。
因此,要产生核磁共振,首先原子核必须具有磁性。
自旋量子数I=0的原子核没有磁性,自旋量子数I≠0的原子核具有磁性。
I=1/2:1H,13C,15N,19F,31P,77Se,113Cd,119Sn,195Pt.I=3/2:7Li,9Be,11B,23Na,33S,35Cl,37Cl,39K,63Cu,79Br此外还有I=5/2,7/2,9/2,1,2,3等。
I=1/2的原子核,电荷均匀分布在原子核表面,核磁共振的谱线窄,最适合核磁共振检测。
1H,13C原子核是最为常见,其次是15N,19F,31P核。
除了原子核具有磁性外,要产生核磁共振,还必须外加一静磁场和一交变磁场。
在磁场中,通电线圈产生磁距,与外磁场之间的相互作用使线圈受到力矩的作用而发生偏转。
同样在磁场中,自旋核的赤道平面也受到力矩作用而发生偏转,其结果是核磁距围绕磁场方向转动,这就是拉莫尔进动。
其进动频率与外加磁场成正比,即:v=(ϒ/2π)*H0。
V—进动频率;H0—外磁场强度;ϒ—旋磁比。
在相同的外磁场强度作用下,不同的原子核以不同的频率进动。
如果在垂直于外磁场方向加一交变磁场H1,其频率v1等于原子核的进动频率v。
此时,就产生共振吸收现象。
即使原子核在外磁场中的磁能级之间产生共振跃迁现象,也即核磁共振。
2.核磁共振波普在化学中的应用2.1 基本原则从核磁共振波谱得到的信息主要有化学位移、偶合常数、峰面积、弛豫时间等。
化学位移在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。
化学位移的标准:相对标准TMS(四甲基硅烷)位移常数δ=0。
与裸露的氢核相比,TMS的化学位移最大,但规定TMSTMS=0,其他种类氢核的位移为负值,负号不加。
采用此标准的原因:(1)12个氢处于完全相同的化学环境,只产生一个尖峰;(2)屏蔽强烈,位移最大;只在图谱中远离其他大多数待研究峰的高磁场区有一个尖峰;(3)易溶于有机溶剂,沸点低,易回收。
有机化学第11章 波谱(核磁)

一般有机物中质子的δ值在0 ~ 10之间(见P462表11-8)。
4、影响化学位移的因素 1)δ伯H < δ仲H < δ叔H; 2) δ值随邻近原子电负性的增加而增加,随电负性大的 原子数目的增多而增加;
E
h
2
H0
E h
2
H0
实现核磁共 振的条件
CH3CH2OH
二、化学位移 1、定义
CH3CH2OH
由于化学环境的不同而引起的NMR吸收峰位置的不同,
称为化学位移。
2、化学位移的产生原因——屏蔽效应
屏蔽效应是有机化合物分子中的氢核与独立质子相比较, 由于分子中的电子对氢核有屏蔽作用,其核磁共振信号 出现在高磁场。
1HNMR谱图s(3H)为CH3
q(2H)为CH2
O CH3 CH2 C CH3
由于屏蔽效应,外加磁场的强度要略为增加,才能产生 核磁共振信号。显然,核周围的电子云密度越大,屏蔽 效应亦愈大,共振信号将移向高磁场区。
3、化学位移的表示方法——δ值 由于屏蔽效应所造成的磁场强度的改变数量很小,通常
难以准确地测出其绝对值,因此需要一个参考标准来对比。 常用的标准物质是四甲基硅烷,(CH3)4Si,简写为TMS, 它只有一个峰,而且一般质子的吸收峰都出现在它的左边
第十一章 有机波谱分析(2)
11.4 核磁共振谱(Nuclear Magnetic Resonance 简称 NMR)
一、基本原理
核磁共振是由原子核的自旋运动引起的。目前应用广
泛的是氢原子核(质子)的核磁共振谱,称为1HNMR。
波谱分析之H-NMR核磁篇

γ不同,共振频率也不同。如 B0=2.3TG(1TG=104高斯)时,1H 共振频率为 100MHZ,
13C 为 25 MHZ, 31 P 为 40.5 MHZ。
4.1.3 饱和与弛豫:
1H 核有两种能级状态,由于两者之间能量差很小,低能级核的总数仅 占很少的多数。则低能级与高能级 1H 核数目之比为:
5. 电子计算机(工作站):用于控制测试过程,作数据处理,如累加信号 等。
6. 其他:核磁共振仪还可以有其他一些装置,用于不同的测试目的,扩 大仪器的应用:(1)双照射去偶装置,用于做各种双照射测定。(2)可变温 度控制装置。(3)异核射频振荡器,用于测定 13C、15N 等核。
4.2.2 脉冲付里叶变换核磁共振仪(PFT-NMR 仪) 一般连续波核磁共振仪是在核进动的频率范围内用扫频或扫场的方式来
奇
奇或偶 1/2
自旋球体
有
1H 、 13C 、 15 N 、
19 F 、 29 Si 、 31 P
奇
奇或偶 3/2、5/2、 自旋椭球体 有 11B 、 17O 、 33S 、
7/2Λ
35Cl 、 79 Br 、 127 I
偶
奇
1、2、3Λ 自旋椭球体 有
2 H 、 10 B 、 14 N 等
61
自旋量子数是 1/2 的核,如 1H 、 13C 、 15 N 、 19 F 、 29 Si 、 31 P 等是 NMR 测试的主要对象。若将原子核置于外加磁场中,则核可以有不同的自旋取向。
第4章 1H 核磁共振( 1H -NMR) 核磁共振 Nuclear Magnetic Resonance Spectroscopy,简称 NMR。
1H 核磁共振( 1H -NMR)在化学中的应用己有五十年了。NMR 的理论基础是量 子光学和核磁感应理论。
核磁共振波谱法基本原理

核磁共振波谱法基本原理核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy)是一种利用核磁共振现象进行分析的方法。
核磁共振是基于原子核的特定性质,在外加磁场作用下,原子核能够吸收具有特定频率的电磁波并发生共振现象的现象。
该方法通过检测不同原子核的共振信号来获取样品的结构和组成信息。
核磁共振波谱法基于原子核中的自旋(Spin)性质。
自旋是描述原子核内部的一种性质,可以与外加磁场相互作用。
在没有外加磁场作用下,原子核的自旋朝向是随机的。
然而,当样品置于强磁场中时,原子核的自旋会排列在不同能级上。
这些能级之间存在能量差,当这些能级之间的能量差等于外加电磁波的能量时,原子核就会发生共振吸收。
核磁共振波谱仪的基本构造包括磁场系统、射频系统、探测系统和计算机系统。
磁场系统用来产生强磁场,常见强磁场有永磁磁体、超导磁体等。
射频系统则用来产生特定频率的电磁波,以激发样品中的原子核共振吸收。
探测系统用来接收样品发出的信号,并将其转化为电信号,进一步处理和分析。
计算机系统则用来进行数据处理和结果分析。
在进行核磁共振波谱实验时,首先将样品放置于磁场中,样品中的原子核会受到磁场的作用,并分裂为不同能级。
接下来,通过调节射频系统产生特定频率的电磁波,激发样品中的原子核发生共振吸收。
这时,探测系统会接收样品发出的共振信号,并将其转化为电信号。
最后,计算机系统会对接收到的信号进行数学处理,生成核磁共振波谱图。
核磁共振波谱图是核磁共振波谱法的主要结果,可以提供关于样品的结构和组成的信息。
波谱图中的共振信号对应于不同原子核的吸收峰,其化学位移(Chemical Shift)可以帮助确定样品中的不同官能团或基团。
同时,共振信号的相对积分面积可以提供定量分析所需的信息。
总体而言,核磁共振波谱法通过利用原子核在磁场中的共振吸收现象,能够提供丰富的结构和组成信息。
它在有机化学、无机化学、生物化学等领域有着广泛的应用,成为了一种重要的分析手段。
核磁共振波谱法讲义课件

环境科学中的应用
总结词
核磁共振波谱法在环境科学中也有重要的应 用。
详细描述
核磁共振波谱法可用于研究环境中的污染物 和天然有机物。通过测量水中、土壤中、大 气中有机污染物的核磁共振信号,核磁共振 波谱法能够提供关于污染物的种类、浓度和 分布的信息。此外,核磁共振波谱法还可用 于研究天然有机物(如腐殖质)的组成和降
多维核磁共振技术
多维核磁共振技术是一种通 过使用多个频率和磁场分量 来解析核磁共振信号的技术
。
通过多维核磁共振技术,可 以获得更丰富的化学位移信 息和耦合常数信息,从而更
好地解析分子结构。
多维核磁共振技术被广泛应 用于有机化学、材料科学等 领域,对于研究有机分子结 构、材料组成等具有重要意 义。
06 核磁共振波谱法实验操作演示
药物代谢与动力学研究
总结词
核磁共振波谱法在药物代谢与动力学研 究中具有广泛的应用。
VS
详细描述
核磁共振波谱法可用于研究药物在体内的 代谢过程和动力学行为,进而揭示药物的 作用机制和药效。通过测量药物分子在不 同时间点的代谢产物和浓度,核磁共振波 谱法能够提供关于药物吸收、分布、代谢 和排泄的重要信息,有助于新药开发和优 化治疗方案。
耦合常数
测量相邻原子核间自旋作用的强度和方向,揭示分子结构中的空间构型和相互作用。
04 核磁共振波谱法的实验技术应用
CHAPTER
有机化合物的结构鉴定
要点一
总结词
核磁共振波谱法是一种常用的实验技术,可用于有机化合 物的结构鉴定。
要点二
详细描述
核磁共振波谱法是一种基于核自旋磁矩的实验技术,通过 测量原子核在磁场中的共振频率来确定分子的结构。在有 机化合物的结构鉴定中,核磁共振波谱法可用于确定分子 中各原子的连接方式和化学环境,进而推断出分子的三维 结构。常见的核磁共振波谱法包括一维和二维核磁共振谱 ,其中二维核磁共振谱能够提供更丰富的结构信息。
核磁共振波谱分析法

2.为什么用TMS作为基准?
(1) 12个氢处于完全相同的化学环境,只产生一个尖峰; (2)屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; (3)化学惰性;易溶于有机溶剂;沸点低,易回收。
位移的表示方法
与裸露的氢核相比, TMS的化学位移最大,但规
定 TMS=0,其他种类氢核的
δ 7.3芳环上氢,单峰烷基单取代
O C CH3
正确结构:
ab
Oc
CH2CH2 O C CH3
δ3.0 δ 4.30
δ2.1
谱图解析与结构确定(2)
C7H16O3,推断其结构
9
δ 5.30 1
δ 3.38 δ 1.37 6
结构确定(2)
C7H16O3, u=1+7+1/2(-16)=0 a. δ3.38和δ 1.37 四重峰和三重峰
偶数 奇数
1,2,3….
奇数 奇数或偶数 1/2;3/2;5/2….
其中I=1/2的核是研究与测定的主要对象
由于原子核是带正电荷的粒子,因此在自旋时会产生 磁矩,角动量和核磁矩都是矢量,其方向平行。
若原子核存在自旋,产生核磁矩:
自旋角动量: p h I (I 1)
2
I:自旋量子数; h:普朗克常数;
h 0 ΔE
2
H0
讨 论:
共振条件: 0 = H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率变。 (2)不同原子核,磁旋比 不同,产生共振的条件不同,需 要的磁场强度H0和射频频率不同。 (3) 固定H0 ,改变(扫频) ,不同原子核在不同频率处 发生共振(图)。也可固定0 ,改变H0 (扫场)。扫场方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
structural elucidation by nmr
第一章 核磁共振的基础知识
概述
• 核磁共振的方法与技术作为分析物质的手段 ,由于其可
深入物质内部而不破坏样品 ,并具有迅速、准确、分辨率高等 优点而得以迅速发展和广泛应用 ,已经从物理学渗透到化学、 生物、地质、医疗以及材料等学科 ,在科研和生产中发挥了巨 大作用 。
1939年I.I.Rabi首先让氢分子通过不均匀磁 场,然后再通过一个均匀磁场,同时在均匀磁 场设置一个射频场,发现氢分子能吸收特定的 频率射频而发生偏转。这是首次发现核磁共振 现象。Rabi的这一实验获得1944年若贝尔物 理奖。
1949年W.D.Knight发现了金属铜与 Cu2Cl2 63Cu的NMR的共振频率不同,确立 了原子核与核处的化学环境有关,从而揭示 了NMR信号与物质结构的关系。
的杰出贡献获得若贝尔化学奖
12位因对核磁共振的杰出贡献而获得诺 贝尔奖科学家
• 1944年 • 1952年 • 1952年 • 1955年 • 1955年 • 1964年 • 1966年 • 1977年 • 1981年 • 1983年 • 1989年 • 1992年
I.Rabi F.Block E.M.Purcell mb P.Kusch C.H.Townes A.Kastler J.H.Van Vleck N.Bloembergen H.Taube N.F.Ramsey R.R.Ernst
1953年A.W.Overhauser发现了NOE效应。
1957年uterbur首次利用连续波观测13C谱。
1965年J.W.cooley提出了傅立叶变换原理,使脉 冲FTNMR方法在实际中得以实现。
1971年比利时科学家J.Jeener提出了二维核磁的 原理和实验方法。
1971年R.Damadian首次提出核磁成像原理
1975年R.R.Ernst提出了二维13C分解谱, 获得了第一张二维谱。
1976年R.R.Ernst确立了二维谱的理论基础。 和同核化学位移相关谱。它是二维谱和多维 谱的里程碑。 (J.Chem.Phys提出HMQC原理。 1979 J.Jeener提出化学交换相关谱。 1980年S.Mucura提出NOESY技术 1981年A.Bax将INADEQUATE技术应用推
Related Nobel Prize
1952年诺贝尔物理学奖:布洛赫(Felix Bloch ) & 珀赛尔 (Edward
Purcell)因发展了核磁精密测量的新方法及由此所作的发现——核磁共振。
布洛赫(Felix Bloch )
珀赛尔 (Edward Purcell)
1991年诺贝尔化学奖:恩斯特R.R.Ernst(1933-) 瑞士物理化学家
他的主要成就在于他在发展高分辨核磁共振 波谱学方面的杰出贡献。这些贡献包括:
一.脉冲傅利叶变换核磁共振谱 二.二维核磁共振谱 三.核磁共振成像
2002诺贝尔化学奖: 瑞士科学家库尔特·. 维特里希“for his development of nuclear
magnetic resonance spectroscopy for determining the threedimensional structure of biological macromolecules in solution".
1949年H.C.Torrey首次将脉冲技术应用到 NMR实验,并发现了水于甘油质子衰减振 荡信号(FID).
1951年W.G.Proctor等发现了NaSbF6 NMR有5条谱线组成。这是首次观察到的自旋
偶合现象。
1952年E.M.Purcell and F.Bloch因为发现一 般状态的核磁共振现象,获得若贝尔物理奖。
.
•核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大 学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得1952年 诺贝尔物理学奖。50多年来,核磁共振已形成为一门有完整理 论的新学科。
核磁共振发展的历史
1921年o.Stern发现了原子通过不均匀磁场 会发生偏转。证实了电子磁距在磁场中有不同 的取向。
他将获得2002年诺贝尔化学奖另一半的奖金。
If one knows all the measurements of a house one can draw a three-dimensional picture of that house. In the same way, by measuring a vast number of short distances in a protein, it is possible to create a threedimensional picture of that protein.
有机结构分析
徐效华 南开大学元素有机化学研究所
要求: 熟练掌握NMR,MS,IR,UV波谱的基本原理。 熟练掌握有机化合物的四大波谱的结构表征和归属。 熟练掌握应用四大波谱鉴定未知有机化合物的结构。 掌握复杂化合物的结构鉴定。
主要参考书:
1。林永成 有机化合物的结构鉴定与有机光谱学 科学出版社 1999 2.孔垂华,徐效华 有机化合物的分离与结构鉴定 2003, 化学化工出版社
广到二维谱。
1981 A.Bax 提出远程COSY技术。 1982年DEPT技术得到应用。
1982年RR.Ernst提出接力相关谱和多量子滤波相关谱(MQFCOSY).
1982年RR.Ernst提出TOCSY谱。 1984年H.Kessler提出了COLOC技术。 1985年A.BaX提出了HOHAHA技术。 1986年A.Bax提出了HMBC技术。 1987年C.Griesinger和R.R.Ernst提出三维相关谱技术。 1991年E.R.P.Zuiderweg提出四维NMR. 1992年瑞士科学家RR.Ernst因其在傅立叶变换和二维核磁方面