深基坑监测专项方案
深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。
本文将就深基坑施工监测方案进行探讨。
一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。
通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。
二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。
监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。
2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。
监测频次为每天、每班、每小时,并及时记录监测数据。
3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。
监测频次为每天、每周,并记录监测数据。
同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。
4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。
经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。
5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。
监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。
三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。
2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。
报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。
四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。
深基坑监测方案

目录一、工程概况 (1)二、编制根据 (1)三、基坑侧壁安全级别划分 (1)四、基坑支护方案 (1)五、监测目的及规定 (2)六、工程地质概要 (2)七、监测内容 (3)八、监测频率 (8)九、测试重要仪器设备........................... 错误!未定义书签。
十、监测工作管理、保证监测质量的措施........... 错误!未定义书签。
十一、监测人员配备............................. 错误!未定义书签。
十二、监测资料的提交........................... 错误!未定义书签。
一、工程概况:本项目为CENTER工程, 本子项为通风中心;工程号为HB1001, 子项号为VX。
建设地点: 四川省乐山市夹江县南岸乡。
通风中心长58.60m, 宽33.10m, 建筑高度(室外地坪至女儿墙)为22.900m, 消防高度(室外地坪至屋面面层)为22.200m, 地上二层, 局部三层。
占地面积1956.19㎡, 建筑面积4298.00㎡。
建筑构造形式:钢筋混凝土框架——抗震墙构造, 本建筑设计使用年限为50年, 抗震Ⅰ类建筑。
二、编制根据:1.《建筑基坑工程变形技术规范》(GB50497-)2.《都市测量规范》(CJJ/T8-)3.《精密水准测量规范》(GB/T15314-940)4.《工程测量规范》(GB 50026-)5.《建筑边坡工程技术规范》(GB50330-)6.《建筑基坑支护技术技术规程》(JGJ120-)7、基坑支护工程施工方案设计三、基坑侧壁安全级别划分:基坑 1-2交A-B, 1-2交E-F, 开挖的基坑深度较大概为8m, 放坡系数80°, 近似垂直开挖, 如破坏后果较严重, 因此侧壁安全级别定为一级, 侧壁重要性系数1.1。
基坑其她位置地势相对开阔, 无相邻建筑级别评估为二级, 侧壁重要性系数1.0。
四、基坑支护方案:放坡体系:根据设计图纸的规定, 本工程的基坑放坡为80°, 近似垂直开挖, 基坑壁失稳对周边有一定危害, 采用垂直开挖形成基坑, 开挖前必须先对其设立支挡, 保证既有周边的安全, 根据场地周边环境、场地工程地质条件及水文地质状况。
深基坑施工监测方案

深基坑施工监测方案一、工程概述本工程为_____项目,位于_____,占地面积约_____平方米,基坑开挖深度为_____米。
周边环境复杂,临近建筑物、道路及地下管线等。
二、监测目的1、及时掌握基坑在施工过程中的变形情况,确保施工安全。
2、为优化施工方案提供数据支持,保障工程质量。
3、预警可能出现的危险情况,以便采取相应的应急措施。
三、监测内容1、水平位移监测在基坑周边设置观测点,采用全站仪或经纬仪进行定期观测,测量水平位移量。
2、竖向位移监测使用水准仪对观测点进行高程测量,监测基坑的竖向位移情况。
3、深层水平位移监测通过埋设测斜管,利用测斜仪测量不同深度处的水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。
5、地下水位监测设置水位观测井,定期测量地下水位的变化。
6、周边建筑物及道路沉降监测在周边建筑物和道路上设置观测点,监测其沉降情况。
四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔_____米布置一个监测点,重点部位适当加密。
2、深层水平位移监测点在基坑周边的关键位置埋设测斜管,每边不少于_____个。
3、支撑轴力监测点选择受力较大的支撑构件,每个构件布置_____个轴力计。
4、地下水位监测点在基坑周边均匀布置水位观测井,间距约为_____米。
5、周边建筑物及道路沉降监测点在建筑物角点和道路沿线每隔_____米设置一个观测点。
五、监测频率1、开挖期间每天监测_____次。
2、底板浇筑完成后每_____天监测一次。
3、主体结构施工期间每_____周监测一次。
4、遇到特殊情况(如暴雨、周边荷载突然增大等)加密监测频率。
六、监测方法及仪器1、水平位移监测采用全站仪或经纬仪进行测量,测量精度不低于_____毫米。
2、竖向位移监测使用高精度水准仪,测量精度不低于_____毫米。
3、深层水平位移监测使用测斜仪进行测量,分辨率不低于_____毫米/米。
4、支撑轴力监测采用轴力计进行监测,测量精度不低于_____kN。
深基坑监测方案

1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。
深基坑施工监测方案

深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。
该方案包括监测目标、监测内容、监测方法和监测频率等方面。
通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。
1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。
具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。
1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。
1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。
1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。
2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。
具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。
2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。
2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。
2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。
3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。
具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。
3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。
深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。
本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。
二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。
2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。
3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。
三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。
2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。
3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。
四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。
3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。
五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。
2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。
3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。
六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。
深基坑工程施工监测方案

施施工工监监测测方方案案1 施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。
为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。
通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。
2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。
3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。
4、了解施工降水效果对周围地下水位的影响程度。
5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。
2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。
仪器在检验有效期内作业,并在作业期间进行检查校核。
2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。
仪器最小分辨率为0.01mm 。
仪器及标尺在检验有效期内作业,并在作业期间进行检查校核。
沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级 仪器类型视线长度前后视距差任一测站上前后距差视线高度 二等DS0.5≤30m≤1.0m≤0.5m>0.3m项目 等级基、辅分划读数差基、辅分划所测高差之差检测间歇点高差之差上下丝读数平均值与中丝读数之差基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。
3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB50497-2009)执行。
2、本次监测可分为基坑工程主体监测和周围环境及地下管线监测,施工监测项目和内容有:3、水位观测、钢筋应力等监测见第三方监测方案。
3.2监测控制标准1、基坑监测控制标准及报警指标如下表所示:2、水位变化控制标准为:要求水位变化值累计值不大于1m或每天变化值不大于0.50m。
深基坑施工监测方案

深基坑施工监测方案一、背景介绍深基坑施工是建筑工程中一项重要的地下工程施工活动。
由于基坑较深、土壤条件复杂,施工过程中可能会面临一系列的安全隐患。
为了及时发现和解决问题,确保施工的顺利进行,深基坑施工监测方案应运而生。
二、监测目标1. 地面沉降:监测地表沉降情况,及时评估并控制地面沉降的范围和速度。
2. 地下水位:监测基坑周边地下水位的变化,防止地下水涌入基坑,导致工程事故。
3. 地下管线:监测基坑周边地下管线的位移情况,避免工程施工对管线造成破坏。
4. 地面建筑物:监测基坑施工对周边建筑物的影响,保证周边建筑物的安全。
三、监测方法1. 地面沉降监测:a. 使用全站仪实时监测地面水平和垂直位移的变化。
b. 设置沉降点网格,在关键位置进行连续监测。
c. 编制沉降监测曲线,分析沉降速度和变化趋势。
2. 地下水位监测:a. 安装水位计监测基坑周边地下水位的变化。
b. 建立水位监测井,定期采集地下水位数据。
c. 分析地下水位变动趋势,及时采取排水措施。
3. 地下管线监测:a. 使用高精度测距仪监测地下管线的位移情况。
b. 定期巡检地下管线,发现问题及时修复或迁移。
4. 地面建筑物监测:a. 安装倾斜仪、位移传感器等监测周边建筑物的位移情况。
b. 实时监测建筑物的倾斜角度、位移量等数据。
c. 设立安全预警值,一旦超过预警值,及时采取措施保护建筑物。
四、监测报告1. 每周编制监测报告,详细记录各项监测数据和分析结果。
2. 报告中应包括监测数据的变化曲线图、分析结果及建议措施。
3. 监测报告应及时上报给相关负责人,并定期进行讨论和总结。
五、紧急情况处理1. 当监测数据超过安全范围或出现异常情况时,立即采取紧急措施。
2. 紧急措施包括但不限于停工、加固、排水等,以保证工程的安全进行。
六、总结深基坑施工监测方案是保证施工安全和质量的重要保障措施。
通过合理的监测方法和及时的监测报告,可以及早发现问题、预防事故的发生,保证工程的正常进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为Word格式,下载后可以任意编辑修改!)(文件备案编号:)施工方案工程名称:编制单位:编制人:审核人:批准人:编制日期:年月日目录1.工程概况 (1)2.监测项目 (2)2.1监测项目及工作量 (2)2.2监测工期 (2)3. 基坑支护监测方法 (2)3.1测点布设 (2)3.2水平位移观测 (3)3.3沉降观测 (4)3.4支护桩内力监测 (4)3.5锚索内力监测 (6)3.6水位监测 (6)3.7深层水平位移 (7)3.8巡视监测 (8)4 .监测频率、报警值 (9)4.1监测频率 (9)4.2报警值的确定原则 (10)4.3警戒值的确定 (10)4.4报警 (11)5.数据处理与信息反馈 (11)5.1基本要求 (11)5.2当日报表 (12)5.3阶段性监测报告 (12)5.4总结报告 (13)5.5信息反馈 (13)6.基坑监测应急预案 (14)6.1监测措施、报警 (14)6.2监测人员、监测仪器、材料及其他物资准备 (15)7.监测工期保证措施 (15)7.1进度保证 (15)7.2修订进度计划 (16)8.质量和安全保证措施 (16)8.1质量保证措施 (16)8.2安全保证措施 (16)9.附件 (17)1.工程概况@@@@@@@@@@位于永城市芒砀路与光明路交叉口西北角,总建筑面积约39290㎡,项目包括1栋28层公寓楼及5层裙房,主楼为筏板桩基础,裙楼为承台桩基础。
本工程内容为基坑支护、降水工程,基坑东西长约55m,南北57.3m,基坑开挖深度为8.9-9.8m,基坑设计使用年限为18个月,基坑采用“桩锚+止水帷幕”联合支护结构。
场地北侧邻近一栋现有6层住宅楼,该楼基础为条形基础,下部为复合地基——水泥土搅拌桩,桩深5.5m,桩径400mm,经计算按照本工程±0.00算,桩底标高为-8.0m,搅拌桩伸出建筑外400mm,建筑结构为砖混结构,拟建基坑北侧地下室外墙距离距离用地红线12.6m,距离住宅楼边线12.8m。
靠西侧有一污水管道,距离围墙1.5m。
南北有一污水管道,管道埋深为1.5m,管径700mm,拟移除。
北侧拟建一层临建距离地下室外边线6m。
场地西侧临两栋6层住宅楼,条形基础,埋深2.78m,建筑结构为砖混结构;一个一层小作坊;一栋2层的商店,拟建基坑西侧地下室外墙距离用地红线7.7m,距离建筑物9.5m。
西北角处有一污水管道,距离北侧围墙3.4m,距离南侧已有建筑围墙2.6m。
西侧靠中部及偏南部有3个污水井和一个自来水井距离地下室外墙6.0m左右,埋深大约在1.5m左右。
场地东侧为芒砀路,拟建基坑东侧地下室外墙距离用地红线 2.7m,距离场地临时围墙5.7m,距离市政道路中心线36.0m。
中部距离最外轴线14m有一天然气管道,埋深大约在1.5m左右。
场地南侧为光明路,拟建基坑南侧地下室外墙距离用地红线 1.8m,距离场地临时围墙3.8m,距离市政道路中心线35.0m。
中部距离建筑临时围墙9m处位移污水井,埋深大约在1.5m左右。
靠西侧有一自来水管道拟移除。
本工程所在场地,地下水丰富,基坑开挖过程中必须进行降水。
基坑周围环境条件复杂,容易受到基坑开挖影响,基坑一旦出现状况,则会带来严重后果。
根据《建筑基坑支护技术规程》JGJ120-99和《建筑基坑工程监测技术规范》GB50497-2009,基坑侧壁安全等级定为一级,安全监测类别定为一级。
2.监测项目2.1监测项目及工作量为保证基坑施工顺利进行及相邻建筑物安全,在基坑开挖过程中对基坑、周围建筑物、道路、管线进行监测。
依据业主要求及相关规范、图纸要求,确定基坑监测项目。
基坑监测项目及工作量见表2.1。
基坑监测项目及工作量表表2.12.2监测工期本工程监测工期为整个基坑工程施工至主体建筑出±0后一个月。
3. 基坑支护监测方法3.1 测点布设(1)观测基点根据现场情况设在变形区域以外,位置稳定、易于长期保存的地方,共3个。
观测基点为现浇混凝土墩,基点标墩高于地面20cm,安装强制对中基座,混凝土强度为C30。
(2)基坑周边地表及基坑边坡变形观测点为钢制观测标志,连接杆打入地下深度不小于300mm。
(3)基坑周边建筑物、道路、管线变形观测标志采用冲击钻安装金属观测标志。
变 位 后 的 测 点 2变 位 后 的 测 点 3变 位 后 的 测 点 1基 点测 点 1测 点 2测 点 3基 点基 点3.2 水平位移观测3.2.1 监测部位监测部位:边坡、围护墙顶部。
3.2.2 监测方法(1)本工程通过选择两个控制点,采用三角放样方法确定3个测量基准点(以防止监测过程中基准点失效)。
如图3.1所示,采用平面导线测量,以基点A 为坐标原点,通过测量距离、方位角等参数,求出各点位的坐标,平差后计算得到水平位移值。
在基坑开挖前采集坐标点初始值,开挖全过程进行跟踪监测。
水平位移测试点布置方法与量测示意图如图3.1。
图3.1 水平位移测试点布置方法与量测示意图(2) 每次观测前按技术要求对仪器进行检查和校正,观测固定测量人员,测量仪器和固定路线的要求进行,以保证观测结果精确。
各项偏差控制及内业数据处理均按照国家《建筑物变形测量规范》中各项规定执行。
3.2.3 监测设备(1)名称:全站仪 (2)型号:FTS532 (3)主要性能: 测角精度 0.5"测距精度 标准测距:1mm + 1ppm*D 精密测距:0.6mm + 1ppm*D 测量时间 标准测距2.4s 精密测距7s 最小显示 0.01mm机载程序方向与高程传递、后方交会、对边测量、放样显示器彩色,图形LCD,可照明。
3.3 沉降观测3.3.1 监测部位监测部位:边坡、围护墙顶部、周边建筑物、道路、管线。
3.3.2 监测方法(1) 根据埋设好的基准点,施测一条闭合路线建立初始数据。
(2) 每次观测前按技术要求对仪器进行检查和校正,观测固定测量人员,固定测量仪器和固定路线的要求进行,以保证观测结果精确。
(3)沉降观测工作采用精密几何水准测量方法进行,观测过程中,各项偏差控制及内业数据处理均按照国家《建筑物变形测量规范》中各项规定执行。
3.3.3 监测设备(1)仪器:电子水准仪(2)型号:徕卡DNA03(3)主要性能:测量范围标准水准尺1.8m—110m 铟钢尺 1.8m—60m最小读数 0.01mm单次测量时间 3s补偿范围±10’补偿精度0.3”3.4 支护桩内力监测3.4.1 监测部位监测部位:选择具有代表性的4根支护桩,每根桩身布置3个断面,每断面2支传感器。
3.4.2 监测方法(1)测点选择:支护桩内力监测点布置在受力、变形较大且有代表性的部位。
竖直方向监测点布置在弯矩极值处,位置在桩顶向下3.0m、6.5m、10.2m三处,每点垂直基坑方向对称设置2支钢筋应力计。
(2)测点埋设:按构造主筋直径Φ22选配相应规格的钢筋计,将仪器两端的连接杆分别焊接在支护桩主筋上,焊接工艺采用帮条焊,钢筋焊接工艺依据《钢筋焊接及验收规程》(JGJ18-2003)。
焊接过程中采取淋水降温措施避免温度过高而损伤仪器。
将线缆绑好后仔细引出,并做好保护措施。
图2 钢筋计焊接与冷却示意图(3)测量方法:开挖前先测出钢筋计的频率,作为初始频率。
3.4.3 监测设备(1)名称:钢弦式钢筋测力计、频率读数仪(2)型号:钢弦式钢筋测力计:XB系列频率读数仪:XB-DSY-406A(3)主要性能:1)钢弦式钢筋测力计测量范围量大压力:160MPa最大拉应力:250MPa分辨率≤0.04%F·S综合误差≤1.5%F·S2)频率读数仪量程 400-6000Hz精度±0.05 Hz3.5 锚索内力监测3.51 监测部位监测部位:选择具有代表性的5个断面,每断面每层锚索安装一个传感器。
3.5.2 监测方法需观测的锚索埋入孔内,锚固段锚固后,张拉前,先将测力计安装在孔口垫板上。
安置传力板的测力计,先将传力板装在孔口垫板上,偏斜小于0.5°,偏心不大于5mm。
安装张拉机具和锚具,同时对测力计的位置进行校验,安装就位后,开始预紧和张拉。
张拉程序与工作锚索的张拉程序相同。
加荷张拉前,测试初始值,三次读数差小于1%(F·S)取其平均值作为观测初始值。
初始值确定后,分级加荷张拉,逐级进行张拉观测。
每级荷载测读一次,最后一级荷载进行稳定观测,以5分钟测一次,连续三次读数差小于1%(F·S)为稳定。
张拉荷载稳定后,及时测读锁定荷载。
张拉结束之后,根据荷载变化速率确定观测时间间隔,进行锁定后的稳定观测。
3.5.3 监测设备(1)名称:频率读数仪(2)型号:频率读数仪:XB-DSY-406A(3)主要性能:量程 400-6000Hz精度±0.05 Hz3.6水位监测3.6.1监测部位监测部位:基坑内水位、基坑外水位3.6.2监测方法(1)提前施工观测井。
(2)在基坑开始降水前,连续观测水位并取得稳定初始值。
(3)通过水准测量测出孔口标高H,将探头沿孔套管缓慢放下,当测头接触水面时,蜂鸣器响,读取测尺读数ai,则地下水位标高HWi=H-ai。
则两次观测地下水位标高之差△HW=HWi –HWi-1,即水位的升降数值。
3.6.3监测设备(1名称:钢尺水位计 (2)型号:XBHV-11 (3)主要性能:测量深度 30m 最小读数 1.0mm 重复性误差 2.0mm仪器重量 3.5kg 钢尺水位计 工作电压 DC9接收系统部分:由音响器和峰值指示组成,音响器由蜂鸣器发出连续不断的蜂鸣声响,峰值指示为电压表指针指示,两者可通过拨动开关来选用。
3.7 深层水平位移3.7.1 监测部位监测部位:支护桩 3.7.2 监测方法(1)测斜管埋设:在有钻孔灌注桩段,将PVC 测斜管随同钢筋笼一起埋入桩中。
在周围土体中钻孔,将连接号的测斜管埋入孔中。
埋设时,一组导槽应垂直于基坑,另一组则平行于基坑。
(2)测量方法:测斜管内壁有二组90度的纵向导槽,导槽控制了测斜 测斜管安装方位,垂直于基坑圈梁的一组导槽,实测位移指向基坑内为正,反之为负。
测试时,测斜仪探头沿导槽缓缓下沉至孔底,在温度稳定一段时间后,自下而上以0.5m 为间隔逐段测出位移,测完后,将探头旋转180度,重新观测一次。
3.7.3 监测设备(1)名称:滑动式测斜仪,PVC 管测斜管定位槽底盖铆钉 测斜管 定位槽管接头铆钉测斜管管接头胶带高压防水胶带(2)型号:仪器型号XB338-2(3)主要性能:系统精度系统总精度≤±4mm/30m测量范围0°~±90° (角)分辩率2" (0.04mm/线性±0.025%(30°重复性±0.025%导轮间距基准500mm 测斜仪测试原理3.8 巡视监测3.81 支护结构(1)支护结构成型质量;(2)冠梁有无裂缝出现;(3)止水帷幕有无开裂、渗漏;(4)墙后土体有无沉陷、裂缝及滑移;(5)基坑有无涌土、流砂、管涌;3.8.2 施工工况(1)开挖后暴露的土质情况与岩土勘察报告有无差异;(2)基坑开挖分段长度及分层厚度是否与设计要求一致,有无超长、超深开挖;(3)场地地表水、地下水排放状况是否正常,基坑降水、回灌设施是否运转正常;(4)基坑周围地面堆载情况,有无超堆荷载。