衍射的Matlab 模拟

合集下载

光学衍射实验的MATLAB仿真

光学衍射实验的MATLAB仿真
过 改 变 入 射 光 波 长 仿 真 得 到 图 1,其 中 图 1 b) 的 波 长 比 图 1( )图 的 长 , 见 波 长 越 长 ( 图 a 可
衍 射 效 果 越 显 著 . 入 射 光 波 长 不 变 , 变 缝 宽 时 得 到 图 2, 中 图 2( 当 改 其 b)图 的 缝 宽 比 图 2
21 00年 4月
枣 庄学 院学 报
J RN AO HUA NI ER n t OU AL OF Z Z NG U V S Y
Ap . 01 r2 0
第2 7卷
第 2期
Vo . 7 N0. I2 2
光 学 衍 射 实 验 的 MA L B仿 真 TA
梁兰菊, 田贵才 , 张裕仕
0 引言
光 学 试 验 中衍 射 实 验 是 非 常 重 要 的 实验 . 的衍 射 是 指 光 在 传 播 过 程 中 遇 到 障 碍 物 光
时 能 够 绕 过 障 碍 物 的 边 缘 前 进 的 现 象 , 的 干 涉 和 衍 射 现 象 为 光 的 波 动 说 提 供 了 有 力 的 光 证 据 . 射 系统 一 般 有 光 源 、 射 )  ̄接 受屏 组 成 , 照 它 们 相 互 距 离 的大 小 可将 衍 射 分 衍 衍 W- n e 按
为 两 大类 , 类 是 衍 射 屏 与 光 源 和 接 受 屏 的距 离 都 是 无 穷 远 时 的衍 射 , 为 夫 琅 禾 费 衍 一 称 射 , 类 是 衍 射 屏 与 光 源 或 接 受 屏 的 距 离 为 有 限 远 时 的 衍 射 称 为 菲 涅 尔 衍 射 ¨-] 按 照 衍 一 3,
长 不 变 , 变 圆 孔 大 小 对 衍 射 现 象 的 影 响 .图 3( )圆 孔 半 径 比 图 3( 圆 孔 半 径 小 , 们 改 a b) 我 看 到 模 拟 结 果 , 孔 半 径 小 的衍 射 图像 较 明 显 , 强 三 维 分 布 图 较 清 楚 . 圆 光 13 . 多 缝 ( 栅 ) 射 实 验 的 MATLAB 仿 真 光 衍

光学衍射图样的MATLAB仿真

光学衍射图样的MATLAB仿真

1、建立几何模型:在Matlab中建立一个单缝衍射模型,包括一个光源、一 个单缝和一个观察点。
2、设置光源和观察条件:设置光源的波长为600纳米,强度为1瓦,方向为 垂直于缝的方向;观察点位于缝的右侧1米处,观察角度为45度。
3、进行仿真计算:利用Matlab中的相关函数进行仿真计算,得到观察点处 光的强度分布。
光学衍射图样的MATLAB仿真
目录
01 摘要
03 二、衍射的基本原理
02 一、引言 04 三、MATLAB在光学仿
真中的应用
目录
05 四、光学衍射图样的 MATLAB仿真
07 六、结论与展望
06 五、具体例子 08 参考内容
摘要
本次演示介绍了使用MATLAB进行光学衍射图样仿真的方法。首先介绍了衍射 的基本原理和MATLAB在光学仿真中的应用,然后详细阐述了如何使用MATLAB进行 衍射图样的仿真。通过具体的例子,展示了如何使用MATLAB模拟不同条件下的衍 射现象,并解释了仿真结果。最后,总结了本次演示的主要内容和贡献,并指出 了未来可能的研究方向。
参考内容
引言
光学衍射在许多领域中都具有重要应用,例如光学仪器设计、光谱分析、光 信息处理等。对光学衍射进行仿真可以帮助人们更好地理解光学系统的性能,预 测光的传播行为,优化光学设计。本次演示将介绍如何使用Matlab进行光学衍射 仿真。
准备工作
在进行光学衍射仿真之前,需要做好以下准备工作: 1、安装Matlab:首先需要安装Matlab软件,版本要求至少为R2018a或更高。
其中E(x,y)是电场强度,λ是光的波长,c是光速。通过求解这个方程,可 以得到衍射图样的电场分布。
三、MATLAB在光学仿真中的应 用

基于matlab的衍射系统仿真(1)

基于matlab的衍射系统仿真(1)

《工程光学》综合性练习二题目:基于matlab的衍射系统仿真综合练习大作业二一、要求3-4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。

练习结束时每组提交一份报告及仿真程序。

在报告中应注明各仿真结果所对应的参数,如屏与衍射屏间距、孔径形状尺寸等。

二、仿真题目1.改变观察屏与衍射屏间距,观察观察屏上发生的衍射逐渐由菲涅耳衍射转为夫琅和费衍射1)原理图:S点光源发出的波长lam=500纳米S点发出光线经过单缝,缝宽a;单缝到衍射屏的距离L'2)Matlab代码clear;clcl=10; %l=input ('单缝到衍射屏的距离L=');a=0.2; %a=input('单缝的宽度(mm)a=');lam=500e-6; %lam=input('波长(nm)');x=-1:0.001:1; %接收屏边界y=x./sqrt(x.^2+l^2);z=a.*y/lam;I=1000*(sinc(z)).^2; %计算接受屏某点光强subplot(2,1,1) %绘制仿真图样及强度曲线image(2,x,I)colormap(gray(3))title('单缝衍射条纹')subplot(2,1,2)plot(x,I)title(光强分布)3)初始仿真图样(d=10)4)改变d之后的图样(d=1000)5)变化规律根据衍射屏以及接受屏的相对位置不同,由此产生菲涅尔衍射和夫琅禾费衍射的区别,根据我们模拟的情况得到菲涅尔衍射和夫琅禾费衍射的明显不同是夫琅禾费衍射条件下:中央有一条特别明亮的亮条纹,其宽度是其他亮条纹的两倍;其他亮条纹的宽度相等,亮度逐渐下降。

2.改变孔径形状、尺寸,观察图样变化1)原理图矩孔衍射:透镜焦距:1000mm;照射光波长:500nm;孔高:a(mm);孔宽:b(mm);圆孔衍射:圆孔直径:r(mm);照射光波长:500nm;照射光波长:500nm;2)matlab代码矩孔衍射:focallength=1000;lambda=500;a=2.0;b=2.0;resolution=64;center=(resolution)/2;A=zeros(resolution,resolution);for i=1:1:resolutionfor j=1:1:resolutionif abs(i-center)<a*10/2 & abs(j-center)<b*10/2 A(j,i)=255;endendendE=ones(resolution,resolution);k=2*pi*10000/focallength/lambda;imag=sqrt(-1);for m=1:1:resolutionx=m-center;for n=1:1:resolutiony=n-center;C=ones(resolution,resolution);for i=1:1:resolutionp=i-center;for j=1:1:resolutionq=j-center;C(j,i)=A(j,i)*exp(-imag*k*(x*p+y*q)); endendE(n,m)=sum(C(:));endendE=abs(E);I=E.^2;I=I.^(1/3);I=I.*255/max(max(I));L=I;I=I+256;CM=[pink(255).^(2/3);gray(255)];Colormap(CM);edge=(resolution-1)/20;[X,Y]=meshgrid([-edge:0.1:edge]);x=linspace(-edge,edge,resolution);y=linspace(-edge,edge,resolution);subplot(1,2,1);surf(x,y,L);axis([-edge,edge,-edge,edge,0,255]);caxis([0,511]);subplot(1,2,2);image(x,y,I);axis([-edge,edge,-edge,edge,0,511]);view(2);axis square;圆孔衍射:clearlmda=500e-9; %波长r=1.2e-3; %f = 1; %焦距N = 19;K = linspace(-0.1,0.1,N) ;lmda1 = lmda* ( 1 + K) ;xm = 2000* lmda* f;xs = linspace(-xm,xm,2000) ;ys = xs;z0 = zeros( 2000) ;[x,y]= meshgrid( xs) ;for i = 1: 19s = 2*pi*r*sqrt(x.^2 + y.^2)./(lmda1( i) ) ;z = 4* ( besselj( 1,s)./( s + eps) ).^2; %光强公式z0 = z0 + z;endz1 = z0 /19;subplot( 1,2,1)imshow( z1* 255) ; %平面图xlabel( 'x')ylabel( 'y')subplot( 1,2,2)mesh( x,y,z1) %三维图colormap(gray)xlabel( 'x')ylabel( 'y')zlabel( '光强')3)仿真图样:矩孔衍射:a=1,b=2a=2,b=2可知:矩孔在一个维度上展宽一定倍数将导致衍射图样在相同维度上缩短相同倍数,同时能量会更向中心亮斑集中。

光的干涉和衍射的matlab模拟

光的干涉和衍射的matlab模拟

光的干涉和衍射的matlab模拟摘要:运用matlab强大的计算和绘图能力,对光的双缝干涉、单缝夫琅禾费衍射、双缝衍射和衍射光栅的光谱进行仿真。

仿真程序可以显示单色光入射时的光谱图样和光强分布曲线,并可输入实验参数,观察在不同条件下图像及光强曲线,并分析了它们各自的特点。

关键字:干涉衍射matlab 模拟1引言光的干涉与衍射现象是光波动性的实验基础。

对任何一个物理专业或涉及光学方面专业的人士来讲,认识干涉与衍射现象的图样特征,理解它们的理论推导,辨别它们之间的联系与区别是必须的。

为了使学生比较容易地接受光栅衍射的知识,同时更能对干涉与衍射的区别与联系有深刻的理解,仔细推导杨氏双缝干涉实验、单缝夫琅和费衍射实验、双缝衍射实验和有关衍射光栅光谱在形成条件,光谱特点及光强分布函数的联系与区别是必要的。

同时将上述干涉,衍射图样用计算机模拟的方式表现出来必将有助于加深对干涉与衍射在形成条件,光谱特点上的联系与区别的理解。

数学软件matlab 具有强大的数值计算功能和高级可视化图形功能,而且可以生成用户自己的图像控制界面,所以运用MATLAB软件,在计算机上编制相应的程序,模拟仿真以上四种不同干涉或衍射的光谱图样,并编制可输入参数的用户界面,尝试在不同参数输入情况下它们图样间的光滑过渡成为可能[1-3]。

2杨氏双缝干涉杨氏双缝实验是揭开光的波动本性的一把钥匙,如图1所示,同一波面上的光波被分成两束,然后在光屏pp’上叠加形成干涉条纹。

在这里,双缝的宽度必须非常小,即的情况。

在这个前提下每一束光的传播可以用几何光学来处理。

由叠加原理光屏上任一点的光强等于由两缝的光强的叠加。

由同方向,同频率两波动的叠加公式得:,在两缝宽度相同时,即时:光强。

其中为两缝到屏上P点的相位差,当时,对应的极大光强为,即各级明纹的亮度时相同的。

在输入波长550纳米,双缝宽度0.2毫米,观察屏距双缝一米的情况下,可得明暗相间干涉条纹,即为光强分布曲线。

理想透镜衍射matlab

理想透镜衍射matlab

理想透镜衍射matlab
在MATLAB中,可以使用物理光学工具箱来模拟理想透镜的衍射
效应。

衍射是光通过边缘或孔径时发生的偏折现象,理想透镜的衍
射模拟可以帮助我们理解光的传播规律和光学系统的性能。

首先,我们需要定义理想透镜的参数,包括透镜的曲率半径、
折射率等。

然后,我们可以使用MATLAB中的衍射函数(例如fft2)来模拟透镜的衍射效应。

具体步骤如下:
1. 定义透镜参数,包括透镜的孔径大小、曲率半径、折射率等
参数。

2. 生成输入光场,可以使用MATLAB中的函数生成一个表示入
射光场的二维矩阵,可以是单色光或者白光。

3. 衍射计算,使用MATLAB中的快速傅里叶变换函数fft2对输
入光场进行衍射计算,得到透镜后的光场分布。

4. 显示结果,可以使用MATLAB中的图像显示函数imshow来显
示衍射后的光场分布,观察衍射效应。

在模拟理想透镜的衍射过程中,需要考虑透镜的孔径大小、入射光波长、透镜的焦距等因素,这些参数都会影响衍射效应的模拟结果。

此外,还可以通过调整透镜参数、入射光场的波前形状等来进一步探究理想透镜的衍射特性。

总的来说,通过MATLAB中物理光学工具箱提供的函数和工具,我们可以比较直观地模拟理想透镜的衍射效应,从而更好地理解光学系统的行为。

希望这个回答能够帮到你,如果你有更多关于理想透镜衍射模拟的问题,欢迎继续提问。

实验7 衍射的Matlab模拟

实验7 衍射的Matlab模拟

实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。

二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。

衍射的Matlab模拟

衍射的Matlab模拟

p
?
x
f'
z1
23
二、夫琅合费衍射公式的意义
加有透镜之后,有两个因子与透镜有关:
(1)复数因子
C?
1
i? f
?exp
? ??ik
(
f
??
x2 ? y2 ? 2 f ? )??
? ? 其中 r ? CP ?
f ?2 ? x2 ? y2
?
f ??
x2 ? y2 2f?
结论:若孔径很靠近透镜,r 是孔径原点O处发出的子
y
1、强度分布计算
1
(Intensity distribution calculation )
b
设矩形孔的长和宽分别为 a
x1
和 b,用单位平面波照射,即
E~ ?x1 ,
y1 ??
?1 ? ?0
在矩孔以内 在矩孔以外
ba
27
将矩孔的复振幅分布代入下式:
?? E~?x, y?? C
? -?
E~?x1
?
E0
2
? ?Cab ?2
先讨论沿y轴方向的分布。 I/I0
在Y轴上,? ?
0,
??sin ? ??2 ?
1.0
1
?? ?
0.8
故:
I
y=I
0
????
sin
?
?
????2
0.6 0.4
0.2
(1)主极大值的位置:
0.0
-10
当? =0时,I有主极大值 Imax=I0,
-2-p5
-p
0
p
25p
10
?
30
波到P点的光程,而 kr 则是O点到P点的位相延迟。

光栅衍射实验的MATLAB仿真

光栅衍射实验的MATLAB仿真

届.别.2012届学号200814060106毕业设计光栅衍射实验的MATLAB仿真姓名吴帅系别、专业物理与电子信息工程系应用物理专业导师姓名、职称敏教授完成时间2012年5月16日目录摘要IABSTRACTII1 引言11.1国内外研究动态12理论依据22.1平面光栅衍射实验装置22.2原理分析32.3 MATLAB主程序的编写62.4 仿真图形的用户界面设计83 光栅衍射现象的分析83.1缝数N对衍射条纹的影响83.2 波长λ对衍射条纹的影响103.3 光栅常数d对衍射光强的影响133.4 条纹缺级现象144 总结15参考文献17致18附录19摘要平面光栅衍射实验是大学物理中非常重要的实验,实验装置虽然简单,但实验现象却是受很多因素的影响,例如波长λ,缝数N,以及光栅常数d。

本文利用惠更斯一菲涅耳原理,获得了衍射光栅光强的解析表达式,再运用Matlab软件,将模拟的界面设计成实验参数可调gui界面,能够连续地改变波长λ,缝数N,光栅常数d,从而从这3个层面对衍射光栅的光强分布和谱线特征进行了数值模拟,并讨论了光栅衍射的缺级现象,不仅有利于克服试验中物理仪器和其他偶然情况等因素给实验带来的限制和误差.并而且通过实验现象的对比,能够加深对光栅衍射特征及规律的理解,这些都很有意义。

关键词:平面光栅衍射;惠更斯-菲涅尔原理;gui;光强分布;MatlabABSTRACTPlane grating diffraction experiment is very important in the College physics experiment,though the experimental equipment is simple, the resultwill be influencedby many factors, such as wavelengthλand slot number N, and grating number d. The paper takes advantage of Huygens-Fresnel principle, then fugures the fomula of diffraction light intensity distribution.At last the experiment is simulated by Matlab software. The user can continuouslychange parameter wavelengthλ, slot number N, grating number d, so as to get the different experimental phenomenon,and the missingorder of grating diffraction phenomena will be discussed.Not only the matlab simulationcan be used to overe the limitations of experimental equipment and other incidental factors.but alsothrough the parison of experimental phenomenon, it can deepen the understanding of grating diffraction characters and rules.As a whole,it is of significance.Key words: diffraction of plane gratings; Huygens-Fresnel principle, GUI, and light intensity distribution; Matlab1 引言荷兰物理学家惠更斯(Huygens)是光的波动说创始人,1690年他提出了关于波如何传播的惠更斯原理,即认为波前上每一点都可看为是新的球面子波源,子波的包络面就是新的波前。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
二、菲涅耳-基尔霍夫衍射公式(确定了C、K()) 基尔霍夫 (Kirchhoff) 从波动方程出发,用场论得出了 比较严格的衍射公式。
A expik l expik r cosn, r cosn, l E P = d i l r 2
菲涅尔假设: 当 = 0 时,K()=Max, p/ 时,K()=0.
(实验证明是不对的) 若S发出的光源振幅为A(单位距离处),整个波面’的贡献
CA expikr ~ E P expikR K d R r
求解此公式主要问题:C、K()没有确切的表达式。

l
x sin x , f
a b
m
y sin y f
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
28
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
P0 E
17
r z1
2 2 x x1 y y1
2 z1
称为菲涅耳近似。
得到菲涅耳衍射:
e ikz1 ~ E x, y iz1

k ~ 2 2 E x1 , y1 exp i x x1 y y1 2 z1 y y
~ 和E0 abC

~ ~ sin sin E x, y E0
子波的复振幅与 cosn, r cosn, l 2 成正比,与波长成反比。 K ( )
1 p i exp[ i ] i 2 表示子波的振动位相超前于入射波90。
12
当光线接近于正入射时
cos(n, l ) 1, cos(n, r ) cos
exp( ikl) exp( ikR) l R
E x, y C x y ~ E x1 , y1 exp ik x1 f y1 f dx1dy1
(x, y)
C
exp
x2 y2 [ ik ( f )] 2f
p' (x', y') x x'
if
f'
可以写成
E x, y C x y ~ E x1 , y1 exp ik x1 z y1 z dx1dy1 1 1
22
在无透镜时,观察点为P’;有透镜时,在透在傍轴近似下,公式中 x′/Z1 由 x /f ' 代替。计算公式变为:
夫琅和费衍射
源点和场点均满足远 场近似
源点和场点均在无 限远处 平行光衍射
光源面和接收面物 象共扼面
非平行光衍射
光源面和接收面非 物象共扼面
§12-1.光波的标量衍射理论
一、惠更斯-菲涅耳原理 1、惠更斯原理 (Huygens’ principle):
(1)波阵面的形成,
(2)波面的传播方向。
6
惠更斯作图法解释波的衍射
P(x,y) P(x Q
1 1
,y )
H D
C

r
光程差
D OH, x y x , y f f
O
P0
f'
25
夫琅合费衍射公式的意义(总结)
E x, y C x y ~ E x1 , y1 exp ik x1 f y1 f dx1dy1
1 x2 y2 C exp[ ik ( f )] i f 2f
O点到P点的位相延迟
孔径上其它点发出的 光波与O 点的位相差。
积分式表示孔径上各点子波的相干叠加。叠 加结果取决于各点发出的子波与中心点发出 子波的位相差。
26
三、矩孔衍射 (Diffraction by a rectangular aperture)
y1 x1
进一步的计算需要 将exp( ikr )中的r表 示成(x,y,z)的函数。
Q C z1 K
r
P
x
P0 E
孔径 的衍射
16
2.菲涅耳近似(对位相项的近似)
r z1 ( x x1 ) 2 y y1 z1 1
2 2
x x1 2 y y1 2

r P
S
R
14
三、基尔霍夫衍射公式的近似
exp ikR i ~ E P A 2 R


exp ikr 1 cos d r
1、傍轴近似(两点近似) (1) cosn r cos 1 (2)在振幅项中 1 1 r z1
1 K 1 cos 1 2 y1
1、强度分布计算 (Intensity distribution calculation)
设矩形孔的长和宽分别为 a 和 b,用单位平面波照射,即
1 ~ E x1 , y1 0
b
y
1
b
x1
在矩孔以内 在矩孔以外
a
27
将矩孔的复振幅分布代入下式:
~ x y ~ E x, y C E x1 , y1 exp ik x1 f ' y1 f ' dx1 dy1 -
( n,l ) ( n,r )
r
P
则 K
1 1 cos 2
13
将近似条件代入得到:菲涅耳-基尔霍夫衍射近似公式
exp ikR i ~ E P A 2 R


exp ikr 1 cos d r
( n,l ) ( n,r )

w'
( n,l ) w r P
其中,设定方向角 ( n, l ) 和 ( n, r ) 为与 l 和 r 的夹角。S
( n,r ) l R
P点:由多个虚设的子波源产生。
w"
11
E P =

A expik l expik r cosn, r cosn, l d i l r 2
2 2 夫琅合费衍射对z的要求 =600nm, x1 y1
x z
2
1
y1
2



max
2cm2

L
1
max
330 m
( x ,y )
1 1
(x,y ) L
2
P
S
f
图12-5 夫琅合费衍射装置
21
加有透镜之后,衍射公式如何变化?
2、夫琅合费衍射公式变化
k ~ E x, y C E x1 , y1 exp i xx1 yy1 dx1dy1 z1 1 x2 y2 exp[ ik ( z1 )] 其中 C iz1 2 z1
衍射的MATLAB模拟
刘雁 三峡大学理学院 2013.4
内容提要
衍射的基本理论
单缝衍射的Matlab模拟
一衍射的基本原理
光的衍射现象:光波在空间传播遇到障碍时,其传播方
向会偏离直线传播,弯入到障碍物的几何阴影中,并呈 现光强的不均匀分布的现象。
衍射现象的分类
(Classification of light diffraction):

r P
~ EQ 对P点的贡献为:
~ ~ exp ikr dE P CK EQ d r

Z'
子波向P点的球面波公式
子波法线方向的振幅 子波振幅随角的变化
9
Q点处的面光源d对P点的作用: ~ ~ exp ikr dE P CK EQ d r
19
菲涅耳衍射和夫琅和费衍射是两个经常应用的衍射计算。 菲涅耳衍射和夫琅合费衍射的判别式;
x k
或者 Z<
2
1
x x
y1 2z
2
2

max
p
1
y1 y1
2

max
(菲涅耳衍射) (夫琅合费衍射)
20
2
2
Z>
1
max
§2 .典型孔径的夫琅合费衍射
一、衍射系统与透镜作用 1、透镜的作用:无穷远处的衍射图样成象在焦平面上。
z1
2 3 2
z1
x x1 2 y y1 2
2 z1

[x x1 y y1 ] 2
2
8 z1
....
y
r z1
2 2 x x1 y y1
y1 x1 Q C z1 K r
2 z1
P
x
近似条件: 2p [ x x1 y y1 ]2 p 3 8 z1
根据光源、衍射屏和观察屏三者之间的位置确定 (1)夫琅和费衍射(Fraunhofer diffraction): 距离衍射屏远处的衍射。 (2)菲涅耳衍射( Fresnel diffraction ): 距离衍射屏近处的衍射。 K S
4
菲涅耳衍射与夫琅和费衍射的区别
菲涅耳衍射 1 2 3 4
源点和场点均满足傍轴近似 ,但不同时满足远场近似 源点和场点(或二者之一) 在有限远。

p
z1
23
二、夫琅合费衍射公式的意义 加有透镜之后,有两个因子与透镜有关: 1 x2 y2 C exp ik ( f ) i f 2f (1)复数因子
2 y2 x 其中 r CP f 2 x 2 y 2 f 2f 结论:若孔径很靠近透镜,r 是孔径原点O处发出的子 波到P点的光程,而 kr 则是O点到P点的位相延迟。
相关文档
最新文档