分子模型晶体模型的制作
计算化学实验_分子结构模型的构建及优化计算

计算化学实验_分⼦结构模型的构建及优化计算实验9 分⼦结构模型的构建及优化计算⼀、⽬的要求1.掌握Gaussian 和GaussView程序的使⽤。
2.掌握构建分⼦模型的⽅法,为⽬标分⼦设定计算坐标。
3.能够正确解读计算结果,采集有⽤的结果数据。
⼆、实验原理量⼦化学是运⽤量⼦⼒学原理研究原⼦、分⼦和晶体的电⼦结构、化学键理论、分⼦间作⽤⼒、化学反应理论、各种光谱、波谱和电⼦能谱的理论,以及⽆机、有机化合物、⽣物⼤分⼦和各种功能材料的结构和性能关系的科学。
Gaussian程序是⽬前最普及的量⼦化学计算程序,它可以计算得到分⼦和化学反应的许多性质,如分⼦的结构和能量、电荷密度分布、热⼒学性质、光谱性质、过渡态的能量和结构等等。
GaussView是⼀个专门设计的与Gaussian配套使⽤的软件,其主要⽤途有两个:构建Gaussian的输⼊⽂件;以图的形式显⽰Gaussian计算的结果。
本实验主要是借助于GaussView程序构建Gaussian的输⼊⽂件,利⽤Gaussian程序对分⼦的稳定结构和性质进⾏计算和分析。
三、软件与仪器1.软件:Gaussian03、GaussView计算软件,UltraEdit编辑软件。
2.仪器:计算机1台。
四、实验步骤1.利⽤GaussView程序构建Gaussian的输⼊⽂件打开GaussView程序,如图9-1所⽰,在GaussView中利⽤建模⼯具(View→Builder→),如图9-2所⽰,在程序界⾯元素周期表的位置处找到所需的元素,单击即可调⼊该元素与氢元素的化合物。
图9-1 GaussView打开时的界⾯图9-2点击Builder及双击图标后出现的元素周期表窗⼝图若要构建像⼄烷这样的链状分⼦,需要先点击⼯具栏中的按钮,常见的链状分⼦就显⽰在新打开的窗⼝中,如图9-3所⽰。
图9-3 常见链状官能团窗⼝图若要构建像苯、萘等环状结构的分⼦结构,需要双击⼯具栏中的按钮,常见的环状有机分⼦就显⽰在新打开的窗⼝中,如图9-4所⽰。
物质的分子结构实验演示

物质的分子结构实验演示在物质科学领域中,理解物质的分子结构是至关重要的。
通过实验演示,我们可以直观地展示物质分子结构的特点和行为。
本文将就物质的分子结构实验演示展开讨论,并通过确定适当的实验格式,提供对物质分子结构的深入了解。
实验一:晶体结构演示在这个实验中,我们将使用盐晶体进行演示,盐是由氯离子(Cl-)和钠离子(Na+)组成的。
首先,取一小片盐晶体并在显微镜下观察。
我们可以看到晶体呈现出规则的、几何形状,并且由一个个紧密排列的离子组成。
这表明盐晶体的分子结构高度有序,离子之间的排列非常紧密。
接下来,我们使用一个放大的模型,将整个盐晶体的结构展示给观察者。
通过放大模型,我们可以清晰地看到盐晶体中氯离子和钠离子的相对位置。
氯离子和钠离子之间通过离子键紧密相连,形成了一个稳定的结构。
实验二:分子运动模拟这个实验将展示分子的运动行为以及分子之间的相互作用。
首先,我们准备一个透明的容器,并将一些食用色素和水混合在一起。
当我们在显微镜下观察时,可以看到水分子在容器中无规律地运动。
这种无序、随机的运动被称为布朗运动。
接下来,我们在容器中添加一些植物油,并再次观察分子的运动。
我们会发现,植物油分子与水分子之间存在排斥作用,从而导致两种分子形成不同的层次结构。
这是由于物质分子之间的相互作用引起的。
实验三:分子模型构建这个实验将使用分子模型构建来展示物质的分子结构。
我们将使用珠子、棍子等材料来代表分子的不同元素。
例如,我们可以使用红色珠子代表氧原子,蓝色珠子代表氢原子。
首先,我们选择一种物质,例如水(H2O),然后使用珠子和棍子将水分子的结构呈现出来。
水分子由一个氧原子和两个氢原子组成,氢原子通过共价键连接到氧原子。
我们可以使用不同的颜色和形状来代表不同类型的原子和键。
通过这种分子模型构建的实验,我们可以直观地看到水分子的结构以及原子之间的连接方式。
这有助于我们理解物质分子结构的性质和特点。
实验四:分子间相互作用演示在这个实验中,我们将展示不同物质之间分子间相互作用的差异。
分子模型的创建

Massage with Ghost amtos
Ghost atoms may also be used for a counterpoise calculation for an estimate of the magnitude of BSSE, counterpoise corrections provide only a crude estimate and not an upper bound on the error). A counterpoise correction can be achieved by specifying the dimer structure with the atomic symbol for one monomer replaced by a ghost atom. Since ghost atoms have no basis functions by default, they must be explicitly added via the ExtraBasis facility or a general basis set. See also the discussion of Massage in the manual.
# HF/6-31G* Massage Test
HF + H2O interaction energy: HF removed 01 X H 1 1.0 F 2 rHF 1 90.0 O 2 rHO 1 90.0 3 180.0 H 4 rOH 2 aHOH 1 90.0 H 4 rOH 2 aHOH 5 180.0 rHF 0.9203 rHO 1.8086 rOH 0.94 aHOH 126.4442 1 Nuc 0.0 2 Nuc 0.0
晶体模型绘制Diamond3.2

晶体结构立体模型建构软件(Diamond)教程中国海洋大学材料科学与工程研究院晶体结构立体模型建构软件-Diamond的使用在使用Diamond软件构造晶体模型时,需要知道晶体的结构数据,即晶体的空间群、晶胞参数和原子坐标。
晶体结构数据可以手动输入,也可以直接从晶体信息文件中获得。
我们将通过几个例子来说明软件的使用方法。
一、NaCl晶体结构模型的构造下面我们以NaCl为例手动输入晶体结构数据。
NaCl晶体的结构数据为:空间群Fm-3m(225);晶胞参数a=5.64Å;原子坐标Na:4a, Cl:4b。
我们将通过这个例子学会如下操作:1、学会手动输入晶体结构数据;2、学会晶体模型的构造;3、学会旋转晶体模型,从不同的角度观察;4、学会改变背景和原子及晶胞的颜色等参数;5、学会以一种原子为中心,另一种原子为配位原子构造配位多面体;6、学会多面体外观的设计。
打开软件,界面如下图所示:图1点击“File| New”,出现一对话窗口,如下图,选择第二个选项,按“OK”。
图 2结果生成一个名字为Diamond1的空白的页面,同时弹出一个名字为New Structure的对话窗口,点“下一步”,在新弹出的窗口中确认Crystal Structure with cell and Spacegroup被选中,在Cell length中输入5.64,如下图:图 3注意Space group(空间群)后是否我们需要的NaCl晶体的空间群Fm-3m(225),如果不是,点击Browse 按钮,在弹出的对话窗口中选中Fm-3m(225),即在Fm-3m(225)上点击使其变蓝色,如下图。
点“OK”回到前面的对话窗口。
中心对称图4点“下一步”(在出现的如下图的对话框中可以输入原子坐标,即在“Atomic parameters“中输入相应的元素符号和原子坐标值,但我们将在其他的地方做这个工作)图5点“下一步”,在出现的Completing the new structure Assistant窗口中有三个选项:Start structure picture; Launch the structure picture creation assistant; Create structure picture automaticly。
中学化学教学中有效的分子模型建构方法

中学化学教学中有效的分子模型建构方法概述:化学是一门抽象而又具有实验性的科学,而分子模型则是化学中重要的概念之一。
分子模型的建构有助于学生理解化学现象和掌握化学知识。
本文将探讨中学化学教学中有效的分子模型建构方法,旨在提高学生的学习效果和兴趣。
一、球棍模型法球棍模型法是最常用的分子模型建构方法之一。
它通过使用不同颜色和大小的球代表原子,用棍子连接原子来表示化学键。
这种方法直观而简单,可以帮助学生理解分子的结构和化学键的形成。
例如,在讲解水分子的结构时,可以用两个红色球代表氧原子,用两个白色球代表氢原子,用棍子连接它们来表示水分子的构成。
这样的模型可以让学生更好地理解水分子的极性和氢键的形成。
二、立体模型法立体模型法是一种更为直观的分子模型建构方法。
它通过使用不同形状的物体来表示分子的结构,使学生能够更好地理解分子的三维形态。
例如,在讲解甲烷分子的结构时,可以使用四个等边三角形代表氢原子,一个正四面体代表碳原子,将它们组装在一起来表示甲烷分子的构成。
这样的模型可以让学生更加清晰地认识到分子的空间排布和键角的大小。
三、计算机模拟法随着科技的发展,计算机模拟法在化学教学中的应用越来越广泛。
通过使用化学模拟软件或在线分子模型构建工具,学生可以在电脑上进行分子模型的建构和观察。
这种方法不仅能够提供更多的分子结构选择,还能够模拟一些实验无法观察到的现象。
例如,在讲解有机物的立体异构时,可以利用计算机模拟软件构建不同的结构,并观察它们在空间中的排布和性质的差异。
这样的模拟实验可以让学生更加深入地理解分子结构与性质之间的关系。
四、实物模型法实物模型法是一种通过使用真实的物体来构建分子模型的方法。
这种方法可以让学生通过触摸和操作来更好地理解分子的结构和性质。
例如,在讲解离子化合物的结构时,可以使用磁性球和棒子来表示阳离子和阴离子,将它们组装在一起来构建离子晶体的结构。
这样的实物模型可以让学生更加直观地感受到离子间的吸引力和排列规律。
分子模型的制作

图 4a
B12
图4b
正四面体与正八面体之间的演变
C60(足球烯)
凹十二面体
正十二面体
足球烯示意图
足球烯展开图型
足球烯展开图形
足球烯示意图
分子模型的制作方法
赤壁一中化学组 刘光利
制作目的:
1.充分利用分子模型等直观的教学用具,有利于培养学生 的联想能力,通过各种模型可以提高教学速度和教学质量,解 决书上难以表明的立体结构,达到突破重、难点的目的。 2.理解分子结构和晶体结构 培养用物质结构特点来认识 物质的特性
制作材料:
厚硬纸板、胶水或透明胶、铁丝、直尺、三角 板、剪刀
图2a
图2b
3.正八面体分子模型的制作(XY6型)
• 在厚硬纸板上划好八个等边三角形如图3a 所示,然后沿实线剪下,再沿虚线划痕迹 以便折叠,折叠后用粘合剂粘型的制作(B12模型)
• 在厚硬纸板上划好二十个等边三 角形如图4a所示,然后沿实线剪 下,再沿虚线划痕迹以便折叠, 折叠后用粘合剂粘牢即成图4b所 示。
1.正四面体分子模型的制作(白磷)
• 在厚硬纸板上划好四个等边三角形如图1a所示, 然后沿实线剪下,再沿虚线划痕迹以便折叠, 折叠后用粘合剂粘牢即成图1b所示。
图1a
图1b
2.三角双锥分子模型的制作(PCl5型)
• 在厚硬纸板上划好六个等边三角形如图2a所示,然 后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后 用粘合剂粘牢即成图2b所示。
MS晶体建模基本方法

MS晶体建模基本方法MS晶体建模是指使用材料科学领域常用的分子模拟技术,对晶体结构进行三维建模和计算的方法。
这种方法可以用于解释晶体的物理和化学性质,预测新型晶体的性质,并优化已知晶体的结构。
以下是MS晶体建模的基本方法:1.晶体结构建模:首先,需要确定晶体的化学成分和晶体结构类型。
根据晶胞参数和对称性,可以用晶体数据库或软件包选择合适的晶体结构模型。
然后,通过将晶体结构模型放置在晶格之中,确定晶格的大小和晶胞方向。
2.分子参数的计算:确定晶格之后,需要计算分子的参数,如键长、键角、扭转角等。
这些参数可以通过实验数据、理论计算或结构优化方法获得。
3.分子力场参数的分配:根据分子的类型和结构,需要确定适当的分子力场参数。
这些参数描述了分子之间的相互作用。
常见的力场参数包括键能、静电相互作用和范德华力等。
这些参数可以通过实验测量获得,也可以通过量子化学计算得到。
4.结构优化:通过分子动力学模拟或能量最小化方法,对晶体结构进行优化。
优化过程中可以通过改变分子的位置、角度和扭转角来减小系统的总能量。
通过多次迭代,得到较为稳定的最优结构。
5.物性计算:在获得了稳定的晶体结构之后,可以计算晶体的物理和化学性质。
例如,可以计算晶胞参数、密度、声学性质、电子结构等。
这些计算可以通过量子化学方法、分子动力学模拟或其他理论计算方法得到。
6.模型验证:进行实验验证,以确定建模结果的准确性。
可以通过X射线衍射、核磁共振、质谱等实验技术对建模结果进行验证。
如果验证结果与理论计算结果一致,即可认为建模结果是可靠的。
MS晶体建模在材料科学研究和工程设计中具有重要的应用价值。
它可以帮助科学家预测晶体的物理和化学性质,以及优化材料的性能。
同时,通过建模计算,可以节省实验成本和时间,提高材料设计的效率。
随着计算机性能的提高,MS晶体建模的应用将越来越广泛,为材料科学领域的发展和创新提供更多的可能性。
分子结构模型

分子结构模型分子结构模型,也称为分子图景模型,是指分子如何构建的模型。
分子图景模型的研究是从晶格结构及分子结构的角度出发,研究分子的空间构建及性质的模型。
分子结构模型是分子物理、化学等化学科的基础理论,也是化学物质各个特性的重要依据。
二、分子结构模型的基本原理分子结构模型的研究是从晶格结构及分子结构的角度出发,进行分子结构构建及性质的研究。
晶格结构是指物质晶体中由原子构成的各种晶体结构。
分子结构是指晶体结构中物质原子之间的构建及其特性表现。
分子结构模型基本原理:(1)原子结构原理:指在原子结构中,原子内部由两类粒子组成:质子和中子,围绕原子核存在量子态的电子;(2)吸引和斥力原理:指各类原子之间存在着不同的电荷,以及不同的吸引力和斥力,这些力的存在会造成原子之间的结合;(3)极性原理:指介质内的介质分子具有一定的极性,极性的存在使得有些分子之间具有相同或相反的电荷,这会影响分子间的相互作用。
三、应用(1)分子结构模型在生物学中的应用:分子结构模型可用于研究生物体内物质、细胞及组织的构造,探究细胞内各种物质的形态及性质,深入了解细胞及组织的结构及功能;(2)分子结构模型在化学中的应用:可用于解析有机物质分子间的键合及其异构体的性质;(3)分子结构模型在物理学中的应用:可用于量化物质分子之间的结合类型及性质,也可用于研究物质的磁性、电量等特性;(4)分子结构模型在材料科学中的应用:可用于研究材料分子间空间构造及性质,以及材料形态上的变化,进而了解材料的应用特性。
四、未来发展今天,分子结构模型已成为多学科的重要核心理论,且在未来的研究中将有着非常广阔的发展空间,如:(1)进一步深入了解分子结构的构建;(2)研究分子结构的动态性及其对物质性质的影响;(3)进一步研究多维度的分子结构图景模型。
总之,分子结构模型无疑是当今科学基础理论领域中一个重要的课题,其发展前景广阔,必将为化学物质各个特性的研究提供强有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子模型、晶体模型的制作
赤壁一中化学组 刘光利
二○○四年五月
制作目的:
1.充分利用分子模型等直观的教学用具,有利于培养学生的联想能力,通过各种模型可以提高教学速度和教学质量,解决书上难以表明的立体结构,从而达到突破难点的目的。
2.理解分子结构和晶体结构 培养用物质结构特点来认识物质的特性
制作材料:厚硬纸板、胶水或透明胶、铁丝、直尺、三角板、剪刀
制作方法:
1、正四面体的制作
在厚硬纸板上划好四个等边三角形如图1a 所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图1b 所示。
2、三角双锥分子模型的制作 在厚硬纸板上划好六个等腰三角形如图2a 所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图2b 所示。
图2a 图
2b
图1a
图
1b
3、正八面体分子模型的制作
在厚硬纸板上划好八个等边三角形如图3a所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图3b。
图3a 图3b
4、正二十面体分子模型的制作(B12)
在厚硬纸板上划好二十个等边三角形如图5a所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图5b所示。
图5a 图5b
使用说明
1.正四面体模型直接应用于白磷分子、甲烷分子、四氯化碳分子等正四面体分子结构的教学,也可应用于数学中立体几何的有关异面直线等方面的教学。
利用正四面体还可以组合成其他形状的立体图形。
例如,由一个正四面体可以切割成较小的正八面体,其方法是将正四面体的四个顶点从它的三条棱的中点切下,便可得到一个较小的正八面体。
如果以一个正四面体为中心,另用四个与之全等的正四面体分别与它的四个面相連接,就可以得到一个十二个面全等的凹十二面体。
2.三角双锥模型直接应用于五氯化磷(PCl5)等具有三角双锥结构的分子结构的教学。
也可用于数学教学。
3.正八面体应用于分子或离子组成为RX6、RX6n-型结构的教学。
两个或两个以上的正八机体之间还可以进行不同方式的重叠就可以得到多种空间图形,对讲解超八面体等空间结构教学有很大的帮助。
4.正二十面体是专门用于B12分子结构的教学。
在正二十面体中,每个顶点上有一个硼原子,每一条棱表示一根B—B键。
有了这个模型,我们就可以清楚地算出在B12分子中所含有的B—B键数以及每一个硼原子跟周围的五个硼原子以五个B—B单键相结合。
在教学过程中,常常遇到有关C60的结构的教学难点,如果我们从硼12的结构开始讲起,就可以达到教学目的。
因为B12是由12个硼原子构成的正二十面体,将正二十面体的每条棱三等分,然后将十二个硼原子等同地割下,因每个硼原子原有五条棱,所以割下后留下了一个正五边形的面,一个顶点就变成了五个顶点,原来的正三角形的面成变成了一个以原三角形边长的三分之一为边长的正六边形,这样新的图形就有5×12=60个顶点,有12个正五边形和20个正六边形。
这种结构就是我们通常所说的C60的结构。
以上的使用说明只是一些典型的应用,其实它们应该还有很多的应用,这就得看看每个教学工作者在实际教学中如何发挥它们的用途。
赤壁一中化学组刘光利
二00四年五月二十八日。