因式分解易错题
因式分解易错题汇编附解析

故选:D 【点睛】 本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利 用因式分解简化计算问题.
15.已知三个实数 a,b,c 满足 a﹣2b+c<0,a+2b+c=0,则( )
A.b>0,b2﹣ac≤0
B.b<0,b2﹣ac≤0
C.b>0,b2﹣ac≥0
D.b<0,b2﹣ac≥0
9.下列分解因式错误的是( ).
A.15a2 5a 5a3a 1
B. x2 y2 x yx y
C. ax x ay y a 1x y
D. a2 bc ab ac a ba c
【答案】B 【解析】 【分析】 利用因式分解的定义判断即可. 【详解】
解:A. 15a2 5a 5a3a 1 ,正确;
14.若 a、b、c 为 ABC 三边,且满足 a2c2 b2c2 a4 b4 ,则 ABC 的形状是( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形 D.以上均有可能
【答案】D
【解析】
【分析】
把已知等式左边分解得到 a ba b c2 a2 b2 0 , a b =0 或 c2 a2 b2 =0,即 a=b 或 c2 a2 b2 ,然后根据等腰三角形和直角三角形的判定方法
12.已知 a b , a c ,若 M a2 ac , N ab bc ,则 M 与 N 的大小关系是( )
A. M N
B. M N
C. M N
D.不能确定
【答案】C
【解析】
【分析】
计算 M-N 的值,与 0 比较即可得答案.
【详解】
∵ M a2 ac , N ab bc ,
B、x3÷x2=x,正确;
因式分解易错题汇编及答案

因式分解易错题汇编及答案一、选择题1.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①x 2-16=(x+4)(x-4),是因式分解;②x 2+3x-16=x (x+3)-16,不是因式分解;③(x+4)(x-4)=x 2-16,是整式乘法;④x 2+x =x (x +1)),是因式分解.故选B .2.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.3.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.4.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .5.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.6.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;7.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误.故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.8.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.9.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.10.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.11.下列各式中从左到右的变形,是因式分解的是( )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x) 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、因式分解是把一个多项式转化成几个整式积的形式,故C 正确;D 、因式中含有分式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.12.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M NC .M N >D .不能确定【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.13.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.14.把多项式分解因式,正确的结果是( )A .4a 2+4a +1=(2a +1)2B .a 2﹣4b 2=(a ﹣4b )(a +b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a +b )=a 2﹣b 2【答案】A【解析】【分析】直接利用平方差公式和完全平方公式进行分解因式,进而判断得出答案.【详解】A .4a 2+4a +1=(2a +1)2,正确;B .a 2﹣4b 2=(a ﹣2b )(a +2b ),故此选项错误;C .a 2﹣2a ﹣1在有理数范围内无法运用公式分解因式,故此选项错误;D .(a ﹣b )(a +b )=a 2﹣b 2,是多项式乘法,故此选项错误.故选:A .【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.15.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法判断.【详解】因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.16.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】 此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.17.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.18.把x 2-y 2-2y -1分解因式结果正确的是( ).A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x 2-(y 2+2y+1),=x 2-(y+1)2,=(x+y+1)(x-y-1).故选A .19.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=- D .()22121x x x x -+=-+【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.20.计算(-2)2015+(-2)2016的结果是 ( )A .-2B .2C .22015D .-22015 【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。
(易错题精选)初中数学因式分解易错题汇编含答案

A. B.
C. D.
【答案】A
【解析】
【分析】
根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.
【详解】
解:A、把一个多项式转化成几个整式积的形式,符合题意;
B、右边不是整式积的形式,不符合题意;
C、是整式的乘法,不是因式分解,不符合题意;
【详解】
(-2)201+(-2)200
=(-2)200×(-2+1)
=-2200.
故选:A.
【点睛】
此题考查提取公因式法分解因式,正确找出公因式是解题关键.
14.多项式 分解因式的结果是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据提取公因式和平方差公式进行因式分解即可解答.
【详解】
解: ;
【详解】
=a(a+1)(a-1),故A错误;
,故B错误;
,故C正确;
不能分解因式,故D错误,
故选:C.
【点睛】
此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.
7.下列因式分解结果正确的是( ).
A.10a3+5a2=5a(2a2+a)
B.4x2-9=(4x+3)(4x-3)
C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x
【答案】C
【解析】
【分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.
【详解】
A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;
因式分解易错题汇编含解析

因式分解易错题汇编含解析一、选择题1.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.2.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.3.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16 【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.4.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.5.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.6.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.7.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.8.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不是分解因式,不符合题意;D、原式=(m+2)2,符合题意,故选:D.【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.9.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A.2 B.﹣6 C.5 D.﹣3【答案】B【解析】【分析】先题提公因式xy,再用公式法因式分解,最后代入计算即可.【详解】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故答案为B.【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.10.下列各因式分解正确的是()A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x3﹣4x=2(x﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A.﹣x2+(﹣2)2=(2+x)(2﹣x),故A错误;B.x2+2x﹣1无法因式分解,故B错误;C.4x2﹣4x+1=(2x﹣1)2,故C正确;D、x3﹣4x= x(x﹣2)(x+2),故D错误.故选:C.【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.11.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.12.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q , ()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.13.下列式子从左到右变形是因式分解的是( )A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.14.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.15.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.16.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9【点睛】此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.17.下列由左到右边的变形中,是因式分解的是( )A .(x +2)(x ﹣2)=x 2﹣4B .x 2﹣1=1()x x x-C .x 2﹣4+3x =(x +2)(x ﹣2)+3xD .x 2﹣4=(x +2)(x ﹣2)【答案】D【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误;B 、x 2-1=(x+1)(x-1),故此选项错误;C 、x 2-4+3x=(x+4)(x-1),故此选项错误;D 、x 2-4=(x+2)(x-2),正确.故选D .【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.18.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.19.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。
因式分解易错题汇编

【答案】A
【解析】
【分析】
本题考查的是因式分解中的平方差公式和完全平方公式
【详解】
解:A. 4a2+4a+1=(2a+1)2,正确;
B. a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;
C. a2﹣2a+1=(a﹣1)2,故此选项错误;
C. ,左右两边不相等,故错误;
D. 是因式分解;
故选:D
【点睛】
本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.
6.将2x2a-6xab+2x分解因式,下面是四位同学分解的结果:
①2x(xa-3ab),②2xa(x-3b+1),③2x(xa-3ab+1),④2x(-xa+3ab-1).
【答案】A
【解析】
A.提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;
B.是完全平方公式,已经彻底,正确;
C.是提公因式法,已经彻底,正确;
D.是平方差公式,已经彻底,正确.
故选A.
12.下列各因式分解的结果正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
20.计算(-2)2015+(-2)2016的结果是( )
A.-2B.2C.22015D.-22015
【答案】C
【解析】
【分析】
【详解】
(-2) +(-2)
=(-2) ×(-2)+(-2)
=(-2) ×(1-2)
=2 .
因式分解易错题

变式练习
m 1
y
2
(2)
25x y 10 y x 1
(3)
4a b (a b )
2 2 2
2 2
已知 (4) a 2003, b 2004 , c 2005 , 求a 2 b2 c 2 ab bc ac的值
(5)( 2)1999 (2)1998 (2)1997 (2)3 (2) 2 (2) 1
易错三:因式分解不彻底 例3 分解因式x4-1. 错解:原式=(x2)2-12=(x2+1)(x2-1) 正解:原式=(x2)2-12=(x2+1)(x2-1) =(x2+1)(x+1)(x-1) 变式练习:(1)4x4-x2y2 (2)(p2+q2)2-4p2q2
易错四:用公式时,加减符号弄错
1. x
5
- 16x
2. –4a 2+4ab- b 2
3. 18xy2-27x2y -3y3 4. m 2(m- 2) - 4m(2- m) 5. 4a
2-
(1)提公因式法 (2)套用公式法 二项式:平方差
16(a - 2)
2
三项式:完全平方
3.分解因式:
(1).
x
m 3
2x
2
m 2
初中数学因式分解易错题汇编含答案

A. B.
C. D.
【答案】C
【解析】
【分析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
【详解】
解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.
C.4x2+8x-4=4x D.4my-2=2(2my-1)
【答案】D
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;
B、x2﹣1=(x+1)(x﹣1),故本选项正确;
C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;
D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.
故选B.
考点:提公因式法与公式法的综合运用.
7.下列等式从左到右的变形是因式分解的是( )
初中数学因式分解易错题汇编含答案
一、选择题
1.已知 , , 满足 , ,则 ().
A.0B.3C.6D.9
【答案】D
【解析】
【分析】
将等式变形可得 , , ,然后代入分式中,利用平方差公式和整体代入法求值即可.
【详解】
解:∵
∴ , ,
∵
(易错题精选)初中数学因式分解难题汇编含答案

整理得: ,
比较系数得: ,
解得: ,
∴ ,
故选:A.
【点睛】
此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.
17.已知 、 、 为 的三边长,且满足 ,则 是()
A.直角三角形B.等腰三角形或直角三角形
C.等腰三角形D.等腰直角三角形
【答案】B
【解析】
【分析】
移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.
C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)2
【答案】D
【解析】
【分析】
逐项分解因式,即可作出判断.
【详解】
A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;
B、原式不能分解,不符合题意;
C、原式不是分解因式,不符合题意;
D、原式=(m+2)2,符合题意,
故选:D.
15.下面的多项式中,能因式分解的是()
A. B. C. D.
【答案】B
【解析】
【分析】
完全平方公式的考察,
【详解】
A、C、D都无法进行因式分解
B中, ,可进行因式分解
故选:B
【点睛】
本题考查了公式法因式分解,常见的乘法公式有:平方差公式:
完全平方公式:
16.若多项式 含有因式 和 ,则 的值为()
【详解】
A. ,故本选项正确;
B. ,故本选项错误;
C. ,故本选项错误;
D. ,故本选项错误.
故选A.
【点睛】
此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导教案
辅导科目:数学学员姓名:年级:新九年级学科教师:王玉伟课时数: 3 第次课授课主题因式分解易错题
复习巩固提公式法、公式法分解因式的方法,掌握因式分解易错题型及教学目标
做题技巧
授课日期及时段2015 年7 月日
10:00——12:00
教学内容
知识点一因式分解概念
1、因式分解:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做因式分解
(也叫作分解因式)。
例如:m2-n2= (m+n )(m-n)
注意:
(1)分解要彻底
(2)最后结果只有小括号
(3)最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1) )
知识点二因式分解的方法
⑴提公因式法
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
口诀:找准公因式,一次要提净;全家都搬走,留 1 把家守;提负要变号,变形看奇偶。
⑵公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a2 -b2=(a+b)(a-b) ;
完全平方公式:a2±2ab+b2 =(a±b) 2 ;
(3))分组分解法:将多项式分组后能提公因式进行因式分解;
如: am an bm bn a(m n) b(m n) ( a b)( m n)
将多项式分组后能运用公式进行因式分解
注意: 分组时要注意符号的变化.
x2 ( p q)x pq (x p)(x q) 形式的多项式,可以考虑用此种方法)(4)十字相乘法: 形如
方法:常数项拆成两个因数p和q ,这两数的和p q 为一次项系数
4a b
知识点三 因式分解的一般思路和步骤:
(1) 先看各项有没有公因式 ,若有,则先提取公因式;
(2)再看能否使用公式法 ;
(3)用分组分解法 ,即通过分组后提取各组公因式或运用公式法来达到分解的目的
; (4)因式分解的最后结果必须是几个 整式的乘积的形式 ,否则不是因式分解 ;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止 .
概括: “一提”、“二套”、“三分组”、“四十字”。
知识点四 归纳总结
1. 思想方法提炼
( 1)直接用公式。
如: x 2
-4=( x + 2)( x - 2)
2 2 a
4ab 4b 2
(a 2b) (2) )提公因式后用公式。
如: ab 2-a =a ( b 2
-1)=
(3) )整体用公式。
如:
(2a b)
2 ( a 2b) 2 [( 2a b) ( a 2b )] [( 2a b) ( a 2b)] ( 3a b )( a 3b)
(4) )连续用公式。
如:
(a
2 b 2 c 2 ) 2
2 2 [ 来源:学§科§网 Z § X § X § K]
(5) )化简后用公式。
如:( a + b )2- 4ab
(6) )变换成公式的模型用公式。
如:
x 2 2 x y y 2
2 x 2 y 1 ( x y) 2
2( x y) 1 ( x y 1) 2
一、提公因式后失项
例1、分解因式:–4a3b3 + 6a2b–2ab
二、提不彻底
例2、分解因式:3a( a–b )2 + 6ab ( b–a )
三、符号混乱
例3、分解因式:6( m–n )3–12( n–m )2例4、分解因式:6 ( p + q )2–12 (q + p )
2 2 例5、分解因式:9( m + n ) –16 ( n–m )
四、概念混乱
例6、分解因式:( 2m + n )2–( m + 2n )2
五、分而不尽
例7、分解因式:– a + 2a2–a3
例8、分解因式:( a2 + b 2 )2–4a2b2
六、分而不合
例9、分解因式:16( a–b )2–9 ( a + b )2
七、概念不清
例10、分解因式:16x2–4
2 4
例11、分解因式:3ax –3ay
八、分解因式的步骤混乱
例12、分解因式:4x4–4
九、公式混乱
例13、分解因式:2x3–8x
3 2 2 例14、分解因式:x –4x y + 9x y
例15、分解因式:–x2 + y2
Welcome To Download !!!
欢迎您的下载,资料仅供参考!
-可编辑修改-。