高等数学同济大学版课程讲解函数的极限

合集下载

同济大学_第一章_函数极限

同济大学_第一章_函数极限

第一篇 函数、极限与连续第一章 函数、极限与连续高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识.第1节 集合与函数集合集合讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素.通常用大写字母A 、B 、C 、Λ表示集合,用小写字母a 、b 、c 、Λ表示集合的元素.如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ∉,读作“a 不属于A ”.一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ.集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成A ={1,2,3,4,5};第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为{}P x x M 具有性质|=.例如,集合A 是不等式022<--x x 的解集,就可以表示为{}02|2<--=x x x A .由实数组成的集合,称为数集,初等数学中常见的数集有:(1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {}ΛΛ,,,3,2,1,0n N =;(2)所有正整数组成的集合称为正整数集,记作+N ,即 {}ΛΛ,,,3,2,1n N =+;(3)全体整数组成的集合称为整数集,记作Z ,即{}ΛΛΛΛ,,,3,2,1,0,1,2,3,,,n n Z ----=;(4)全体有理数组成的集合称为有理数集,记作Q ,即⎭⎬⎫⎩⎨⎧∈∈=+互质与且q p N q Z p q p Q ,,;(5)全体实数组成的集合称为实数集,记作R .区间与邻域在初等数学中,常见的在数集是区间.设R b a ∈,,且b a <,则(1)开区间 {}b x a x b a <<=|),(; (2)半开半闭区间 {}b x a x b a <≤=|),[,{}b x a x b a ≤<=|],(;(3)闭区间 {}b x a x b a ≤≤=|],[;(4)无穷区间 {}a x x a ≥=+∞|),[, {}a x x a >=+∞|),(,{}b x x b ≤=-∞|],(, {}b x x b <=-∞|),(,{}R x x ∈=+∞-∞|),(.以上四类统称为区间,其中(1)-(4)称为有限区间,(5)-(8)称为无限区间.在数轴上可以表示为(图1-1):(1) (2)(3) (4)(5) (6)(7) (8)图 1-1 在微积分的概念中,有时需要考虑由某点0x 附近的所有点组成的集合,为此引入邻域的概念.定义1 设δ为某个正数,称开区间),(00δδ+-x x 为点0x 的δ邻域,简称为点0x 的邻域,记作),(0δx U ,即{}δδδ+<<-=0000|),(x x x x x U {}δ<-=|||0x x x .在此,点0x 称为邻域的中心,δ称为邻域的半径,图形表示为(图1-2):图1-2另外,点0x 的邻域去掉中心0x 后,称为点0x 的去心邻域,记作),(0δx U o,即 {}δδ<-<=||0|),(00x x x x U o,图形表示为(图1-3):图1-3 其中),(00x x δ-称为点0x 的左邻域,),(00δ+x x 称为点0x 的右邻域.函数的概念函数的定义定义2 设x 、y 是两个变量,D 是给定的数集,如果对于每个D x ∈,通过对应法则f ,有唯一确定的y 与之对应,则称y 为是x 的函数,记作)(x f y =.其中x 为自变量,y 为因变量,D 为定义域,函数值)(x f 的全体成为函数f 的值域,记作f R ,即{}D x x f y y R f ∈==),(|.函数的记号是可以任意选取的, 除了用f 外, 还可用“g ”、“F ”、“ϕ”等表示. 但在同一问题中, 不同的函数应选用不同的记号.函数的两要素:函数的定义域和对应关系为确定函数的两要素.例1 求函数211x x y --=的定义域. 解 x1的定义区间满足:0≠x ;21x -的定义区间满足:012≥-x ,解得11≤≤-x . 这两个函数定义区间的公共部分是1001≤<<≤-x x 或.所以,所求函数定义域为]1,0()0,1[Y -.例2 判断下列各组函数是否相同.(1)x x f lg 2)(=,2lg )(x x g =;(2)334)(x xx f -=,31)(-=x x x g ;(3)x x f =)(,2)(x x g =.解 (1)x x f lg 2)(=的定义域为0>x ,2lg )(x x g =的定义域为0≠x .两个函数定义域不同,所以)(x f 和)(x g 不相同.(2))(x f 和)(x g 的定义域为一切实数.334)(x x x f -=)(13x g x x =-=,所以)(x f 和)(x g 是相同函数.(3)x x f =)(,x x x g ==2)(,故两者对应关系不一致,所以)(x f 和)(x g 不相同. 函数的表示法有表格法、图形法、解析法(公式法)三种.常用的是图形法和公式法两种.在此不再多做说明.函数举例:例3 函数⎪⎩⎪⎨⎧>=<-==0,10,00,1sgn x x x x y ,函数为符号函数,定义域为R ,值域{}1,0,1-. 如图1-4:图1-4例4 函数[]x y =,此函数为取整函数,定义域为R , 设x 为任意实数, y 不超过x 的最大整数,值域Z . 如图1-5:图1-5特别指出的是,在高等数学中还出现另一类函数关系,一个自变量x 通过对于法则f 有确定的y 值与之对应,但这个y 值不总是唯一.这个对应法则并不符合函数的定义,习惯上我们称这样的对应法则确定了一个多值函数.函数的性质设函数)(x f y =,定义域为D ,D I ⊂.(1)函数的有界性定义3 若存在常数0>M ,使得对每一个I x ∈,有M x f ≤)(,则称函数)(x f 在I 上有界.若对任意0>M ,总存在I x ∈0,使M x f >)(0,则称函数)(x f 在I 上无界.如图1-6:图1-6例如 函数 x x f sin )(=在),(+∞-∞上是有界的:1sin ≤x .函数 xx f 1)(=在)1,0(内无上界,在)2,1(内有界.(2)函数的单调性 设函数)(x f y =在区间I 上有定义, 1x 及2x 为区间I 上任意两点, 且21x x <.如果恒有)()(21x f x f <, 则称)(x f 在I 上是单调增加的;如果恒有)()(21x f x f >, 则称)(x f 在I 上是单调递减的.单调增加和单调减少的函数统称为单调函数(图1-7).图1-7(3)函数的奇偶性 设函数)(x f y =的定义域D 关于原点对称.如果在D 上有)()(x f x f =-, 则称)(x f为偶函数;如果在D 上有)()(x f x f -=-, 则称)(x f 为奇函数.例如,函数2)(x x f =,由于)()()(22x f x x x f ==-=-,所以2)(x x f =是偶函数;又如函数3)(x x f =,由于)()()(33x f x x x f -=-=-=-,所以3)(x x f =是奇函数.如图1-8:图1-8从函数图形上看,偶函数的图形关于y 轴对称,奇函数的图形关于原点对称.(4)函数的周期性设函数)(x f y =的定义域为D . 如果存在一个不为零的数l ,使得对于任一D x ∈有()D l x ∈±, 且())(x f l x f =±, 则称)(x f 为周期函数, l 称为)(x f 的周期.如果在函数)(x f 的所有正周期中存在一个最小的正数,则我们称这个正数为)(x f 的最小正周期.我们通常说的周期是指最小正周期.例如,函数x y sin =和x y cos =是周期为π2的周期函数,函数x y tan =和x y cot =是周期为π的周期函数.在此,需要指出的是某些周期函数不一定存在最小正周期.例如,常量函数C x f =)(,对任意实数l ,都有)()(x f l x f =+,故任意实数都是其周期,但它没有最小正周期.又如,狄里克雷函数⎩⎨⎧∈∈=c Q x Q x x D ,0,1)(, 当c Q x ∈时,对任意有理数l ,c Q l x ∈+,必有)()(x D l x D =+,故任意有理数都是其周期,但它没有最小正周期.反函数在初等数学中的函数定义中,若函数)(:D f D f →为单射,若存在:1-fD D f →)(,称此对应法则1-f 为f 的反函数.习惯上,D x x f y ∈=),(的反函数记作)(),(1D f x x f y ∈=-.例如,指数函数),(,+∞-∞∈=x e y x 的反函数为),0(,ln +∞∈=x x y ,图像为(图1-9)图1-9反函数的性质:(1)函数)(x f y = 单调递增(减),其反函数)(1x fy -=存在,且也单调递增(减). (2)函数)(x f y =与其反函数)(1x f y -=的图形关于直线x y =对称.下面介绍几个常见的三角函数的反函数:正弦函数x y sin =的反函数x y arcsin =,正切函数x y tan =的反函数x y arctan =. 反正弦函数x y arcsin =的定义域是]1,1[-,值域是⎥⎦⎤⎢⎣⎡-2,2ππ;反正切函数x y arctan =的定义域是),(+∞-∞,值域是⎪⎭⎫ ⎝⎛-2,2ππ,如图1-10:9图1-10复合函数定义4 设函数f D u u f y ∈=),(,函数f g g D R D x x g u ⊂∈=值域,),(,则()()g D x x g f y x g f y ∈==),()(ο或称为由)(),(x g u u f y ==复合而成的复合函数,其中u 为中间变量.注:函数g 与函数f 构成复合函数g f ο的条件是f g D R ⊂,否则不能构成复合函数.例如,函数]1,1[arcsin -∈=u u y ,,R x x u ∈+=,22.在形式上可以构成复合函数()2arcsin 2+=x y .但是22+=x u 的值域为]1,1[),2[-⊄+∞,故()2arcsin 2+=x y 没有意义. 在后面的微积分的学习中,也要掌握复合函数的分解,复合函数的分解原则: 从外向里,层层分解,直至最内层函数是基本初等函数或基本初等函数的四则运算.例5 对函数x a y sin =分解.解 x a y sin =由u a y =,x u sin =复合而成.例6 对函数)12(sin 2+=x y 分解.解 )12(sin 2+=x y 由2u y =,v u sin =,12+=x v 复合而成.初等函数在初等数学中我们已经接触过下面各类函数:常数函数:C y =(C 为常数);幂函数:)0(≠=ααx y ;指数函数:)10(≠>=a a a y x 且;对数函数:)10(log ≠>=a a x y a 且;三角函数:x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ======;反三角函数:x arc y x y x y x y cot ,arctan ,arccos ,arcsin ====.这六种函数统称为基本初等函数.定义5 由基本初等函数经过有限次的四则运算和有限次的复合步骤所构成的并用一个式子表示的函数,称为初等函数.例如,x e y sin =,)12sin(+=x y ,2cot x y =等都是初等函数.需要指出的是,在高等数学中遇到的函数一般都是初等函数,但是分段函数不是初等函数,因为分段函数一般都有几个解析式来表示.但是有的分段函数通过形式的转化,可以用一个式子表示,就是初等函数.例如,函数⎩⎨⎧≥<-=0,0,x x x x y , 可表示为2x y =.习题 1-11.求下列函数的定义域.(1)21x y -=; (2)2411x xy -++=; (3)2ln 2x x y -=; (4)43arcsin -=x y ; (5)452+-=x y ; (6)2)3ln(--=x x y . 2.下列各题中,函数)(x f 和)(x g 是否相同,为什么(1)2lg )(x x f =,x x g lg 2)(=; (2)x x f =)(,2)(x x g =; (3)x x f =)(,x e x g ln )(=; (4)x x f =)(,)sin(arcsin )(x x g =.3.已知)(x f 的定义域为]1,0[,求下列函数的定义域.(1))(2x f ; (2))(tan x f ; (3))0)(()(>-++a a x f a x f .4.设()5312++=+x x x f ,求)(x f ,)1(-x f .5.判断下列函数的奇偶性.(1)x x y tan sin ⋅=; (2)()1lg 2++=x x y ; (3)2xx e e y -+=; (4))1(3+=x x y ; (5)⎩⎨⎧>+≤-=0,10,1x x x x y . 6.设下列考虑的函数都是定义在区间)0)(,(>-l l l 上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数和奇函数的乘积是奇函数.7.下列函数中哪些是周期函数如果是,确定其周期.(1))1sin(+=x y ; (2)x y 2cos =;(3)x y πsin 1+=; (4)x y 2cos =.8.求下列函数的反函数.(1)31-=x y ; (2))2lg(1++=x y ;(3)x x e e y +=1; (4)),(2sin 2ππ-∈=x x y ;(5)⎪⎩⎪⎨⎧>≤≤<=4,241,1,2x x x x x y x .9.下列函数是有哪些函数复合而成的.(1))13sin(+=x y ; (2))21(cos 3x y +=;(3)))1ln(arcsin(+=x y ; (4)2sin x e y =.10.设2)(x x f =,x x ln )(=ϕ,求())(x f ϕ,())(x f f ,())(x f ϕ.第2节 极限极限在高等数学中占有重要地位,微积分思想的构架就是用极限定义的. 本节主要研究数列极限、函数极限的概念以及极限的有关性质等内容.数列的极限数列的概念定义1 若按照一定的法则,有第一个数1a ,第二个数a 2,…,依次排列下去,使得任何一个正整数n 对应着一个确定的数n a ,那么,我们称这列有次序的数a 1,a 2,…,a n ,…为数列.数列中的每一个数叫做数列的项。

高等数学同济大学第六版1-04-极限的运算-文档资料

高等数学同济大学第六版1-04-极限的运算-文档资料
常数因子可以提到极限记号外面.
推论2 如果lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
求极限方法举例
例1

lim
x2
x
2
x3 1 3x
5
.

lim( x2 3x 5) lim x2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3lim x lim 5 22 3 2 5 3 0,
(2)零是可以作为无穷小的唯一的数。
2.无穷小与函数极限的关系: 定理 : lim f ( x) A f (x) A (x),
其中( x)是自变量变化时的无穷小.
意义: 将一般极限问题转化为特殊极 限 — 无穷小 —的问题。
3.无穷小的运算性质:
定理. 在同一自变量的变化过程中,有限个无 穷小的代数和仍是无穷小.
n n
n
lim sin x 0, 函数sin x是当x 0时的无穷小. x0
又如,
函数 x2 1当 x2 1
x 时的极限为 1 ,
而当x 1 时的极限为 0 ,
函数 x2 1本身不是无穷小量, x2 1
而当x
1
时函数
x2 x2
1 才是无穷小量。 1
注意 (1)无穷小是变量,不是有穷小量,不能与很 小的数混淆;
x 1
x2
2x
3
lim
x 1
(x
3)( x
1)
x 1
x1 1
lim
x1 x1 x 3 2
消去零因子
例4

lim
x
2x3 7x3
3x2 4x2

高等数学同济大学版课程讲解函数的极限

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划课次序号: 03一、课 题:§1.3 函数的极限二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–3 1(2),2(3),3,6八、授课记录:九、授课效果分析: 第三节 函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1 若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞f (x )?A . 若∀ε>0,∃X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞f (x )?A . 例1 证明limx 0.证 0-,故∀ε>00-<εε,即x >21ε.因此,∀ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 limx ?0. 例2 证明lim 100x x →-∞=. 证 ∀ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞10x ?0. 定义2 若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )?A . 为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞).注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水 平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞f (x )?A . 例3 证明2lim 1x x x →∞--?1.证 ∀ε>0,要使211x x ---?31x +<ε,只需|x ?1|>3ε,而|x ?1|≥|x |?1,故只需|x |?1>3ε,即|x |>1?3ε. 因此,∀ε>0,可取X ?1?3ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim 1x x x →∞-+?1. 二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3 设有函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U (x 0,δ)(即0<|x ?x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称A 为函数y ?f (x )当x →x 0时的极限,记为0lim x x →f (x )? A ,或f (x )→A (x →x 0). 研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x ?x 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y ?A ?ε和y ?A ?ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0?δ,x 0?δ),当y ?f (x )的图形上点的横坐标x 在邻域 (x 0?δ,x 0?δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式 |f (x )?A |<ε,或 A ?ε<f (x )<A ?ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4 证明211lim 1x x x →--?2. 证 函数f (x )?211x x --在x ?1处无定义.∀ε>0,要找δ>0,使0<|x ?1|<δ时,2121x x ---?|x ?1|<ε成立.因此,∀ε>0,据上可取δ?ε,则当0<|x ?1|<δ时,2121x x ---<ε成立,由定义3得211lim 1x x x →--?2. 例5 证明0lim x x →sin x ?sin x 0. 证 由于|sin x |≤|x |,|cos x |≤1,所以|sin x ?sin x 0|?200cos sin 22x x x x +-≤|x ?x 0|. 因此,∀ε>0,取δ?ε,则当0<|x ?x 0|<δ时,|sin x ?sin x 0|<ε成立,由定义3得0lim x x →sin x ?sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4 设函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ- (或x ∈0(,)U x δ+)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )?A (0lim x x +→f (x )?A ),或记为f (0x -)?A (f (0x +)?A ). 由定义3和定义4可得下面的结论.定理2 0lim x x →f (x )?A 的充要条件是0lim x x -→f (x )?0lim x x +→f (x )?A . 例6 设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ). 解 x ?0是此分段函数的分段点,0lim x -→f (x )?0lim x -→cos x ?cos0?1,而 0lim x +→f (x )?0lim x +→(1?x )?1. 故由定理2可得,0lim x →f (x )?1. 例7 设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ). 解 由于 0lim x -→f (x )?0lim x -→x ?0,0lim x +→f (x )?0lim x +→1?1,因为0lim x -→f (x )≠0lim x +→f (x ),故0lim x →f (x )不存在. 三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3 若lim f (x )存在,则必唯一.2.局部有界性定义5 在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U (x 0)(或|x |>X )时,|f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4 若lim f (x )存在,则f (x )是该极限过程中的有界变量.证 我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )?A ,由极限定义,对ε?1,∃δ>0,当x ∈U (x 0,δ)时,|f (x )?A |<1,则|f (x )|<1?|A |,取M ?1?|A |,由定义5可知,当x →x 0时,f (x )有界.注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在. 3.局部保号性定理5 若0lim x x →f (x )?A ,A >0(A <0),则∃U (x 0),当x ∈U (x 0)时,f (x )>0 (f (x )<0).若lim x →∞f (x )?A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0). 该定理通常称为保号性定理,在理论上有着较为重要的作用.推论 在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )?A ,则A ≥0(A ≤0).4. 函数极限与数列极限的关系定理6 0lim x x →f (x )?A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )?A ,这里A 可为有限数或为∞. 定理6 常被用于证明某些极限不存在. 例1 证明极限01limcos x x→不存在. 证 取{x n }?12n π,则lim n →∞x n ?lim n →∞12n π?0,而lim n →∞cos 1n x ?lim n →∞cos2nπ?1. 又取{x ′n }?()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n ?lim n →∞()121n π+?0,而lim n →∞cos 1'n x ?lim n →∞cos(2n ?1)π??1, 由于 lim n →∞cos 1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在. 课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

同济高数第十一章

同济高数第十一章
同济高数第十一章
• 函数与极限 • 导数与微分 • 导数的应用 • 不定积分 概念
函数定义
函数是数学上的一个概念,它是 一种特殊的映射关系,将一个集 合的元素按照某种规则映射到另 一个集合的元素。
函数的表示方法
函数的表示方法有多种,包括解 析法、表格法和图象法等,其中 解析法是用数学表达式来表示函 数关系。
函数的单调性与极值
函数的单调性
函数的单调性是指函数在某个区间内的 增减性。如果函数在某个区间内单调递 增,则该函数在该区间内的导数大于等 于零;如果函数在某个区间内单调递减 ,则该函数在该区间内的导数小于等于 零。
VS
函数的极值
函数的极值是指函数在某个点的值大于或 小于其邻近点的值。如果函数在某个点的 左侧导数大于零,右侧导数小于零,则该 点为函数的极大值;如果函数在某个点的 左侧导数小于零,右侧导数大于零,则该 点为函数的极小值。
03
导数的应用
中值定理与洛必达法则
中值定理
中值定理是导数应用中的一个重要定理,它指出如果函数在闭区间上连续,开区间上可导,则在开区 间内至少存在一点,使得该点的导数等于函数在区间端点处的函数值之差除以区间的长度。这个定理 在研究函数的性质和解决某些问题时非常有用。
洛必达法则
洛必达法则是求极限的一种重要方法,特别是处理分式函数的极限问题。如果一个分式函数的极限为 零,并且分子和分母的导数都存在且分母的导数不为零,则可以将分子和分母分别求导后再求极限, 这个法则称为洛必达法则。
导数的计算
总结词
导数的计算是理解导数概念和运用其解决问题的基础。
详细描述
通过求导公式、链式法则、乘积法则和商的求导法则等,可以计算给定函数的导数。掌握导数的计算方法对于理 解函数的性质、研究函数的极值和优化问题等具有重要意义。

高等数学-第一章-函数与极限-函数的极限-同济大学

高等数学-第一章-函数与极限-函数的极限-同济大学
f (x) A ,
经过不等式的变形, 得到关系
f (x) A M x x0 ,
其中 M是一个与x无关的常量. 再取 , 则当
0 x x0 时, 有:
M
f (x) A M x x0 ,
此即说明 lim f (x) A. x x0
例1 证明下列极限
⑴ lim(2x 1) 5; x2
xn
是函数 f
x
xx0
定义域中的一个任意数列,
xn
x0 ,

lim
n
xn
x0,
则相应的数列 f xn 收敛, 且
lim
n
f
(xn )
lim
x x0o
f
(x).
o

设 lim f (x) A, xx0
则存在U (x0, ), 当x U (x0, ), 有
f (x) A ,
o
又因
lim
n
x
证令
xn
1,
1
2n
2
yn
1
2n
,

lim
n
xn
lim
n
yn
0,
且 xn
0, yn , 0,

lim
n
f
(xn )
1, lim n
f
( yn )
0,
所以 lim sin π 不存在.
x0
x
对于数列, 相应的归并性定理为
定理
设数列
lim
n
xn 存在,
则对于
xn
的任一子列(xnk )

lim
2x 2(x2 1)
1 x

高等数学教材 同济版

高等数学教材 同济版

高等数学教材同济版同济版高等数学教材高等数学是大学数学的重要组成部分,是培养学生分析问题和解决实际应用问题能力的基础课程。

同济大学出版社出版的《高等数学》教材,是世界著名数学家吴文俊先生等人合作编写的经典教材之一。

该教材内容全面、符合课程标准,并且结构严谨,适合大学本科高等数学教学使用。

第一章函数与极限函数与极限是高等数学的基础概念和核心内容之一。

本章首先介绍了函数的概念,并从数学模型的角度讲解了实际问题中的函数应用。

接着详细阐述了极限的定义、性质和计算方法,重点讲解了常用的极限公式和极限的四则运算规则。

通过大量的例题和习题,帮助学生理解函数与极限的关系,掌握极限的计算方法。

第二章导数与微分导数与微分是研究函数变化率和函数表达式的最重要的数学工具。

本章从导数的定义入手,介绍了导数的几何意义和物理意义,并给出了常见函数的导数计算方法。

接着讲解了导数的运算法则、高阶导数和隐函数的导数计算方法。

通过大量的例题和应用题,帮助学生巩固导数与微分的概念和计算方法,培养学生的问题解决能力。

第三章微分中值定理与导数的应用微分中值定理和导数的应用是导数理论的重要应用,也是数学与实际问题结合的典型范例。

本章首先介绍了拉格朗日中值定理和柯西中值定理,并应用到函数的极值点、最值问题和曲线的凸凹性判定中。

接着讲解了导数的应用,如曲线的凹凸性、最大最小问题、求曲线的弧长和曲率等。

通过大量的例题和实际问题的讨论,帮助学生理解微分中值定理和导数应用的思想方法,进一步培养学生的问题分析和解决能力。

第四章不定积分不定积分是导数的逆运算,是微积分的重要内容之一。

本章从不定积分的定义和性质入手,阐述了换元积分法、分部积分法、有理函数的积分等计算方法。

并通过实例讲解了一些特殊函数的积分方法和常用的不定积分公式。

最后介绍了一些常见函数定积分的计算方法。

通过大量的例题和计算题,帮助学生掌握不定积分的基本计算方法和技巧。

第五章定积分的应用定积分是高等数学在实际问题中的重要应用,尤其在物理、经济学、生物学等学科中具有广泛的应用价值。

同济大学 高等数学 课件 .ppt

同济大学 高等数学 课件 .ppt

设数列
lim
n
xn 存在,则对于
xn
的任一子列(xnk )

lim
n
xn

lim
k
xn k
.
用此定理,即可说明数列 1n 的极限不存在。事
实上:
lim
n
x2n1

1,
lim
n
x2n
1,
所以,lim n
xn
不存在.
值得注意的是,对于函数,我们不能用此定理来证明
个不同的子列,使函数收敛到两个不同的值,则说明函
数在这一点无极限.
lim
n
f
(xn )
y

A
lim
xx0
f
(x).
f (x2 )
f (x4 )
A
f (xn )
f (x3 )
f (x1)
O x1 x3
xn x0
y f x
lim
n
xn

x0,
x4 x2
x
例 证明函数 f (x) sin 在x 0时极限不存在.
即: f x 在x0的某个空心邻域内有界.

局部有界的几何意义
从图中可以看出局部有界的含义:函数 f x 在 x0 处 o
的极限为 A,则存在点x0的一个空心邻域 U (x0, ), 当
点 x0 在该邻域中,对应
的函数图形在某一个带
y
A+1
y f x
形区域中,而该邻域外 A
的点所对应的函数图形, A-1
x
证令
1
1
xn 2n 1 , yn 2n ,
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学同济大学版课程讲解函数的极限Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】课 时 授 课 计 划课次序号:03一、课 题:§函数的极限 二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–31(2),2(3),3,6 八、授课记录: 九、授课效果分析:第三节函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限.与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数yf (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →+∞f (x )A .若∀ε>0,∃X >0,当x <X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →-∞f (x )A .例1证明limx 0.证0-∀ε>00-<ε<ε,即x >21ε.因此,∀ε>0,可取X21ε,则当x >X 0-<ε,故由定义1得 limx .例2证明lim 100x x →-∞=.证∀ε>0,要使100x -10x<ε,只要x <l gε.因此可取X |l gε|1,当x <X 时,即有|10x 0|<ε,故由定义1得lim x →+∞10x 0.定义2若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )A .为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →∞);f (x )→A (x →∞);f (x )→A (x →∞). 注若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1lim x →∞f (x )A 的充要条件是lim x →+∞f (x )lim x →-∞f (x )A .例3证明2lim1x x x →∞--1.证∀ε>0,要使211x x ---31x +<ε,只需|x 1|>3ε,而|x 1|≥|x |1,故只需|x |1>3ε,即|x |>13ε. 因此,∀ε>0,可取X 13ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim1x x x →∞-+1.二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3设有函数yf (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U (x 0,δ)(即0<|xx 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称A 为函数yf (x )当x →x 0时的极限,记为0lim x x →f (x )A ,或f (x )→A (x →x 0).研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在xx 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线yA ε和yA ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0δ,x 0δ),当yf (x )的图形上点的横坐标x 在邻域(x 0δ,x 0δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式|f (x )A |<ε,或A ε<f (x )<A ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4证明211lim 1x x x →--2.证函数f (x )211x x --在x 1处无定义.∀ε>0,要找δ>0,使0<|x 1|<δ时,2121x x ---|x 1|<ε成立.因此,∀ε>0,据上可取δε,则当0<|x 1|<δ时,2121x x ---<ε成立,由定义3得211lim1x x x →--2. 例5证明0lim x x →sin x sin x 0.证由于|sin x |≤|x |,|cos x |≤1,所以|sin x sin x 0|200cossin 22x x x x +-≤|xx 0|. 因此,∀ε>0,取δε,则当0<|xx 0|<δ时,|sin x sin x 0|<ε成立,由定义3得lim x x →sin x sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4设函数yf (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ-(或x ∈0(,)U x δ+)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )A (0lim x x +→f (x )A ),或记为f (0x -)A (f (0x +)A ).由定义3和定义4可得下面的结论.定理20lim x x →f (x )A 的充要条件是0lim x x -→f (x )0lim x x +→f (x )A .例6设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ).解x 0是此分段函数的分段点,0lim x -→f (x )0lim x -→cos x cos01,而0lim x +→f (x )0lim x +→(1x )1. 故由定理2可得,0lim x →f (x )1.例7设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ).解由于0lim x -→f (x )0lim x -→x 0,0lim x +→f (x )0lim x +→11,因为0lim x -→f (x )≠0lim x +→f (x ), 故0lim x →f (x )不存在.三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3若lim f (x )存在,则必唯一. 2.局部有界性定义5在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U (x 0)(或|x |>X )时, |f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4若lim f (x )存在,则f (x )是该极限过程中的有界变量. 证我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )A ,由极限定义,对ε1,∃δ>0,当x ∈U (x 0,δ)时,|f (x )A |<1,则|f (x )|<1|A |,取M 1|A |,由定义5可知,当x →x 0时,f (x )有界. 注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在.3.局部保号性定理5若0lim x x →f (x )A ,A >0(A <0),则∃U (x 0),当x ∈U (x 0)时,f (x )>0(f(x )<0).若lim x →∞f (x )A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0).该定理通常称为保号性定理,在理论上有着较为重要的作用.推论在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )A ,则A ≥0(A ≤0).4.函数极限与数列极限的关系定理60lim x x →f (x )A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )A ,这里A 可为有限数或为∞.定理6常被用于证明某些极限不存在. 例1证明极限01limcosx x→不存在. 证取{x n }12n π,则lim n →∞x n lim n →∞12n π0,而lim n →∞cos 1n x lim n →∞cos2nπ1.又取{x ′n }()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n lim n →∞()121n π+0,而lim n →∞cos 1'n x lim n →∞cos(2n 1)π1, 由于lim n →∞cos1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在.课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。

相关文档
最新文档