气体流速测量技术

合集下载

流体力学实验装置的流体参数测量技术

流体力学实验装置的流体参数测量技术

流体力学实验装置的流体参数测量技术流体力学是研究流动物质力学性质和规律的学科,涉及领域广泛,包括气体、液体等多种介质的研究。

在流体力学实验中,准确测量流体参数是非常重要的,如流速、压力、密度、流量等。

本文将重点介绍流体力学实验装置中常用的流体参数测量技术。

流速测量技术实验室常用的流速测量技术有热膜法、热线法、红外法和激光多普勒测速法等。

其中,热膜法是一种简单有效的方法。

通过在管道内安装薄膜传感器,利用电热效应产生的温度变化来测量流体速度。

热线法则是利用导电材料丝在流体中受热后的电阻变化来测量流速。

红外法是通过感应被测流体中红外辐射的强度来判断流速。

而激光多普勒测速法则是通过激光束对流体中颗粒反射回来的光频率变化来计算流速。

这些方法在实验装置中广泛应用,可以满足不同流速范围的测量需求。

压力测量技术在流体力学实验中,压力是一个非常重要的参数。

常用的压力测量技术包括毛细管压力计、压电传感器、晶体管传感器和压力传感器等。

毛细管压力计是一种简单且精确的压力测量方法,通过测量管道中液体的压力差来计算流速。

压电传感器则是利用压电效应将压力转化为电信号进行测量。

晶体管传感器也是一种常用的压力测量设备,通过晶体管的变化来判断压力值。

而压力传感器则是一种高精度的压力测量装置,可以满足各种实验装置对于精准压力测量的需求。

密度测量技术密度是流体的重要参数之一,对流体的性质和流动规律有着重要影响。

在流体力学实验中,准确测量密度是非常关键的。

常用的密度测量技术有悬浮小球法、浮标法、声速法和测量涡旋频率等。

悬浮小球法是通过将小球悬浮在流体中并测量其浮力来计算密度。

浮标法则是通过在流体中浮放不同密度的浮标,通过其浸没深度来计算密度。

声速法则是通过测量声波在流体中的传播速度来计算密度。

而测量涡旋频率则是利用涡旋在流体中传播的规律来间接计算密度。

这些方法在实验装置中广泛应用,为密度测量提供了多种选择。

流量测量技术流量是指单位时间内流体通过管道或通道的体积或质量。

流体力学中的流体流速测量

流体力学中的流体流速测量

流体力学中的流体流速测量流体力学是研究流体运动规律和性质的学科,涉及到流体的流速测量也是其中重要的内容之一。

流体流速测量的准确性和可靠性对于许多领域都至关重要,例如航空航天、能源、环境工程等。

本文将介绍几种常见的流体流速测量方法及其原理。

流体流速的测量可以基于不同的物理现象,下面将分别介绍以下三种常见方法:流管法、热膜法和超声波法。

一、流管法流管法是一种常用的流体流速测量方法,其基本原理是根据流体通过管道时的压力变化来计算流速。

具体操作过程是将待测流体通过一段已知长度和截面积的管道,进入一段较宽的容器,形成不同截面积的两端,称为流管。

通过测量流管两端的压力差,可以计算出流体的流速。

二、热膜法热膜法是通过在流体中加热膜元件来测量流速的一种方法。

其原理是利用热量传递的规律来推算流体的流速。

热膜法适用于流速较小或者粘性较大的流体,例如液体。

在实际应用中,会在流体中插入一个加热器,通过测量加热器上的温度变化,可以得到流体流速的信息。

三、超声波法超声波法是一种基于超声波技术的流体流速测量方法。

它采用超声波在流体中传播的速度与流体流速之间的关系,通过超声波传感器和接收器之间的时间差来计算流速。

超声波法适用于不同介质的流体测量,如气体、液体等。

它具有测量范围广、测量精度高等优点。

总结:流体力学中的流体流速测量是一项重要的技术,涉及到多种测量方法。

本文简要介绍了流管法、热膜法和超声波法这三种常见的流速测量方法及其原理。

通过选择合适的测量方法,可以准确地获取流体流速的信息,为相关领域的工程和研究提供有价值的数据。

在未来的发展中,相信会有更多更先进的流体流速测量方法被提出并应用于实际生产和科学研究中。

气体超声波流量计原理

气体超声波流量计原理

气体超声波流量计原理
气体超声波流量计是一种使用超声波技术来测量气体流动速度和体积流量的设备。

它通过将超声波传感器安装在流体管道中,利用超声波在气体中传播的特性来实现流量测量。

超声波流量计的原理基于多普勒效应和声速消声理论。

当超声波传感器发送一个高频信号进入流体中时,其中的气体颗粒会对超声波产生频率偏移。

这个频率偏移被称为多普勒频移,它与气体颗粒在流体中的速度成正比。

超声波流量计的传感器能够测量到这个多普勒频移,从而计算出气体的流动速度。

通过将流速与管道横截面积相乘,可以得到气体的体积流量。

为了提高测量的准确性,超声波流量计通常使用双超声波传感器布置在管道的对角位置。

一个传感器作为发送器发送超声波信号,另一个作为接收器接收反射回来的信号。

通过比较两个传感器接收到的信号,可以消除流体中的干扰,获得准确的流速和体积流量测量结果。

除了多普勒频移的测量外,超声波流量计还可以通过测量超声波在气体中传播的时间差来实现流速的测量。

这种方法被称为时间差测量法,它利用超声波在气体中传播的速度很高,可以忽略不计的特点来测量流速。

总之,气体超声波流量计利用超声波在气体中传播的特性,通过测量多普勒频移或时间差来实现气体的流速和体积流量的测
量。

它具有非侵入式、准确性高、无可动部件等优点,广泛应用于石油、化工、能源等行业的流量计量中。

气体超声波流量计的相关技术参数

气体超声波流量计的相关技术参数

气体超声波流量计的相关技术参数
气体超声波流量计是一种测量气体流量的设备,它采用超声波传感器对流体流速进行测量。

本文将对气体超声波流量计的相关技术参数进行介绍。

流量范围
气体超声波流量计的流量范围通常从1m/s至100m/s,最大流量可以达到2500m3/h。

温度范围
气体超声波流量计的温度范围一般为-30°C至+200°C,但不同型号的气体超声波流量计的温度范围也有所区别。

压力范围
气体超声波流量计的压力范围一般为0.6MPa至10MPa,但不同型号的气体超声波流量计的压力范围也有所区别。

精度
气体超声波流量计的精度通常为0.5%~1%。

漏率
气体超声波流量计的漏率一般小于0.1%。

重复性
气体超声波流量计的重复性一般为0.2%。

响应时间
气体超声波流量计的响应时间一般小于0.5s。

输出信号
气体超声波流量计的输出信号可以是模拟信号(420mA
10V)或数字信号
或0
(RS485或HART)。

功耗
气体超声波流量计的功耗通常为1~5W。

在线检测和诊断
气体超声波流量计通常具有在线检测和诊断功能,可以通过检测传感器状态、电路状态等信息来实现问题的快速诊断。

适用性
气体超声波流量计适用于压力、温度、粘度和密度变化较大的气体流量测量。

结论
气体超声波流量计是一种精度高、重复性好、响应速度快、功耗低的气体流量测量设备。

其适用范围广泛,可用于许多不同类型的气体流量测量。

流速测量

流速测量
1.皮托管测试技术
流速测量
2.流量计测流速 3.热线测速技术 4.激光多普勒测速技术
组员:黄佳木、李乐继、孙仁益、黄晓龙、 彭爽、万学斌、蒲豪放、符新建、朱孔睿 指导老师:龙天渝 城市建设与环境工程学院
2017/6/9
1 皮托管测速技术
基本构造
测速管又称皮托(Pitot)管,是由两根弯成直角的同心套管组成,内管管口正对着 管道中流体流动方向,外管的管口是封闭的,在外管前端壁面四周开有若干测压
2017/6/9
2017/6/9
(2)等电流型热线风速仪 工作原理:当流体流速增加时,热线的温度下降,即热线电 阻下降,此时电桥将失去平衡,热线电流将发生变化,为使热 线的电流不变,可调 节与它 串联的控制电阻,使热线所在桥 臂的总电阻保持不变,电桥将恢复原来的平衡状 态,这样就 建立了电桥输出电压与热线电阻的关系,也就是建立了电桥输 出电压与流体流速 的关系。
2017/6/9
u/umax~Remax(Re)关系图
2017/6/9
使用皮托管的注意事项
(1)测速管所测的速度是管路内某一点的线速度,它可以用于测定流道截面的速 度分布。 (2)一般使用测速管测定管中心的速度,然后可根据截面上速度分布规律换算平 均速度。 (3)测速管应放置于流体均匀流段,且其管口截面严格垂直于流动方向,一般测 量点的上,下游最好均有50倍直径长的直管距离,至少应有8~12倍直径长的直管 段。
小孔。
为了减小误差,测速管的前端经常做成半球形以减少涡流。
测速管的内管与外管分别与U形压差计(由于压差较小,常用微差压差计)相连
2017/6/9
2017/6/9
2017/6/9
2017/6/9
皮托管工作原理

超声波流量计多普勒法

超声波流量计多普勒法

超声波流量计多普勒法1. 引言超声波流量计是一种非接触式的流量测量设备,它利用多普勒效应原理来测量液体或气体的流速。

多普勒效应是指当波源与观测者相对运动时,观测者对波的频率感知将发生变化。

刚好利用这一效应,超声波流量计多普勒法能够测量流体中微小颗粒的速度,并通过计算来得出流速。

2. 原理超声波流量计多普勒法的原理基于多普勒频移现象。

当超声波通过流体中的颗粒时,如果颗粒具有速度,超声波的频率将发生变化。

多普勒频移(Doppler shift)是指入射波的频率与反射波的频率之差。

根据多普勒频移的大小,可以计算出颗粒的速度以及流体的流速。

3. 流程超声波流量计多普勒法的测量流程包括以下几个步骤:3.1 发射超声波流量计通过发射器产生超声波,并将波束朝向待测流体。

3.2 接收反射波超声波穿过流体时,会被颗粒散射和反射回流量计。

接收器接收到反射波,并将其传输至处理单元。

3.3 计算频移处理单元通过分析接收到的反射波的频率与发射波的频率之差,计算出多普勒频移。

3.4 计算流速通过应用多普勒频移公式,结合已知参数如声速和探头的角度等,可以计算出颗粒的速度,进而得出流体的流速。

4. 优点与应用超声波流量计多普勒法具有以下优点:4.1 非侵入式测量超声波流量计多普勒法不需要将传感器直接插入流体中,而是通过无线传输进行测量,不会对流体的流动性质造成影响。

4.2 高精度测量由于多普勒法能够测量微小颗粒的速度,因此可以实现对流体的高精度流速测量,适用于一些对流量要求较高的场合。

4.3 宽测量范围超声波流量计多普勒法的测量范围广泛,可以适应不同流速的测量要求。

超声波流量计多普勒法在许多领域得到了广泛应用,如石油化工、水处理、卫生医疗等。

5. 总结超声波流量计多普勒法通过利用多普勒效应原理进行流速测量,具有非侵入式、高精度和宽测量范围等优点。

在实际应用中,我们可以根据需求选择适合的流量计型号和参数来满足测量要求。

随着技术的不断发展,超声波流量计多普勒法在实用性和应用范围上也将得到进一步拓展和提升。

烟气流速流量监测 超声波时差法

烟气流速流量监测 超声波时差法

烟气流速流量监测超声波时差法1范围本标准规定了基于超声波时差法烟气流速流量监测(以下简称流速流量仪)的术语和定义、方法原理、系统组成、技术要求、试验方法、安装要求、参比方法采样位置要求、比对监测。

本标准适用于烟道(烟囱)中低于40m/s的烟气流速在线监测。

2规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅所注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ 75-2017固定污染源烟气(SO 2、NO X 、颗粒物)排放连续监测技术规范3术语和定义下列术语和定义适用于本文件。

3.1烟气超声流速仪exhaust gas ultrasonic velocity meters利用超声波在烟气中的传播特性来测量流速的仪器。

3.2烟气超声流量仪exhaust gas ultrasonic flow meters利用烟气超声流速流量仪测量的流速计算出流量值的仪器,称为烟气超声流量仪。

3.3超声换能器ultrasonic transducer在电信号作用下产生声波输出,并将声波信号转换为电信号的器件。

3.4传播时间差法transit-time difference method在流动烟气中的相同行程内,用超声波顺流和逆流传播的时间差来确定沿声道的烟气平均流速的测量方法。

3.5声道路径acoustic path超声波信号在成对的超声波换能器间传播的实际路径。

3.6单声道流速流量仪single-path flow meter只有一对换能器的流速流量仪。

3.7双声道流速流量仪dual-paths flow meters有两对换能器的流速流量仪。

3.8三声道流速流量仪triple-paths flow meters有三对换能器的流速流量仪。

3.9四声道流速流量仪quadruple-paths flow meters有四对换能器的流速流量仪。

气体流量传感器工作原理

气体流量传感器工作原理

气体流量传感器工作原理
气体流量传感器的工作原理是通过测量气体在管道或系统中的流动速度和压降来确定流量。

以下是一种常见的气体流量传感器工作原理的描述:
1. 热敏法:这种方法利用一个加热器和一个温度传感器。

加热器将一定功率的热量传递给通过传感器区域的气体流动。

温度传感器测量气体流经时的温度变化。

根据被冷却的程度和传热速率,可以确定气体流量。

2. 压差法:这种方法使用了一个装置,包括一个差压传感器和一个孔板或者喷嘴。

当气体流经孔板或者喷嘴时,会产生压差。

差压传感器测量孔板两侧的压差,根据压差的大小可以计算出气体的流量。

3. 超声波法:这种方法利用超声波传感器来测量气体流动速度。

通常,超声波传感器将两个或多个超声波传感器安装在管道内的已知距离上。

其中一个传感器发射超声波,另一个传感器接收反射的超声波。

根据超声波的传播速度和接收到的信号延迟时间可以计算出气体的流速和流量。

这些是气体流量传感器常见的工作原理,根据不同的应用需求和测量范围,可能会采用不同的传感器和测量技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热线风速仪
流速计的一种,它的作用原理是将感测元件——一根通以电流而被加热的细金属丝置于通道中,当气体流过它时则将带走一定的热量,此热量与流体的速度有关。

其流速的确定,常用的有两种方法:一是定电流法,即加热金属丝的电流不变,气体带走一部分热量后金属丝的温度就降低,流速愈大温度降低得就愈多;测得金属丝的温度则可得知流速的大小。

另一种是定电阻法(即定温度法),改变加热的电流使气体带走的热量得以补充,而使金属丝的温度保持不变(也称金属丝的电阻值不变);这时流速愈大则所需加热的电流也愈大,测得加热电流值则可得知流速的大小。

热线长度一般在0.5~2毫米范围,直径在1~10微米范围,材料为铂、钨或铂铑合金等。

若以一片很薄(厚度小于0.1微米)的金属膜代替金属丝,即为热膜风速仪,功能与热丝相似,但多用于测量液体流速。

热线除普通的单线式外,还可以是组合的双线式或三线式,用以测量各个方向的速度分量。

从热线输出的电信号,经放大、补偿和数字化后输入计算机,可提高测量精度,自动完成数据后处理过程,扩大测速功能,如同时完成瞬时值和时均值、合速度和分速度、湍流度和其他湍流参数的测量。

热线风速仪与皮托管相比,具有探头体积小,对流场干扰小;响应快,能测量非定常流速;能测量很低速(如低达0.3米/秒)等优点。

热球风速仪
风速计是一种能测低风速的仪器,其测定范围为0.05~10m/s。

风速计是由热球式测杆探和测量仪表两部分组成。

探头有一个直径0.6mm的玻璃球,球内绕有加热玻璃球用的镍铬丝圈和两个串联的热电偶。

热电偶的冷端连接在磷铜质的支柱上,直接暴露在气流中。

当一定大小的电流通过加热圈后,玻璃球的温度升高。

升高的程度和风速有关,风速小时升高的程度大;反之,升高的程度小。

升高程度的大小通过热电偶在电表上指示出来。

根据电表的读数,查校正曲线,即可查出所的风速(m/s)。

超声波风速仪
超声波风速风向仪是利用发送声波脉冲,测量接收端的时间或频率(多普勒变换)差别来计算风速和风向的测量传感器或测量仪器。

超声测风是超声波检测技术在气体介质中的一种应用它是利用超声波在空气中传播速度受空气流动(风) 的影响来测量风速的。

与常规的风杯或旋翼式风速仪相比这种测量方法的最大特点在于整个测风系统没有任何机械转动部件,属于无惯性测量,故能准确测出自然风中阵风脉动的高频成分,结合现代计算机技术,可在更高层次上揭示自然风的特性对于提高抗风减灾能力和风资源的合理利用有重大意义。

相关文档
最新文档