七年级秋季班第1讲:有理数-教师版
2024年秋季新湘教版七年级上册数学教学课件 第1章 有理数第1章 小结与复习

针对训练
1. 下列语句中,含有相反意义的两个量是( C ) A. 盈利 1 千元和收入 2 千元 B. 上升 8 米和后退 8 米 C. 存入 1 千元和取出 2 千元 D. 超出 2 cm 和上涨 2 cm
2. 上升 9 记作 +9,2 判断:①不带“-”号的数都是正数 ( × )
减法法则: 减去一个数,等于加上这个数的相反数.
3. 有理数的乘法 (1) 乘法法则 异号两数相乘得负数,并且把绝对值相乘. 任何数与0相乘,仍得0. 同号两数相乘得正数,并且把绝对值相乘. (2) 几个不等于0的数相乘,当负因数有奇数个时,
积为负;当负因数有偶数个时,积为正.
乘法交换律: ab ba.
6. 倒数 如果两个数的乘积等于 1,我们把其中一个数叫做 另一个数的倒数,也称它们互为倒数.0 没有倒数. 7. 有理数大小的比较
(1) 正数大于负数,0 大于负数; 两个负数,绝对值大的反而小.
(2) 在以向右为正方向的数轴上,右边的点表示的数 比左边的点表示的数大.
三、有理数的运算 1. 有理数的加法
(2) n 为原数的整数位数减去 1.
考点一 正、负数的意义
注意带单位
例1 如果 +4 米表示向东走 4 米,那么向西走 2 米记作
-2 米 . 【解析】根据题意,可知向东记为正,向西 记为负,故向西走 2 米记做 - 2 米.
方法总结
根据相反意义合理使用正、负数对实际问题进行表示. 一般情况下,把向北(东)、上升、增加、收入等规定为 正,把它们的相反意义规定为负.
介于正温度与负温度之间,故⑤错误.
方法总结
0 既不是正数也不是负数,0 的相反数是它本身. 0 不仅能表示没有,而且表示正、负之间的分界值.
北师大版-数学-七年级上册-北师大版七年级上册《有理数》精品说课稿

北师大版-数学-七年级上册-北师大版七年级上册《有理数》精品说课稿北师大版七年级上册有理数精品说课稿各位评委老师,上午好,今天我说课的题目是《有理数》,本节课是北师大出版的,七年级上册第二章第1节。
教学设计一、说教材:在此之前,学生已经学习了数和数的运算,对本节的学习有着铺垫作用。
本节内容是有理数的一部分,是对小学所学数的范围的补充,特别是首次提出了负数的概念,是以后学习绝对值、数轴、相反数及有理数运算的基础。
二、教学目标根据课程标准的要求,教材的结构与内容分析,学生现有的知识水平和心理结构特点,制定如下教学目标:1、使学生了解负数是如何产生的,理解正负数及零的含义。
2、知道它们的表示方法,能正确对正负数做一些简单的应用,对生活中的一些正负数现象做一些了解。
3、通过本节的教学,培养学生的想象力,理论联系实践的能力,分析解决问题的能力。
4、对学生进行爱国主义教育,培养学生良好的学习习惯。
三、教材分析与处理、学情分析:本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。
活泼好动,思维敏捷,表现欲强,但思考问题不全面等。
采用探索引导式的学习方式。
四、重点、难点:重点:正数、负数的意义及如何区别意义相反的量。
难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。
五、教学设计及依据:借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。
依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。
北师大版数学七年级上册2.1《有理数》说课稿

北师大版数学七年级上册2.1《有理数》说课稿一. 教材分析《有理数》是北师大版数学七年级上册第二章的第一节内容。
本节内容主要介绍有理数的概念、分类和运算。
有理数是中学数学中的基础概念,对于学生来说,理解和掌握有理数的概念和运算是十分重要的。
教材从实际生活中的正负数入手,引导学生认识和理解有理数的概念,接着通过举例和讨论,让学生掌握有理数的分类,最后介绍有理数的运算方法。
二. 学情分析七年级的学生已经初步接触过正负数,对正负数有一定的认识。
但是,对于有理数的概念、分类和运算,学生可能还比较陌生。
因此,在教学过程中,我需要引导学生从实际生活中感知正负数,从而引出有理数的概念,并通过具体的例子和练习,让学生理解和掌握有理数的分类和运算。
三. 说教学目标1.知识与技能:使学生理解和掌握有理数的概念、分类和运算方法。
2.过程与方法:通过观察、思考、讨论等过程,培养学生提出问题、分析问题、解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学与生活的密切联系。
四. 说教学重难点1.重点:有理数的概念、分类和运算方法。
2.难点:有理数的运算方法,特别是异号有理数的加减法。
五. 说教学方法与手段1.教学方法:采用启发式教学法、讨论法、案例分析法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过展示生活中的一些正负数例子,如温度、高度、收入等,引导学生认识和理解正负数,从而引出有理数的概念。
2.新课导入:介绍有理数的概念,引导学生掌握有理数的定义和特点。
3.案例分析:通过具体的例子,让学生理解和掌握有理数的分类。
4.教学互动:让学生分组讨论,探索有理数的运算方法。
5.知识拓展:介绍有理数运算的拓展知识,如运算律等。
6.课堂练习:布置一些练习题,让学生巩固所学知识。
7.总结:对本节课的内容进行总结,强调重点和难点。
8.布置作业:布置一些作业,让学生进一步巩固所学知识。
(2024秋新版本)北师大版七年级数学上册 《认识有理数》PPT课件

(2)该厂实际共生产多少辆自行车?平均每天生产多少辆自
行车?
.
课堂检测
能 力 提 升 题
解:(1)以每日生产400辆自行车为标准,多出的数记作正数,
不足的数记作负数,则有
+5,-7, +10,+9,-13,+6,-3;
(2) 405+393+410+409+387+406+397 =2807(辆),
-2
-2
-|-2|=________,-|+2|=________,
|0|=________.
0
思考: 一个数的绝对值与这个数有什么关系?
(1)正数的绝对值是它本身;
(2)负数的绝对值是它的相反数;
(3) 0的绝对值是0.
探究新知
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
a
(1)当是正数时,|a|=____;
A.物体又向右移动了2米 B.物体又向右移动了4米
C.物体又向左移动了2米 D.物体又向左移动了4米
方法点拨:表示具有相反意义的量时,首先找到具有相反意
义的同类量,然后将其中一个量用正数表示,与其意义相反
的量就用负数表示.需注意的是:用正数、负数表示相反意义
的量时,一定要说明数量和单位.
巩固练习
变式训练
-8.44,22,+
巩固练习
变式训练
1
1
在0, 2, -7,−5 ,3.14,−3 ,-3, +0.75中, 负数共有
3
7
( D )
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 3
2024年秋季学期新华师大版7年级上册数学课件 第1章 有理数 1.7 有理数的减法

根据有理数的加法运算,有(-5)+(-3)=-8,所以(-8)-(-3)=-5.
试一试
计算下列各式: 15 - 6 = , 15+(-6)= , 19 - 3 = , 19+(-3)= , 12 - 0 = , 12 + 0 = , 8-(-3)= , 8 + 3 = , 10-(-3)= , 10 + 3 = .
B
3.沂蒙山革命根据地素有“两站圣地,红色沂蒙”之称,其中的蒙山是世界地质公园,世界著名养生长寿旅游胜地.小明去蒙山游玩,测得山脚处的气温为2℃,龟蒙顶的气温为-9℃,则两地的温差是( ) A.-7 ℃ B.-11 ℃ C.7 ℃ D.11 ℃
D
4.若|m|=5,|n|=3,且m+n<0,则m-n的值是( ) A.-8或-2 B.±8或±2 C.-8或2 D.8或2
A
解:(1) (-4)-(-5)= (-4)+5=1.
(2) 0-9 = 0+(-9) =-9.
(3) 7.2-(-4.8) = 7.2+4.8 = 12.
6.近年来,随着我国冷饮市场、冷鲜肉市场、水果蔬菜市场的不断扩大,人们对这些易腐食品的消费量快速增长,进而促进了冷库容量的增长.某零售性冷库的温度是-20℃,按照存储要求下降-8℃后,又下降了6℃,那么两次变化后该冷库的温度是多少?
例2 全班学生分为五个组进行游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分.游戏结束时,各组的分数如下:
(1)第一名超出第二名多少分?(2)第一名超出第五名多少分?
解:由上表可以看出,第一名得了350分,第二名得了150分, 第五名得了-400分. (1)350-150=200(分);(2)350-(-400)=750(分) . 因此,第一名超出第二名200分,第一名超出第五名750分.
北师大版七年级数学上册《有理数》课件(共29张PPT)

199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。
2024秋七年级数学上册第一章有理数1.2有理数3相反数说课稿(新版)新人教版

教学实施过程
1.课前自主探索
教师活动:
-发布预习任务:通过学校的在线学习平台,发布关于有理数及其相反数的预习资料,包括PPT、概念视频和预习指导文档,明确预习目标和要求。
-设计预习问题:围绕“有理数的相反数”课题,设计如“什么是相反数?”“相反数在数轴上如何表示?”等问题,启发学生思考。
学习者分析
1.学生已经掌握了整数和分数的基本概念,能够进行简单的加减运算,了解数轴的基本使用方法。在学习有理数之前,学生已经具备了正负数的初步认识,能够区分正数和负数,并理解它们在数轴上的表示。
2.学生对数学的学习兴趣参差不齐,部分学生对数学有较高的兴趣和自信,能够主动探索数学问题;而另一部分学生可能对数学感到畏惧,学习能力和自信较低。学生的认知风格多样,有的擅长逻辑推理,有的擅长直观感受,有的则需要通过实际操作来加深理解。
-提问与讨论:对不懂的问题提出疑问,参与小组讨论,分享自己的想法。
教学方法/手段/资源:
-讲授法:通过讲解,确保学生掌握相反数的基本概念。
-实践活动法:通过数轴操作,增强学生对相反数的直观理解。
-合作学习法:通过小组合作,提高学生的沟通和协作能力。
作用与目的:
-帮助学生深入理解相反数的定义和性质,掌握相反数的运算。
在改进措施方面,我会根据反思结果制定相应的计划。如果发现学生对有理数及其相反数的理解不够深入,我会在未来的教学中增加更多实例和练习,以帮助他们更好地掌握这些概念。如果发现学生的学习兴趣不够高,我会尝试引入更多有趣的教学资源,如视频和游戏,以激发他们的学习兴趣。
教学方法/手段/资源:
-自主学习法:鼓励学生自主探索新知识,培养自主学习习惯。
JJ冀教版 初一七年级数学 上册第一学期秋季 公开课教学课件 第一章 有理数 1.8 第2课时 有理数乘法的运算律

第一章 有理数
1.8 有理数的乘法
第2课时 有理数乘法的运算律
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解有理数乘法的运算律,能利用有理数乘法的运算 律进行有理数乘法运算;(重点、难点) 2.掌握多个有理数相乘的符号法则.(难点)
导入新课
复习引入
1.有理数乘法法则是什么? 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,仍得0.
=6 1 0.03 =4.97;
(4() 5)8(1 4) (1.25) 5
=-[(5 9) (81.25)] 5
910
90.
课堂小结
有 理 数 乘 法 的 运 算 律
乘法的 运算律
乘法的交换律 ___a_b_=_b_a_. ______
乘法的结合律 _(__a_b_)c_=_a_(_b_c_)._______
典例精析
例1 计算
运用交换律
(1)(0.25) ( 1 )(-4); (2)(8)(6)(0.5) 1.
6
3
解:(1)(0.25) ( 1 )(-4)
6
=(-0.25)(-4) ( 1 ) 6
=[(-0.25)(-4)] ( 1 ) 6
=1 ( 1 ) 6
几个数相乘,如果有一个因数为0,_积__就__为__0_._
典例精析
例3 计算
(1)(8) 4 (1) (3); (2() 1)(10)( 3.2)(5). 5
解:(1 )( 8 ) 4 ( 1 ) ( 3 ) (8 4 1 3 ) 9 6 ;
= 1. 6
运用结合律
(2)(8) (6) (0.5) 1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数是初中数学六年级下学期第一章第一节的内容.重点是有理数的相关概念辨析,利用对数轴的理解对有理数进行大小比较,绝对值的化简等.难点是绝对值的化简及运算.本讲会在讲解有理数的意义和数轴的知识之后,学习一些绝对值的基础知识,并会在下一讲中,着重讲解绝对值相关的化简及运算.1、正数和负数在现实生活中,用正数和负数表示具有相反意义的量.2、有理数的概念整数和分数统称为有理数.3、有理数的分类按意义分:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数;按符号分:⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数.注意:(1)零既不是正数,也不是负数,零是正数和负数的分界;(2)零和正数统称为非负数;零和负数统称为非正数.有理数内容分析知识结构模块一:有理数的意义知识精讲例题解析【例1】下列说法错误的是()A.盈利2000元和亏损100元是相反意义的量B.向西走5千米和向北走5千米是相反意义的量C.增加20人和减少10人是相反意义的量D.支出600元和收入800元是相反意义的量【难度】★【答案】B【解析】B答案错误,向西走5千米和向东走5千米是相反意义的量.【总结】考察正数、负数表示的意义.【例2】如果5-米表示向南走5米,那么下列各数分别表示什么意义?(1)8+米;(2)3-米;(3)0米;(4)6米.【难度】★【答案】(1)向北走8米;(2)向南走3米;(3)停留在原地;(4)向北走6米.【解析】向南为负数,则向北为正数.【总结】考察正数、负数表示的意义.【例3】下列说法错误的是()A.正整数、0、负整数统称整数B.0既不是正数,也不是负数C.有理数包括正数和负数D.有理数包括整数和分数【难度】★【答案】C【解析】C答案错误,有理数包括正数和负数和0.【总结】考察有理数的分类.【例4】判断题:(1)小数都是有理数;()(2)大于负数的数是正数;()(3)有理数中不是正数就是负数.()【难度】★【答案】(1)×;(2)×;(3)×【解析】(1)小数分为有限小数和无限小数,而无限小数分为无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为有理数,无限不循环小数为无理数;(2)大于负数的数也可以是0;(3)有理数分为正数、负数、0.【总结】考察有理数的分类,注意0既不属于正数也不属于负数.【例5】若人口增加2万人,记作+2万人,那么人口减少1万人,记作______.【难度】★【答案】-1万人.【解析】增加为+,则减少为-.【总结】考察正负数的意义.【例6】若盈利100元记作+100元,则50-元表示______.【难度】★【答案】亏损50元【解析】盈利为+,则亏损为-.【总结】考察正负数的意义.【例7】把下列各数填入它所属的圈内:11,18-,5-,215,158-,0.3, 5.67-,π,0,5.5555,20-,0.3,567.【难度】★★【答案】正整数:11,567;负数:18-,5-,158-, 5.67-,20-;正分数:215,0.3,5.5555,0.3;非负数:11,215,0.3,π,0,5.5555,0.3,567;有理数:11,18-,5-,215,158-,0.3, 5.67-,0,5.5555,20-,0.3,567;非负有理数:11,215,0.3,0,5.5555,0.3,567.【解析】有理数分为整数和分数,注意无限不循环小数属于无理数.【总结】考察实数的分类.【例8】六(2)班在一次期中测验中,数学平均分为87分,若把高于平均分的部分记为正数,小智得93分,应记为多少?小方被记为9-分,他实际得分是多少?【难度】★★【答案】+6;78.【解析】小智得93分,记为93-87=6;小方记作-9分,则他实际得分为87-9=78分.【总结】考察正负数的意义及简单运算.【例9】a-表示的数一定是()A.负数B.正数C.正数或负数D.正数或负数或0【难度】★★★【答案】D【解析】因为a有可能为正数、负数、0,则a-可能是正数或负数或0.【总结】考察正负数的意义.【例10】按照一定的规律填数:(1)1,2-,4,8-,16,______,______,______;(2)1,2-,3,4,5-,6,7,8-,9,______,______,…,______(第2017个数).【难度】★★★【答案】(1)-32,64,-128;(2)10,-11,2017.【解析】(1)可找出规律:后面的数字是前面的数字的2倍,第奇数个数字为正数,第偶数个数字为负数.则可得答案.(2)可找出规律:除了1之外,后面的符号规律是一负两正.()67232016312017=÷=÷-则第2017个数正数,为2017.【总结】考察数字找规律.ABCDE0 1 21、 数轴规定了原点、正方向和单位长度的直线叫做数轴. 任何一个有理数都可以用数轴上的一个点表示. 在数轴上表示的数,右边的数总比左边的数大. 2、 相反数只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.互为相反数的两个数的和为零. 零的相反数是零.在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.【例11】 填空:(1)数轴的三要素是______、______、______;(2)在数轴上表示的两个数,______边的数总比______边的数小;(3)正数都_____0,负数都______0,正数______负数.(填“>”、“ < ”或“=”) 【难度】★【答案】(1)原点、正方向、单位长度;(2)左,右;(3)>;< ;>. 【解析】考察数轴的基本要素.【例12】 在下图所示的数轴上,写出A 、B 、C 、D 、E 各点分别表示什么数. 【难度】★【答案】10.50 1.5 1.25A B C D E ==-===-,,,,. 【解析】考察数轴上数字的表示方法.例题解析模块二:数轴知识精讲【例13】下列说法正确的是()A.任何有理数一定都有相反数,但不一定都有倒数B.任何有理数一定都有倒数,但不一定都有相反数C.任何有理数一定既有相反数,也有倒数D.任何一个正有理数的倒数都比1小【难度】★【答案】A【解析】任何有理数一定有相反数,但是除了0之外都有倒数.D答案错误,如0.5的倒数为2,比1大.【总结】考察相反数和倒数的意义.【例14】判断题:(1)数轴上原点及原点右边的点表示的是非负数.()(2)一个数的相反数的相反数是它本身.()(3)正数和负数互为相反数.()【难度】★【答案】(1)√;(2)√;(3)×【解析】0和正数统称为非负数;1(正数)和-2(负数)不是互为相反数.【总结】考察相反数的意义.【例15】7的相反数是______, 3.2-是______的相反数.【难度】★【答案】-7;3.2【解析】正数的相反数是在数字前面加负号,负数的相反数是去掉数字前面的负号.【总结】考察相反数的表示方法.【例16】先画出数轴,然后在数轴上画出表示3-、32-、0、2及它们的相反数的点,并将它们从小到大排列起来.【难度】★★【答案】A、B、C、D、E、F、G所代表的数字分别为3-、32-、0、2、3、32、-2它们从小到大排列为3-<-2<32-<0<32<2<3.【解析】考察数轴上有理数的表示方法.a b O【例17】 数轴上到原点距离为2个单位的点表示的数有______,是______; 数轴上到表示1的点的距离为2个单位的点表示的数为______. 【难度】★★【答案】2个;2和-2;3和-1 【解析】可利用画数轴得到答案.【总结】考察对绝对值几何意义的理解及运用,注意两解的讨论.【例18】 到原点距离不大于1的数有( ) A .2个 B .3个 C .4个 D .无数个【难度】★★ 【答案】D【解析】数轴上-1到1之间的实数有无数个. 【总结】考察实数比较大小.【例19】 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于多少?【难度】★★★ 【答案】12.【解析】设A 点表示的有理数为x ,B 点表示的有理数为y .因为A 点与原点O 的距离为3,则3=x ,∴3=x 或-3 又因为A 、B 两点之间的距离为1,则1=-x y ,即1±=-x y ,因为3=x 或-3,所以B 点表示的有理数有四种情况:4-=y 或-2或2或4. 所有满足条件的点B 与原点O 的距离之和为124224=+-++- 【总结】考察数轴上有理数的表示和有理数的加法.【例20】 a 、b 在数轴上的位置如图所示,M a b =+,N a b =-+,H a b =-,G a b =--,求它们的大小关系.(用“>”连接) 【难度】★★★【答案】M N H G >>>. 【解析】由数轴可得:0<<a b ,则0>--=b a G ,0<+=b a M ,0<+-=b a N ,0>-=b a H 【总结】考察数轴上有理数的大小比较.ABCD【例21】 数轴上表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2017厘米的线段AB ,则线段AB 盖住的整点的有多少个? 【难度】★★★【答案】2018个或2017个【解析】当A 、B 为整点时,线段AB =2017盖住的整点个数是2018个; 当A 、B 分别不是整点时,线段AB =2017盖住的整点个数是2017个. 【总结】考察数轴上有理数的表示,综合性较强,注意分类讨论.【例22】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且210d a -=,那么数轴的原点应是哪个点?【难度】★★★ 【答案】B【解析】若原点为A ,则07a d ==,,此时72=-a d ,和已知不符,排除; 若原点为B ,则34a d =-=,,此时102=-a d ,和已知相符,正确. 【总结】考察数轴上有理数的表示.1、 绝对值的概念一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零. 2、 绝对值的数学表达用符号a 表示数a 的绝对值. ()()()0000a a a a a a >⎧⎪==⎨⎪-<⎩3、 有理数的比较大小正数大于零,零大于负数,正数大于负数; 两个负数,绝对值大的反而小.模块三:绝对值基础知识精讲【例23】 5的绝对值是______,记作_______;3-的绝对值是______,记作______. 【难度】★【答案】5;5;3;3-.【解析】考察绝对值的求法和记法.【例24】 5.3=______,213=______,0=______, 2.6-=_______. 【难度】★【答案】5.3;321;0;2.6.【解析】考察绝对值的求法.【例25】 3-的倒数的绝对值是______. 【难度】★【答案】31.【解析】-3的倒数是31-,则其绝对值是31.【总结】考察绝对值和倒数的求法.【例26】 判断题:(1)如果一个数的绝对值是它本身,那么这个数是0或1.( ) (2)如果说“一个数的绝对值是负数”,那么这句话是错的.( ) (3)如果一个数的绝对值是它的相反数,那么这个数是负数.( ) 【难度】★★【答案】(1)×;(2)√;(3)×.【解析】(1)如果一个数的绝对值是它本身,那么这个数是0或正数.(3)如果一个数的绝对值是它的相反数,那么这个数是负数或0. 【总结】考察绝对值的求法.例题解析【例27】 绝对值等于12的数是______,绝对值小于3的整数是______,绝对值不大于4的非负整数有______个. 【难度】★★【答案】12±;210±±,,;5【解析】绝对值不大于4的非负整数有0、1、2、3、4,共5个. 【总结】考察绝对值的求法,注意对非负整数的理解.【例28】 当3x =时,7x -一定等于4-吗? 【难度】★★ 【答案】不一定.【解析】由题意可得:x 为3或-3.当x =3时,47-=-x ;当3-=x 时,107-=-x . 【总结】考察绝对值的求法.【例29】 若0a b +=,则a 与b 的关系是( ) A .不相等 B .异号 C .互为倒数 D .0a b ==【难度】★★★ 【答案】D【解析】两个非负数相加等于0,则这两个数都需为0. 【总结】考察绝对值的非负性.【例30】 数a 在数轴上的位置如图所示,试把a ,a 的相反数,a 的倒数和a 的倒数的绝对值用“<”联结起来. 【难度】★★★【答案】aa a a 11-<-<<.【解析】∵01<<-a , ∴10<-<a ,11-<a,11>-a∴aa a a 11-<-<< 【总结】考察实数比较大小.0 1a【习题1】 任意写出5个正数与5个负数,分别把它们填入相应的大括号里.正数:{ } 负数:{}【难度】★【答案】正数:1、3.5、4.2、6、7.8等,负数:5 3.26110.8-----、、、、等. 【解析】考察有理数的分类.【习题2】 关于数字0,下面说法中,错误的是( ) A .是整数,也是有理数 B .既不是正整数,也不是负整数 C .是整数,也是自然数D .既不是自然数,也不是有理数 【难度】★ 【答案】D【解析】0属于有理数,也属于整数,也属于自然数. 【总结】考察有理数的分类.【习题3】 写出小于5的所有非负整数______________________________;写出大于162-的所有负数________________________________.【难度】★【答案】0、1、2、3、4; -6、-5、-4、-3、-2、-1【解析】考察有理数比较大小,注意准确理解题目中的要求.【习题4】 填空:223+=______, 4.3-=______,6--=______. 【难度】★【答案】322;4.3;-6.【解析】考察绝对值的求法.随堂检测A BC D 0 【习题5】 如果a 的相反数是最大的负整数,b 是绝对值最小的数,则a b +=______. 【难度】★★ 【答案】1【解析】由题意可得:1=a ,0=b ,则1=+b a 【总结】考察有理数比较大小.【习题6】 比较大小:(1)37-和25-;(2)311-和0.273-. 【难度】★★ 【答案】(1)5273-<-;(2)273.0113->-. 【解析】(1)因为5273>,所以5273-<-; (2)因为273.0113<,所以273.0113->-. 【总结】考察有理数比较大小.【习题7】 如图,数轴上A 、B 、C 、D 四个点分别表示数a 、b 、c 、d ,用“<”连接:1a 、1b 、1c 、1d :_____________________. 【难度】★★【答案】ab dc 1111<<<.【解析】因为b a c d <<<<0, 所以011<<d c ,011>>ba , 所以ab dc 1111<<<. 【总结】考察有理数的比较大小.【习题8】 计算:111111201720162016201520172015-+---. 【难度】★★★【答案】0.【解析】111111201720162016201520172015-+---0201712015120161201512017120161201712015120161201512017120161=+--+-=⎪⎭⎫ ⎝⎛---+-= 【总结】考察有理数的大小比较及有理数的绝对值的求法.【习题9】 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求a b c d m +++的值. 【难度】★★★ 【答案】3或-1.【解析】由题意可得:0=+b a ,1=cd ,2±=m 所以()13210-=±++=+++或m cd b a【总结】考察相反数、倒数、绝对值的定义,注意分类讨论.【习题10】 已知4x =,5y =,且x > y ,则x + y =______. 【难度】★★★ 【答案】-1或-9.【解析】由题意可得:45x y ==-,或45x y =-=-,, 所以91--=+或y x .【总结】考察绝对值的求法和有理数比较大小.【作业1】 关于 2.2-,下面说法正确的是( )A .是负数,不是有理数B .不是分数,是有理数C .是负数,也是分数D .是负数,不是分数【难度】★ 【答案】C【解析】有限小数属于分数,也属于有理数 【总结】考察有理数分类.【作业2】 把下列各数分别填到相应的横线上:1-,0.3505-,0,2,56-,33.33%.正数:____________________________; 负数:____________________________; 非负数:____________________________; 非正有理数数:____________________________. 【难度】★【答案】正数:2,33.33%;负数:1-,0.3505-,56-;非负数:0,2,33.33%;非正有理数数:1-,0.3505-,0,56-.【解析】考察有理数的分类.【作业3】 3π-的倒数是_______,相反数是______,绝对值是______. 【难度】★【答案】π-31;3-π;3-π.【解析】考察倒数、相反数、绝对值的求法.课后作业【作业4】 若x < 0,则23x x x-=______.【难度】★★ 【答案】-1.【解析】因为0<x ,所以223313333x x x x x xxxxx -----====-.【总结】考察绝对值的求法.【作业5】 比较大小,用“<”连接:89-、1112-、1415-.【难度】★★【答案】1411815129-<-<-.【解析】因为•=8.098,•=691.01211,•=39.01514, 所以1514121198<<, 所以1411815129-<-<-.【总结】考察负数的比较大小,绝对值大的反而小.【作业6】 绝对值大于10且不大于15的负整数的和是_______. 【难度】★★ 【答案】-65.【解析】绝对值大于10且不大于15的负整数有-11、-12、-13、-14、-15,则其和为-65. 【总结】考察绝对值的运用.【作业7】 填空(填“>”,“<”或“=”):(1)若1aa=-,则a ______0;(2)若0a >,0b >,a b ->-,则a ______b . 【难度】★★【答案】(1)<;(2)<.【解析】(1)当0<a 时,1-=-=a aa a ; (2)因为ab ->-,所以0a b <<,所以b a <.【总结】考察有理数比较大小和绝对值运算.B C 0 【作业8】 如图,数轴上A 、B 、C 四个点分别表示数a 、b 、c , 化简:b a b c a b c -++---. 【难度】★★ 【答案】b 3-.【解析】由题意可得:0>a ,0<b ,0<c ,0>+b a ,0<-a c ,0>-c b 所以b a b c a b c -++---()()()b a b c a b c =--+----3b a b c a b c b =----+-+=-.【总结】考察绝对值的化简.【作业9】 解方程:931x --=. 【难度】★★★【答案】13=x 或5x =.【解析】49=-x ,则49=-x 或4-, 所以13=x 或5x =. 【总结】考察含绝对值的方程的求法,综合性较强,注意分类.【作业10】 比较大小:(提示:分类讨论). (1)a 与a -;(2)a 与1a. 【难度】★★★ 【答案】见解析.【解析】(1)当0=a 时,a a -=; 当0<a 时,a a -<; 当0>a 时,a a ->.(2)令a a 1=,则1±=a ,当1-<a 时,a a 1<; 当1-=a 时,a a 1=; 当01<<-a 时,a a 1>; 当10<<a 时,a a 1<; 当1=a 时,a a 1=; 当1>a 时,aa 1>. 【总结】考察有理数比较大小,综合性较强,注意分类讨论.。