与圆有关的比例线段.ppt

合集下载

选讲:与圆有关的比例线段(切割线定理)

选讲:与圆有关的比例线段(切割线定理)

O A G
D F
∵∠DFE=∠EFA(公共角), ∴ △DFE∽△EFA.
∴EF2 =FG2 ,即FG=EF.
例3 如图,两圆相交于A、B两点,P 为两圆公共弦AB上任意一点,从P引 两圆的切线PC、PD,求证:PC=PD. 证明:由切割线定理可得: PC2=PA∙PB, PD2=PA∙PB. ∴PC2=PD2. 即PC=PD.
选讲部分
与圆有关的比例线段 ----切割线定 理
复习回顾
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心 角的一半. 圆心角定理:圆心角的度数等于它所对弧的度数. 推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等; 反之,相等的圆周角所对的弧也相等. 推论2:半圆(或直径)所对的圆周角是直角;反之,9 0°的圆周角所对的弦是直径. 弦切角定理:弦切角等于它所夹的弧所对的圆周角.
使割线PA绕P点 运动到切线的位 置,是否还有 PA∙PB=PC∙PD?
C D P
O A(B)
如图,已知点P为⊙O外一点,PA切⊙O于点A,割线PCD 交 ⊙O于C、D. 求证:PA2=PC∙PD.
A
P
O
C
证明:连接AC、AD, ∵PA切⊙O于点A,∴∠D= ∠PAC. 又 ∠P=∠P, ∴ △PAC∽ △ PDA. ∴ PA :PD=PC :PA. ∴PA2= PC∙PD.
与圆有关的比例线段
T A B O C D P
一、下面我们首先沿用从特殊到一般的思路,讨论与圆 有关的相交弦的问题. 探究1: 如图1,AB是⊙O的直径,CD⊥AB,AB与CD相交于P,
线段PA、PB、PC、PD之间有什么关系?
证明:连接AD、BC.
D
图1
则由圆周角定理的推论可得:∠A=∠C. ∴Rt△APD∽Rt△CPB.

与圆有关的比例线段(切割线定理)

与圆有关的比例线段(切割线定理)

2.联系直角三角形中的射影定理,你还能想到什么?
C D O
C
B
A
C′
A
D
B
说明了“射影定理”是“相交弦定理”和“切割线定理”的 特例!
例1 如图,圆内的两条弦AB、CD相交于圆内一点P, 已知PA=PB=4,PC=PD/4.求CD的长.
解:设CD=x,则PD=4/5x,PC=1/5x. 由相交弦定理,得PA∙PB=PC∙PD, ∴4×4=1/5x•4/5x,解得x=10. ∴CD=10.
应用格式(几何语言描述):
∵PAB,PCD是⊙O 的割线,∴ PA∙PB=PC∙PD.
C
B
C D 图5 P O B A PA∙PB=PC∙PD
P
O
点P从圆内移动到圆外
D
A
图3 PA∙PB=PC∙PD
证明:连接AC、AD,同样可以证明 △PAD∽△PCA, 所以PA:PC=PD:PA, 即PA2=PC•PD仍成立.
A
C
P O
B
D
练习1.如图,割线PAB,PCD分别交圆于A,B和C,D. (1)已知PA=5,PB=8,PC=4,则PD=10,PT= (2)已知PA=5,PB=8,PO=7,则半径R= 3
T B
PA· PB=(7-R) · (7+R)
C
A
O D
P
O
D P
E
B
C
A
练习2.如图,割线PAB,PCD分别交圆于A,B和 C,D,连结AC,BD,下面各比例式中成立的有:
相交弦定理:圆内的两条相交弦,被交点分成的两条线段
长的积相等.
D P A O C
B
几何语言: AB 、 CD是圆内 的任意两条相交弦,交点为P, ∴PA•PB=PC•PD.

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)
2 2
1 14 4- = , 2 2
AB BE 又△ABE∽△FAB,所以 = , FA AB AB2 4 4 14 即 BE= = = . FA 7 14 2
[研一题]
[例3] 如图所示,已知PA与⊙O相切,A为切点,
PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上
一点,且DE2=EF· EC.
∴∠EDF=∠C.
∵CD∥AP,∴∠C=∠P. ∴∠P=∠EDF.
(2)证明:∵∠P=∠EDF,∠DEF=∠PEA,
∴△DEF∽△PEA. ∴DE∶PE=EF∶EA. 即EF· EP=DE· EA. ∵弦AD、BC相交于点E,
∴DE· EA=CE· EB.
∴CE· EB=EF· EP.
(3)解:∵DE2=EF· EC,DE=6,EF=4, ∴EC=9.∵CE∶BE=3∶2,∴BE=6. ∵CE· EB=EF· EP, ∴9×6=4×EP. 27 解得:EP= . 2 15 45 ∴PB=PE-BE= ,PC=PE+EC= . 2 2 由切割线定理得:PA2=PB· PC, 15 45 ∴PA2= × . 2 2 15 ∴PA= 3. 2
[读教材·填要点] 1.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 . 2.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆
的交点的两条线段长的积 相等 .
3.切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与 圆交点的两条线段长的 比例中项 . 4.切线长定理 从圆外一点引圆的两条切线,它们的切线长 相等 ,圆 心和这一点的连线 平分 两条切线的夹角.
的圆 O 的两条弦,它们相交于 AB 的中点 2 P,PD= a,∠OAP=30° ,求 CP 的长. 3

高中数学 第二讲 直线与圆的位置关系 五 与圆有关的比例线段课件 新人教a版选修4-1

高中数学 第二讲 直线与圆的位置关系 五 与圆有关的比例线段课件 新人教a版选修4-1
连接AC、AD, 同样可以证明 PAC ~ PDA ( 请同学们自 己证明),因而1 式仍然成立. 在这种情况下, A、B两点重 合, PA PB PC PD, 变形为: 2 PA2 PC PD.
D C
P
A
O
B
图2 24
D C
P
AB
O
图2 25
由上述探究和论证, 我们有
例1 如图2 28 ,圆内的 两条弦AB、CD相交于圆 内一点P,已知PA PB
A
C P
O
B
1 D 4, PC PD.求CD的长 . 4 图2 28 4 1 解 设CD x, 则PD x, PC x. 5 5
由相交弦定理 , 得 PA PB PC PD.
1 4 所以 4 4 x x, x 10. 故CD 10 . 5 5
D
C,PA
O
B
图2 23
D C
P
A
O
根据上述探究和论证, 我们有
B
割线定理 从圆外一点引圆 图2 24 的两条 割 线 , 这一点到每条 割 线与圆的交点的两条线段长的积相等.
下面继续用运动变化思 想探究.
探究 在图2 24 中, 使割线 PB 绕 P 点运动到切线位置 图 2 25, 是否还有PA PB PC PD ?
单击图 标, 用几 何画板作一 系列探究实 验.
D A A C P
O
D B P
O
D B A P B
O
图2 20
图2 21
C
C
图2 22
连接AD、BC, 则由圆周角定理的推论 可得: A C. PA PC 故Rt APD ~ Rt CPB.则 .即PA PB PC PD. PD PB

1_25与圆有关的比例线段(切割线定理)讲解

1_25与圆有关的比例线段(切割线定理)讲解

如图,已知点P为⊙O外一点,割线PBA、PDC分别交
⊙O于A、B和C、D. 求证:PA∙PB=PC∙PD.
C D
O B
A
证法2:连接AC、BD,
P
∵四边形ABDC为⊙O 的内 接四边形, ∴∠PDB= ∠A,
又 ∠P=∠P,
∴ △PBD∽ △ PCA.
∴ PD :PA=PB :PC.
∴ PA∙PB=PC∙PD.
例5 如图,AB、AC是⊙O的切线,ADE 是⊙O的割线,连接CD、BD 、BE 、CE.
B E
问题1:由上述条件能推出哪些结论?A
探究1:由已知条件可知∠ACD=∠AEC,
D O
图1
而∠CAD=∠EAC, ∴△ADC∽△ACE. ……(1) C
∴ CD:CE=AC:AE, ∴CD•AE=AC•CE. ………(2)
代数、几何等知识的联系及应用
C
A
D O
B
A
C′
C DB
说明了“射影定理”是“相交弦定理”和“切割线定理”的 特例!
例1 如图,圆内的两条弦AB、CD相交于圆内一点P, 已知PA=PB=4,PC=PD/4.求CD的长.
解:设CD=x,则PD=4/5x,PC=1/5x.
C
B
由相交弦定理,得PA∙PB=PC∙PD, A P
∴4×4=1/5x•4/5x,解得x=10.
B3
A2 P
解:(1)由切割线定理,得 PC ∙ PD=PA ∙ PB
m
C
∵AB=3, PA=2,∴PB=AB+PA=5.
O
4
设PC=m, ∵CD=4 , PD=PC+CD=m+4.
∴m(m+4)=2×5

第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5

解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1

2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,

圆的周长PPT优秀课件

圆的周长PPT优秀课件

2024/1/26
10
03
圆周长在生活中的应用
2024/1/26
11
建筑设计领域应用
建筑设计中的圆形结构
在建筑设计中,圆形结构常被用于创造独特的美感和视觉效果,如圆形窗户、 拱门和穹顶等。这些圆形结构的周长计算对于材料的用量和施工的精度都至关 重要。
圆形建筑物的地基设计
当地基形状为圆形时,需要计算圆的周长以确定地基的尺寸和所需的材料量, 确保建筑物的稳定性和安全性。
17
圆锥体侧面积和表面积计算
圆锥体侧面积公式
侧面积 = (圆心角 × π × 母线长 ) / 180。这个公式用于计算圆锥
侧面展开后的面积。
圆锥体表面积公式
表面积 = π × 半径^2 + 侧面积 。这个公式用于计算圆锥体整体
所占的空间大小。
实际应用
圆锥体表面积和侧面积的计算在 建筑设计、工程造价等方面有重 要作用,如计算圆锥形屋顶的面
圆的性质包括圆心到圆上任一点的距离相等,以及圆上任意两点间的弧所对的圆心 角相等。
24
关键知识点总结回顾
圆的周长公式
圆的周长(或称为圆的周长)是 $C = 2pi r$,其中 $C$ 是圆的周长,$r$ 是圆的半径, $pi$ 是圆周率。
圆周率 $pi$ 是一个无理数,其近似值为 3.14159。
数值法
通过迭代或数值逼近的方法,逐步逼近椭圆的真实周长。
2024/1/26
21
椭圆周长精确计算方法
2024/1/26
积分法
利用椭圆的标准方程,通过计算椭圆弧长的积分表达式来 得到精确周长。这种方法需要较高的数学水平,通常适用 于理论研究或高精度计算。
参数方程法

09.04.16高二理科数学《2.5 与圆有关的比例线段(选修4-1)》

09.04.16高二理科数学《2.5 与圆有关的比例线段(选修4-1)》
与圆有关的比例线段
主讲: 震 陈
湖南省长沙市一中卫星远程学校
习题讲解
教材 P40 页 6、7、8
湖南省长沙市一中卫星远程学校
习题讲解
例 5. 如图,AB、AC 是圆 O 的切线,ADE 是圆 O 的割线,连接 CD、BD、BE、CE.
问题 程学校
习题讲解
问题 2 在图 2-32 中, 使线段 AC 绕 A 旋转, 得到图 2-33.其中 EC 交圆于 G,DC 交圆于 F.此时又能推出哪些结论?
湖南省长沙市一中卫星远程学校
习题讲解
问题 3 在图 2-33 中, AC 继续绕 A 旋转, 使 使割线 CFD 变成切线 CD,得到图 2-34.此 时又能推出哪些结论?
湖南省长沙市一中卫星远程学校
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档