新人教版七年级数学上册第四章教案

合集下载

新人教版七年级上册数学第4章-几何图形初步全章教案

新人教版七年级上册数学第4章-几何图形初步全章教案

第四章几何图形初步几何图形§立体图形与平面图形一、教课目的1、知识与技术(1)初步认识立体图形和平面图形的看法.(2)能从详细物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出近似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在研究实物与立体图形关系的活动过程中,对详细图形进行归纳,发展几何直觉 .(2)方法:能从详细事物中抽象出几何图形,并用几何图形描绘一些现实中的物体 .3、感情、态度、价值观:形成主动研究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情味.二、教课要点、难点 :教课要点:常有几何体的辨别教课难点:从实物中抽象几何图形.三、教课过程1.创建情境,导入新课 .让我们一同来看看北京奥运会奥运村模型图.(出示章前图)展现丰富多彩的图形世界.2直观感知,辨别图形(1)对于各种各种的物体 , 数学中关注是它们的形状、大小和地点.(2)展现一个长方体教具,让学生疏别从整体和局部抽象出几何图形. 察看长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,获得的是正方形或长方形,只看棱、极点等局部,获得的是线段、点.(3)察看其余的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形 .(4)指引学生得出几何图形、立体图形、平面图形的看法.我们把从实物中抽象出的各种图形统称为几何图形 . 比方长方体,长方形,圆柱,线段,点,三角形,四边形等 . 几何图形是数学研究的主要对象之一 . 有些几何体的各部分不都在同一平面内,它们是立体图形 . 如长方体,立方体等 .有些几何图形和各部分都在同一平面内,它们是平面图形 . 如线段,角,长方形,圆等 .3.实践研究 .(1)指引学生察看帐篷 ,, 金字塔的图片 , 从面抽象出棱柱 , 棱锥 .(2)你能谈谈圆柱与棱柱 , 圆锥与棱锥的差别吗 ?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4 )以下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获 ?5.作业设计课本第 123 页习题第 1、2 题;第 125 页习题第 7、8 题。

2024年人教版初中七年级数学上册《余角和补角》精彩教案

2024年人教版初中七年级数学上册《余角和补角》精彩教案

2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。

详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。

二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。

三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。

四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。

3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。

4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。

5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。

六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。

3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。

4. 例题及解答。

七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。

人教版七年级数学上册第四章《直线、射线、线段》教案设计

人教版七年级数学上册第四章《直线、射线、线段》教案设计

人教版七年级数学上册第四章《直线、射线、线段》教案设计4.2直线、射线、线段第1课时直线、射线、线段1.理解直线、射线、线段的联系和区别,掌握它们的表示方法;(重点)2.结合实例,了解两点确定一条直线的性质,并能初步应用.一、情境导入我们生活在一个丰富多彩的图形世界里,生活中处处都有图形,如笔直的铁轨、手电筒发出的光、一根铅笔等等,你能用图形表示以上现象吗?二、合作探究探究点:直线、射线、线段【类型一】线段、射线和直线的概念如图所示,A、B、C、D四个图形中各有一条射线和一条线段,它们能相交的是( )解析:线段是不延伸的,而射线只是向一个方向延伸.故选C.方法总结:本题主要考查了线段、射线的延伸性,特别要注意射线是向一个方向无限延伸的,我们作图时只是作出了其中的一部分.【类型二】线段、射线和直线的表示方法下列说法:(1)直线AB与直线BA是同一条直线;(2)射线AB与射线BA是同一条射线;(3)线段AB与线段BA是同一条线段;(4)射线AC在直线AB上;(5)线段AC在射线AB上,其中正确的有( )A .2个B .3个C .4个D .5个解析:(1)直线AB 与直线BA 是同一条直线,正确;(2)射线AB 与射线BA 是同一条射线,错误;(3)线段AB 与线段BA 是同一条线段,正确;(4)射线AC 在直线AB 上,错误;(5)线段AC 在射线AB 上,错误;综上所述,正确的有(1)(3),共2个.故选A.方法总结:本题考查了直线、射线、线段的表示方法,熟记概念是解题的关键. 【类型三】 判断直线交点的个数观察下列图形,并阅读图形下面的相关文字:两条直线相交,最多有一个交点; 三条直线相交,最多有3个交点; 四条直线相交,最多有6个交点;猜想:(1)5条直线相交最多有几个交点? (2)6条直线相交最多有几个交点? (3)n 条直线相交最多有几个交点?解析:先观察图形,找出交点的个数与直线的条数之间的关系,然后进行计算即可. 解:(1)5条直线相交最多有5×(5-1)2=10个交点; (2)6条直线相交最多有6×(6-1)2=15个交点;(3)n 条直线相交最多有n ×(n -1)2个交点.方法总结:解题关键是观察图形,找出规律,总结出同一平面内n 条直线相交最多有n ×(n -1)2个交点.【类型四】 线段条数的确定如图所示,图中共有线段( )A .8条B .9条C .10条D .12条解析:可以根据线段的定义写出所有的线段即可得解;也可以先找出端点的个数,然后利用公式n ×(n -1)2进行计算.解:方法一:图中线段有:AB 、AC 、AD 、AE ;BC 、BD 、BE ;CD 、CE ;DE ;共4+3+2+1=10条;方法二:共有A 、B 、C 、D 、E 五个端点,则线段的条数为5×(5-1)2=10条.故选C.方法总结:找线段时要按照一定的顺序,做到不重不漏,如果记住公式会更加简便准确. 【类型五】 线段、射线和直线的应用由郑州到北京的某一次往返列车,运行途中停靠的车站依次是:郑州——开封——商丘——菏泽——聊城——任丘——北京,那么要为这次列车制作的火车票有( )A .6种B .12种C .21种D .42种解析:从郑州出发要经过6个车站,所以要制作6种车票,从开封出发要经过5个车站,所以要制作5种车票,从商丘出发要经过4个车站,所以要制作4种车票,从菏泽出发要经过3个车站,所以要制作3种车票,从聊城出发要经过2个车站,所以要制作2种车票,从任丘出发要经过1个车站,所以要制作1种车票,再考虑是往返列车,起点与终点不同,则车票不同,乘以2即可.即共需制作的车票数为:2×(6+5+4+3+2+1)=2×21=42种.故选D.方法总结:可以结合线段条数的确定方法,也可以用公式n (n -1),将n =7代入即可. 三、板书设计1.线段、射线、直线的表示 (1)线段:两端点,有长度. (2)射线:一端点,无长度. (3)直线:无端点,无长度. 2.直线的性质(1)两点确定一条直线.(2)两条直线相交只有一个交点.本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象.教师在教学时要体现新课程的三维目标,通过观察分析认识直线、射线和线段,掌握它们之间的联系与区别,有效地利用学生已有的旧知来引导学生学习新知,并在此基础上引出射线.接着由射线引入直线,并比较三者之间的关系.为后面学习新知做好了铺垫.4.2直线、射线、线段第1课时直线、射线、线段教学目标:1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用这一性质表述点与直线的关系.3.会画一条等于已知线段的线段.4.能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.教学重点:认识直线、射线、线段的区别与联系;学会正确表示直线、射线、线段,能够判断点与直线的关系,逐步使学生懂得几何语句的意义,并能建立几何语句与图形之间的联系.教学难点:能够把几何图形与语句表示、符号书写很好地联系起来.教学过程:一、创设情境1.观察课本P125图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?二、探索实践,自主归纳学生利用打好小洞的10 cm长,1 cm宽的硬纸条和撒扣进行实践活动.小组之间交流实践成果,相互补充完善,并解决课本P127思考,得到直线性质:两点确定一条直线.由直线性质推导出表示直线的方法,进而引出点与直线的位置关系,如课本P125图4.2-3,同时提出交点的概念.你画我说要求学生分别画一条直线、射线、线段,教师给出规范表示方法.要求一组学生随意画出一点与一条直线,另一组学生判断点与直线的关系,教师加以指正.三、议一议结合自己所画图形,寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.四、我说你画完成课本P128练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.五、数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.设计意图:慢慢让学生读清题意,并学会按照要求正确画出图形,并让学生自己说出想法,培养学生独立操作、自主探索的数学实践能力.六、课时小结七、课堂作业课本P129习题4.2第2、3、4题.第2课时线段长短的比较与运算1.会画一条线段等于已知线段,会比较线段的长短;2.体验两点之间线段最短的性质,并能初步应用;(重点)3.知道两点之间的距离和线段中点的含义;(重点)4.在图形的基础上发展数学语言,体会研究几何的意义.一、情境导入比较两名同学的身高,可以有几种比较方法?向大家说说你的想法.二、合作探究探究点一:线段长度的比较和计算【类型一】比较线段的长短为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A.AB<CD B.AB>CDC.AB=CD D.以上都有可能解析:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD,故选B.方法总结:比较线段长短时,叠合法是一种较为常用的方法.【类型二】根据线段的中点求线段的长如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如MC比NC 长2cm,AC比BC长( )A.2cm B.4cm C.1cm D.6cm解析:点M是AC的中点,点N是BC的中点,∴AC=2MC,BC=2NC,∴AC-BC=(MC-NC )×2=4cm ,即AC 比BC 长4cm ,故选B.方法总结:根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度. 【类型三】 已知线段的比求线段的长如图,B 、C 两点把线段AD 分成2∶3∶4的三部分,点E 是线段AD 的中点,EC =2cm ,求:(1)AD 的长; (2)AB ∶BE .解析:(1)根据线段的比,可设出未知数,根据线段的和差,可得方程,根据解方程,可得x 的值,根据x 的值,可得AD 的长度;(2)根据线段的和差,可得线段BE 的长,根据比的意义,可得答案. 解:(1)设AB =2x ,则BC =3x ,CD =4x , 由线段的和差,得AD =AB +BC +CD =9x . 由E 为AD 的中点,得ED =12AD =92x .由线段的和差得CE =DE -CD =92x -4x =x2=2.解得x =4.∴AD =9x =36(cm);(2)AB =2x =8(cm),BC =3x =12(cm).由线段的和差,得BE =BC -CE =12-2=10(cm). ∴AB ∶BE =8∶10=4∶5.方法总结:在遇到线段之间比的问题时,往往设出未知数,列方程解答.【类型四】 当图形不确定时求线段的长如果线段AB =6,点C 在直线AB 上,BC =4,D 是AC 的中点,那么A 、D 两点间的距离是( )A .5B .2.5C .5或2.5D .5或1解析:本题有两种情形: (1)当点C 在线段AB 上时,如图:AC =AB -BC ,又∵AB =6,BC =4,∴AC =6-4=2,D 是AC 的中点,∴AD =1;(2)当点C 在线段AB 的延长线上时,如图:AC =AB +BC ,又∵AB =6,BC =4,∴AC =6+4=10,D 是AC 的中点,∴AD =5.故选D.方法总结:解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.探究点二:有关线段的基本事实如图,把弯曲的河道改直,能够缩短航程,这样做的根据是( )A.两点之间,直线最短B.两点确定一条线段C.两点确定一条直线D.两点之间,线段最短解析:把弯曲的河道改直缩短航程的根据是:两点之间,线段最短.故选D.方法总结:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.三、板书设计1.线段的比较与性质(1)比较线段:度量法和叠合法.(2)两点之间线段最短.2.线段长度的计算(1)中点:把线段AB分成两条相等线段的点.(2)两点间的距离:两点间线段的长度.本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心.4.2 直线、射线、线段第2课时线段长短的比较与运算教学目标:1.结合图形认识线段间的数量关系,学会比较线段的长短.2.利用丰富的活动情景,让学生体验到两点之间线段最短的性质,并能初步应用.3.知道两点之间的距离和线段中点的含义.教学重点:线段长短比较、线段的性质是重点.教学难点:线段上点、三等分点、四等分点的表示方法及运用是难点.教学过程:一、创设情境1.多媒体演示十字路口:为什么有些人要过马路到对面,但又没走人行横道呢?2.讨论课本P128思考题:学生分组讨论:从A地到B地有四条道路,如果要你选择,你走哪条路?为什么?在小组活动中,让他们猜一猜,动动手,再说一说.学生交流比较的方法.除它们外能否再修一条从A地到B地的最短道路?为什么?小组交流后得到结论:两点之间,线段最短.结合图形提示:此时线段AB的长度就是A、B两点之间的距离.3.做一做:在中国地图上测量北京、天津、上海、重庆四个直辖市之间的距离.(小组合作完成)解决生活中的数学问题,是为了进一步巩固两点之间的距离的意义,引导学生主动参与学习过程,从中培养学生动手和合作交流的能力.二、数学活动1.教师给出任务:比较两位同学的身高.2.学生讨论、实践、交流方法,师生总结评价.想一想教师在黑板上任意画两条线段AB, CD.怎样比较两条线段的长短?在学生独立思考和讨论的基础上,请学生把自己的方法进行演示、说明.1.用度量的方法比较.2.放到同一直线上比较.教师对方法2讨论、归纳,引出用尺规作出两线段的和与差的作法,如图4.2-10.试一试课本P128练习.折一折让学生将一条绳子对折,使绳子的端点重合,说说你的感受.在一张透明的纸上画一条线段,折叠纸片,使线段的两端点重合,折痕与线段的交点就是线段的中点.引导学生看课本,你能找到线段的中点吗?三等分点?四等分点?画一画尝试完成课本P130习题4.2第9题.三、课时小结四、课堂作业1.必做题:课本P129~P130习题4.2第5、7、8、10题.2.备选题:(1)数轴上A,B两点所表示的数分别是-5,1,那么线段AB的长是个单位长度,线段AB 的中点所表示的数是;(2)已知线段AC和BC在一条直线上,如果AC =5.6 cm,BC=2.4 cm,求线段AC和BC的中点之间的距离.。

新人教版七年级数学上册第四章教案

新人教版七年级数学上册第四章教案

展示丰富多彩的图形世界.
“横看成岭侧成峰,远近高低各不同.不识庐山真面目,
此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》
出“横看成岭侧成峰”中蕴含的数学道理吗?(讨论)
、不同角度看直棱柱、圆柱、圆锥、球
让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,
由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)
、猜一猜,看一看
分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?
你能一一画下来吗7(画出示意图即可)
上面观察这个图形,各能得到什么图形?
它的俯视图如图所示
你可以用实物模型动手试一试、一个正方体中,截去一个小正方体的立体图如图所示,从左面观察这个图形,得到的平面图形是
学生先独立思考后讨论、交流.回答问题,同学们之间可以相
、请举出生活中角的实例.
、归纳、总结角的概念:角由两条具有公共端点的射线
如图∠1:∠2:∠3=1:
)55012′- 16037′=
A B。

七年级上册数学书第四章线段

七年级上册数学书第四章线段

七年级上册数学书第四章线段教学设计一、教学目标1.知识目标:学生掌握线段的基本概念,理解线段的性质及其应用。

2.能力目标:培养学生观察、分析、归纳的能力,提高学生的空间思维能力和解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣和热爱,体验数学与生活的密切联系,增强学生的数学应用意识。

二、教学内容与过程1.引入新课通过生活中的实例,如铁轨、跳绳、跳绳等,引出线段的定义和基本性质。

引导学生观察和思考,激发学生的学习兴趣。

2.知识讲解详细讲解线段的表示方法、线段的性质及其应用。

通过实例和图示,帮助学生理解线段的基本概念和性质。

引导学生积极参与课堂讨论,加深对知识的理解。

3.课堂练习设计具有针对性的练习题,帮助学生巩固所学知识。

通过小组讨论、合作探究等方式,引导学生自主解决问题,提高学生的解题能力。

4.归纳小结对本节课所学内容进行总结,强调线段的重要性和应用价值。

引导学生反思学习过程中的不足之处,以便今后更好地学习数学。

三、教学重点与难点1.教学重点:线段的定义、表示方法、性质及其应用。

2.教学难点:如何将线段知识与实际问题相结合,培养学生的数学应用意识。

四、教学评价与反馈1.评价方式:通过课堂练习、小组讨论、作业等方式对学生的知识掌握情况进行评估。

同时,关注学生在学习过程中的表现,给予及时的鼓励和指导。

2.反馈策略:针对学生在学习中存在的问题,及时进行反馈和指导。

引导学生分析问题原因,提出改进措施,帮助学生更好地掌握数学知识。

五、教学方法与手段1.教学方法:采用启发式教学法、案例教学法等,引导学生主动思考、积极参与课堂活动。

同时,注重培养学生的自主学习能力和合作探究精神。

2.教学手段:运用多媒体课件、实物展示等手段辅助教学,增强学生对知识的感性认识和理解能力。

同时,鼓励学生利用网络资源进行自主学习和拓展学习。

六、教学资源与环境1.教学资源:提供丰富的教学资源,包括教材、课件、练习题等,以便学生更好地学习和巩固所学知识。

七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。

2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。

3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。

4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。

6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。

新人教版(2024版)版)初中数学七年级上册 第四章整式的加减 4.1.2多项式 教学设计

新人教版(2024版)版)初中数学七年级上册  第四章整式的加减  4.1.2多项式  教学设计

课堂教学设计
例3、用多项式填空,并指出它们的项和次数.
(1)一个长方形相邻两条边的长分别为a,6,则这个长方形的周长为________
(2)m为一个有理数,m的立方与2的差为________
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环保和安全起见,从第三年年初起不再投放,且每个月回收b辆.第三年年底,该地区共有这家公司的共享单车的辆数为________
(4)现存于陕西历史博物馆的我国南北朝时期的
官员独孤信的印章如图4.1-2所示,它由18个
相同的正方形和8个相同的等边三角形围成.如
果其中正方形和等边三角形的边长都为a,等边
三角形的高为6,那么这个印章的表面积为
___________
多项式的排列
运用加法交换律,任意交换多项式x+x2+1中各项的位置,可以做到__种不同的排列方式。

你认为哪几种比较整齐?
1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。

x2+x+1
(2)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。

1+x+x2出多项式的概念,发展学生数学抽象能力核心素养
与学习的热情,
比较、

步巩固多项式的概念
展学生数学抽象能力核心素养
2。

新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2

新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2
本节分两课时,第一课时是角的认识,第二课时是关于角的度分秒的运算,这里要讲的是第一课时。角的概念,学生在小学已经有粗浅的认识,本节在已有知识基础上,进一步认识它,透析它的组成和特征。
四、教学方法及教学思路
本人在农村中学任教,面对的都是乡土气息浓厚的农村孩子。由于诸多方面的原因,造成这样的现状:绝大多数学生基础薄弱,没有学习习惯,学习品质、竞争意识差,更没有学习中知难而上的信心和毅力。所以面对这样的教育主体,我们在激发学生的学习兴趣、引导探究发现的同时,一定要注意学生的听课状态,降低难度,干启不发时,直接入主题。同时不能过分强调和主张学生课后的自主学习,因为绝大多数学生没有自主学习的习惯和能力。所以很多技能需在课上培养、训练和提高。我这里的教学,接近“一对一”的教,“手把手”的学。很多问题课前就有预见,准备好解决策略和途径。
中学数学(角)
一、教案背景
课时:1课时
二、教学课题
1.教养方面:
通过系统学习,进一步认识角。
通过实物和具体模型,了解从物体外形抽象出来的平面图形。
初步认识图形,培养学生对学习图形与几何的兴趣,建立数学来源于生产、生活,服务于生产、生活的理念。
2.教育方面:
通过模型理解角的两种描述方法。
经历角的画法,进一步理解、认识角,提高画图技能,增强对图形的理解,为今后几何的学习做好准备。
能准确找出和表示简单至复杂图形中的角。
通过强化、重复训练,夯实角的认识,提高学习几何的信心。
三、教材分析
人教版七年级数学(上)《第四章 图形认识初步》第三部分的第一节 《角》的第一课时。
本章是图形与几何的起始章,是图形学习的第三学段。在本章,要进一步丰富学生对几何图形的感性认识,还要引导学生逐步认识一些基本图形的特征和性质。但这并不意味着要用严格的逻辑推理方式来展开学习,还是要强调在实际背景中直观理解图形的概念和特征,经历探索图形性质的过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用及分
析(教具
的准备及
使用的意
义)
习意识,让每个学生参与学习中,提高学生学习的兴趣。

教学方法
运用及分

启发式教学
重点教学
环节设计



计让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.
新课教学直观感知,识别图形:
(1)对于各种各样的物体,关注是它们的形状、大小和位置. (2)展示一个长方体,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看
设计棱、顶点等局部,得到的是线段、点.
(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.
(4)引导学生得出几何图形、立体图形、平面图形的概念.
我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.
有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.
有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.
重点教学环节设计师





实践探究.
引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.
学生活动设计
(1)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?
(2)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?
(3)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来
小结:(学生总结,老师补充)






课本第116页练习1、2
课外作业
设计与布

课本第121页习题1、2、3题及导学案
板书
设计
4.1.1 立体图形与平面图形
1、立体图像和平面图形的概念
2、例题讲解和练习
运用及分

启发式教学
重点教学环节设计导



创设情景,引入新课
请欣赏漫画并思考:为什么会出现争执?
“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?(讨论)



1、不同角度看直棱柱、圆柱、圆锥、球
让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,
学设计由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)
2、猜一猜,看一看
Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)
Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)
Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.
3、分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?
你能一一画下来吗7(画出示意图即可)
重点教学环节设计师





1、
上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?
2、再试一试,画出它的三视图.
3、怎样画得又快又准?
4、用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则
一共有几种不同形状的搭法(你可以用实物模型动手试一试)?
5、桌上放着一个球和一个圆柱,下面a、b、c、d、e这五幅图
分别是从什么方向看到的?
6、一个正方体中,截去一个小正方体的立体图如图所示,从
左面观察这个图形,得到的平面图形是()
● 蚊子 壁虎 ●
蚊子 ●

壁虎






如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?
学生各抒己见,提出路线方案。

教师总结: 若在平面上,壁虎只要沿直线爬过去就可以了。

而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案。

如图所示:
学生观察图片.表述观点.
教师参与学生的交流活动,总结出几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.
学生活动设计小结:
本节是从实际物体中抽象出几何图形、立体图形、平面图形,又进一步抽象出体、面、线、点等基本元素,研究了它们之间的关系之后,又由这些基本元素得到丰富多彩的图形世界.
随堂
练习
设计
课本第120页1、2、
课外作业
设计与布

导学案
板书设计 4.1.2 点、线、面、体
1、点、线、面、体关系例题讲解
运用及分
析(教具
的准备及
使用的意
义)
高学生合作学习意识,让每个学生参与学习中,提高学生学习的兴趣。

教学方法
运用及分

启发式和讨论教学法,讲练结合。

重点教学环节设计导入
设计
观赏画面(找挂图)和实物,请在画面中的共同点――――角.
新课
教学
设计
1、请举出生活中角的实例.
2、归纳、总结角的概念:角由两条具有公共端点的射线
组成,两条射线的公共端点叫这个角的顶点,这两条射线叫做
角的边.
提醒:平时画角时,只能将边画成两条线段,即用角的一部分来研究角.
3、小学曾接触到角,我们已经有了初步的认识,那么角
是如何来表示的?角的大小用什么表示呢?用什么工具去度。

相关文档
最新文档