算法设计与分析(第2版)王红梅胡明习题答案

合集下载

算法设计与分析第二版课后习题解答

算法设计与分析第二版课后习题解答

算法设计与分析第二版课后习题解答算法设计与分析基础课后练习答案习题 4.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求//输入:一个正整数n2//输出:。

step1:a=1;step2:若a*a 5. a.用欧几里德算法求gcd。

b. 用欧几里德算法求gcd,比检查min{m,n}和gcd间连续整数的算法快多少倍?请估算一下。

a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513,105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1.b.有a可知计算gcd欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。

6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcd(m,n)=gcd(n,r)7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? Hint:对于任何形如0 gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次) b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次) gcd(5,8) 习题 1.(农夫过河)P—农夫 W—狼G—山羊C—白菜 2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数) 算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法 //输入:实系数a,b,c//输出:实根或者无解信息 If a≠0D←b*b-4*a*c If D>0temp←2*ax1←(-b+sqrt(D))/temp x2←(-b-sqrt(D))/temp return x1,x2else if D=0 return –b/(2*a) else return “no real roots” else //a=0if b≠0 return –c/b else //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出 b.伪代码算法 DectoBin(n)//将十进制整数n转换为二进制整数的算法 //输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中 i=1while n!=0 do { Bin[i]=n%2; n=(int)n/2; i++; } while i!=0 do{ print Bin[i]; i--; }9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进. 算法 MinDistance(A[0..n-1]) //输入:数组A[0..n-1] //输出:the smallest distance d between two of its elements习题1. 考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗? 解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count 4.(古老的七桥问题) 第2章习题7.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。

数据结构(第二版)课后习题答案(王红梅主编)

数据结构(第二版)课后习题答案(王红梅主编)

第 1 章绪论课后习题讲解1. 填空⑴()是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。

【解答】数据元素⑵()是数据的最小单位,()是讨论数据结构时涉及的最小数据单位。

【解答】数据项,数据元素【分析】数据结构指的是数据元素以及数据元素之间的关系。

⑶从逻辑关系上讲,数据结构主要分为()、()、()和()。

【解答】集合,线性结构,树结构,图结构⑷数据的存储结构主要有()和()两种基本方法,不论哪种存储结构,都要存储两方面的内容:()和()。

【解答】顺序存储结构,链接存储结构,数据元素,数据元素之间的关系⑸算法具有五个特性,分别是()、()、()、()、()。

【解答】有零个或多个输入,有一个或多个输出,有穷性,确定性,可行性⑹算法的描述方法通常有()、()、()和()四种,其中,()被称为算法语言。

【解答】自然语言,程序设计语言,流程图,伪代码,伪代码⑺在一般情况下,一个算法的时间复杂度是()的函数。

【解答】问题规模⑻设待处理问题的规模为n,若一个算法的时间复杂度为一个常数,则表示成数量级的形式为(),若为n*log25n,则表示成数量级的形式为()。

【解答】Ο(1),Ο(nlog2n)【分析】用大O记号表示算法的时间复杂度,需要将低次幂去掉,将最高次幂的系数去掉。

2. 选择题⑴顺序存储结构中数据元素之间的逻辑关系是由()表示的,链接存储结构中的数据元素之间的逻辑关系是由()表示的。

A 线性结构B 非线性结构C 存储位置D 指针【解答】C,D【分析】顺序存储结构就是用一维数组存储数据结构中的数据元素,其逻辑关系由存储位置(即元素在数组中的下标)表示;链接存储结构中一个数据元素对应链表中的一个结点,元素之间的逻辑关系由结点中的指针表示。

⑵假设有如下遗产继承规则:丈夫和妻子可以相互继承遗产;子女可以继承父亲或母亲的遗产;子女间不能相互继承。

则表示该遗产继承关系的最合适的数据结构应该是()。

算法设计与分析_王红梅_课后答案网(部分)

算法设计与分析_王红梅_课后答案网(部分)

第六章动态规划法• P137 2 ,3, 4•2.解答:cost[i]表示从顶点i 到终点n-1 的最短路径,path[i]表示从顶点i 到终点n-1 的路径上顶点i 的下一个顶点。

cost[i]=min{cij+cost[j]}3 有5 个物品,其重量分别是{3, 2, 1, 4,5},价值分别为{25, 20, 15, 40, 50},背包的容量为6。

V[i][j]表示把前i 个物品装入容量为j 的背包中获得的最大价值。

最优解为(0,0,1,0,1)最优值为65. 4.序列A =(x, z , y , z , z , y,x ),B =(z , x , y , y , z , x , z ),建立两个(m+1)×(n+1)的二 维表L 和表S ,分别存放搜索过程中得到的子序列的长度和状态。

z , x , y , y , z,x , z )path[i]= 使 cij+cost[j] 最小的 j i 012345678 9 10 11 12 13 14 15 Cost[i] 18 13 16 13 10 9 12 7 6875943Path[i]145778911 11 11 13 14 14 15 15 0得到最短路径 0->1->4->7->11->14->15 , 长度为 18(a)长度矩阵L(b)状态矩阵S 。

第七章贪心算法2.背包问题:有7 个物品,背包容量W=15。

将给定物品按单位重量价值从大到小排序,结果如下:个物品,物品重量存放在数组w[n]中,价值存放在数组放在数组x[n]中。

按算法7.6——背包问题1.改变数组w 和v 的排列顺序,使其按单位重量价值v[i]/w[i]降序排列;2.将数组x[n]初始化为0;//初始化解向量3.i=1;4.循环直到( w[i]>C )4.1 x[i]=1; //将第i个物品放入背包4.2 C=C-w[i];4.3 i++;5. x[i]=C/w[i];得出,该背包问题的求解过程为:: x[1]=1;c=15-1=14 v=6 x[2]=1; c=14-2=12V=6+10=10 x[3]=1; c=12-4=8V=16+18=34 x[4]=1; c=8-5=3V=34+15=49 x[5]=1; c=3-1=2 V=49+3=52x[6]=2/3 ; c=0; V=52+5*2/3=156/3 最优值为156/3 最优解为(1,1,1,1,1,2/3,0)) (x[i]按排序后物品的顺序构造)5.可以将该问题抽象为图的着色问题,活动抽象为顶点,不相容的活动用边相连(也可以将该问题理解为最大相容子集问题,重复查找剩余活动的最大相容子集,子集个数为所求).具体参见算法7.3 算法7.3——图着色问题1.color[1]=1; //顶点1着颜色12.for (i=2; i<=n; i++) //其他所有顶点置未着色状态color[i]=0;3.k=0;4.循环直到所有顶点均着色4.1k++; //取下一个颜色4.2for (i=2; i<=n; i++) //用颜色k 为尽量多的顶点着色4.2.1 若顶点i已着色,则转步骤4.2,考虑下一个顶点;4.2.2 若图中与顶点i邻接的顶点着色与顶点i着颜色k 不冲突,则color[i]=k;5.输出k;第八章回溯法4.搜索空间(a) 一个无向图(b) 回溯法搜索空间最优解为(1,2,1,2,3)5.0-1 背包问题n∑w i x i≤c 1• 可行性约束函数:i =1• 上界函数:nr =∑Vi5 = 3A B *CD8 ** * 131 =12 =23 = 14 = 2 34215课后答案网()i=k+1 1第九章分支限界法5,解:应用贪心法求得近似解:(1,4,2,3),其路径代价为:3+5+7+6=21,这可以作为该问题的上界。

算法设计与分析 王红梅 胡明 习题答案

算法设计与分析 王红梅 胡明 习题答案

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

编写程序,求n 至少为多大时,n 个“1”组成的整数能被2013整除。

#include<iostream>using namespace std;int main(){double value=0;图 七桥问题for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗?编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。

为什么是6天呢?任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。

算法设计与分析 王红梅 第二版 第1章 算法设计基础复习进程

算法设计与分析 王红梅 第二版 第1章 算法设计基础复习进程

2020/6/3
Algorithm Introduction
12
算法的描述方法
#include <iostream.h>
int CommonFactor (int m, int n)
欧{ 几 int r=m % n;
里 德
while (r!=0) {
m=n;

n=r;
法 r=m % n; } return m; }
例1.2 求两个自然数的最大公约数 [想法1]用短除法找出两个数的公因子,再相乘就
是最大公约数。 [算法1]找两个数的公因子目前只能用蛮力法逐个
尝试,用2-min(m,n)进行枚举尝试。
2020/6/3
Algorithm Introduction
20
算法在问题求解中的地位
算法1.1:CommFactorl(伪代码) 输入:两个自然数m和n 输出:m和n的最大公约数 1. factor=1; 2. 循环变量i从2~min(m,n),执行下述操作;
这是算法吗?
为什么?
2020/6/3
Algorithm Introduction
5
算法及其重要特性
程序?
是算法用某种程序设计语言的具体实现。程序可以不满 足算法的性质(3),即有穷性。
“好算法”的重要特性: (1)正确性:合法的输入,都会得出正确的结果 (2)健壮性:非法的输入,应能识别并处理 (3)可理解性:可读性,易理解 (4)抽象分级:通过抽象分级减少求解步骤 (5)高效性:时间和空间效率
2020/6/3
Algorithm Introduction
27
1. 查找问题 2. 排序问题 3. 图问题 4. 组合问题 5. 几何问题

算法设计与分析王红梅第二版第8章_回溯法详解

算法设计与分析王红梅第二版第8章_回溯法详解

2018/10/15
Chapter 8 Back Track Method
10
概述 -问题的解空间
可行解:满足约束条件的解,解空间中的一个子集
最优解:
使目标函数取极值(极大或极小)的可行解,一个或少数几个 例:货郎担问题,有nn种可能解。n!种可行解,只有一个或 几个是最优解。 例:背包问题,有2n种可能解,有些是可行解,只有一个或 几个是最优解 有些问题,只要可行解,不需要最优解: 例:八皇后问题和图的着色问题
7
概述 -问题的解空间

例:0/1背包问题中,xi 有0/1 两种取值,则S={0,1}, 当n=3时,0/1背包问题的解空间是:
{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}
即:当输入规模为n 时,有2n 种可能的解。 例:货郎担问题,S={1,2,…,n},当n=3时,S={1,2,3} 。 货郎担TSP问题的解空间中的可能解有27个,是:
0 3 0 15
对物品2的选择
对物品3的选择
2018/10/15
Chapter 8 Back Track Method
12
概述 -问题的解空间
例:对于n=4 的TSP 问题,图8.3是经压缩后的解空间树,树中的24 个叶子结 点分别代表该问题的24 个可能解,例如结点5 代表一个可能解,路径为 1→2→3→4→1,长度为各边代价之和。
2018/10/15 Chapter 8 Back Track Method 2
学习目标
教学重点 教学难点 回溯法的设计思想,各种经典问题的回溯思想 批处理作业调度问题的回溯算法

算法设计与分析 王红梅 第二版 第5章_ 减治法

算法设计与分析 王红梅 第二版 第5章_ 减治法

8 长度为1,较小者为所求
{13}
{15}
2020/8/12
第5章 减治法
Page 11
减治法的设计思想
算法5.1:两个序列中位数SearchMid 输入:两个长度为n的有序序列A和B 输出:序列A和B的中位数 1. 循环直到序列A和序列B均只有一个元素
1.1 a = 序列A的中位数; 1.2 b = 序列B的中位数; 1.3 比较a和b,执行下面三种情况之一:
Page 12
减治法的设计思想
[算法分析] 由于每次求两个序列的中位数后,得到 的两个子序列的长度都是上一个序列的一半,故循 环共执行log2n次,时间复杂性为O( log2n)。 算法除简单变量外没有额外开辟临时空间,故空间 复杂性为O(1)。
减治法:同样把一个大问题划分为若干个子问题,但 无须分别求解这些子问题,只需求解其中的 一个子问题,因而无需对子问题的解进行合 并。退化了的分治法。
2020/8/12
Reduce and Conquer Method
4
减治法的设计思想
减治法将问题划分为若干子问题,并且规模为n的 原问题的解与较小规模(通常是n/2)的子问题的解之 间具有某种确定的关系:
2020/8/12
第5章 减治法
Page 9
减治法的设计思想
[想法] 分别求出两个序列的中位数,记为a和b; 比较a和b,有下列三种情况: ① a = b:则a即为两个序列的中位数; ② a < b:则中位数只能出现在a和b之间,在序列 A中舍弃a之前的元素得到序列A1,在序列B中舍弃
b之后的元素得到序列B1;
算法设计与分析—本科生课程
Design and Analysis of Algorithm

算法设计与分析-王-第1章-算法设计基础

算法设计与分析-王-第1章-算法设计基础

2)有没有已经解决了的类似问题可供借鉴?
1.4 算法设计的一般过程
在模型建立好了以后,应该依据所选定的模型对问 题重新陈述,并考虑下列问题: (1)模型是否清楚地表达了与问题有关的所有重要
的信息?
(2)模型中是否存在与要求的结果相关的数学量? (3)模型是否正确反映了输入、输出的关系? (4)对这个模型处理起来困难吗?
程序设计研究的四个层次:
算法→方法学→语言→工具
理由2:提高分析问题的能力
算法的形式化→思维的逻辑性、条理性
1.2 算法及其重要特性
一、算法以及算法与程序的区别
例:欧几里德算法——辗转相除法求两个自然数 m 和 n 的最大公约数
m n
欧几里德算法
r
1.2 算法及其重要特性
欧几里德算法
① 输入m 和nห้องสมุดไป่ตู้如果m<n,则m、n互换;
对不合法的输入能作出相适应的反映并进行处理。 (2) 健壮性(robustness): 算法对非法输入的抵抗能力, 即对于错误的输入,算法应能识别并做出处理,而不是 产生错误动作或陷入瘫痪。 (3)可读性:算法容易理解和实现,它有助于人们对算 法的理解、调试和修改。 (4) 时间效率高:运行时间短。 (5) 空间效率高:占用的存储空间尽量少。
算法设计与分析
Design and Analysis of Computer Algorithms
高曙
教材:

算法设计与分析(第二版),清华大学出版社,王红梅, 胡明 编著
参考书目:

Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,机械工 业出版社,2012
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

编写程序,求n 至少为多大时,n 个“1”组成的整数能被2013整除。

#include<iostream>using namespace std;int main(){double value=0;图 七桥问题for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。

为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。

例如,6=1+2+3,因此6是完美数。

神6天创造世界,暗示着该创造是完美的。

设计算法,判断给定的自然数是否是完美数#include<iostream>using namespace std;int main(){int value, k=1;cin>>value;for (int i = 2;i!=value;++i){while (value % i == 0 ){k+=i;有4个人打算过桥,这个桥每次最多只能有两个人同时通过。

他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。

这就意味着两个人过桥后必须有一个人将手电筒带回来。

每个人走路的速度是不同的:甲过桥要用1分钟,乙过桥要用2分钟,丙过桥要用5分钟,丁过桥要用10分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间由于甲过桥时间最短,那么每次传递手电的工作应有甲完成甲每次分别带着乙丙丁过桥例如:第一趟:甲,乙过桥且甲回来第二趟:甲,丙过桥且甲回来第一趟:甲,丁过桥一共用时19小时9.欧几里德游戏:开始的时候,白板上有两个不相等的正整数,两个玩家交替行动,每次行动时,当前玩家都必须在白板上写出任意两个已经出现在板上的数字的差,而且这个数字必须是新的,也就是说,和白板上的任何一个已有的数字都不相同,当一方再也写不出新数字时,他就输了。

请问,你是选择先行动还是后行动为什么设最初两个数较大的为a, 较小的为b ,两个数的最大公约数为factor 。

则最终能出现的数包括: factor, factor*2, factor*3, ..., factor*(a/factor)=a. 一共a/factor 个。

如果a/factor 是奇数,就选择先行动;否则就后行动。

习题21.如果T 1(n )=O (f (n )),T 2(n )=O (g (n )),解答下列问题:(1)证明加法定理:T 1(n )+T 2(n )=max{O (f (n )), O (g (n ))};(2)证明乘法定理:T 1(n )×T 2(n )=O (f (n ))×O (g (n ));(3)举例说明在什么情况下应用加法定理和乘法定理。

,(1)(2)(3)比如在for (f(n)){for(g(n))}中应该用乘法定理如果在“讲两个数组合并成一个数组时”,应当用加法定理2.考虑下面的算法,回答下列问题:算法完成什么功能算法的基本语句是什么基本语句执行了多少次算法的时间复杂性是多少(1)完成的是1-n 的平方和 基本语句:s+=i*i ,执行了n 次时间复杂度O (n ) (2) (2)完成的是n 的平方(1)int Stery(int n){ int S = 0;for (int i = 1; i <= n; i++) S = S + i * i; return S; } (2)int Q(int n) { if (n == 1) return 1; else return Q(n-1) + 2 * n - 1; }基本语句:return Q(n-1) + 2 * n – 1,执行了n 次时间复杂度O (n )3. 分析以下程序段中基本语句的执行次数是多少,要求列出计算公式。

(1) 基本语句2*i<n 执行了n/2次基本语句y = y + i * j 执行了2/n 次一共执行次数=n/2+n/2=O (n )(2) 基本语句m+=1执行了(n/2)*n=O(n*n)4. 使用扩展递归技术求解下列递推关系式:(1)⎩⎨⎧>-==1)1(314)(n n T n n T (2)⎩⎨⎧>+==1)3(211)(n n n T n n T(1) int T(int n){if(n==1)return 4;else if(n>1)return 3*T(n-1);}(2)int T(int n){if(n==1)return 1;else if(n>1)return 2*T(n/3)+n;}5. 求下列问题的平凡下界,并指出其下界是否紧密。

(1)求数组中的最大元素;(2)判断邻接矩阵表示的无向图是不是完全图;(3)确定数组中的元素是否都是惟一的;(4)生成一个具有n 个元素集合的所有子集(1) Ω(n) 紧密(2) Ω(n*n)(3) Ω(logn+n )(先进行快排,然后进行比较查找)(1)for (i = 1; i <= n; i++) if (2*i <= n) for (j = 2*i; j <= n; j++) y = y + i * j ;(2)m = 0;for (i = 1; i <= n; i++)for (j = 1; j <= 2*i; j++)m=m+1;(4)Ω(2^n)7.画出在三个数a, b, c中求中值问题的判定树。

8.国际象棋是很久以前由一个印度人Shashi发明的,当他把该发明献给国王时,国王很高兴,就许诺可以给这个发明人任何他想要的奖赏。

Shashi要求以这种方式给他一些粮食:棋盘的第1个方格内只放1粒麦粒,第2格2粒,第3格4粒,第4格8粒,……,以此类推,直到64个方格全部放满。

这个奖赏的最终结果会是什么样呢#include<iostream>using namespace std;int main(){long double result=1;double j=1;for(int i=1;i<=64;++i){j=j*2;result+=j;j++;}cout<<result<<endl;return 0;}习题31.假设在文本"ababcabccabccacbab"中查找模式"abccac",写出分别采用BF算法和KMP 算法的串匹配过式化简。

设计算法,将一个给定的真分数化简为最简分数形式。

例如,将6/8化简为3/4。

#include<iostream>using namespace std;int main(){int n;数字游戏。

把数字1,2,…,9这9个数字填入以下含有加、减、乘、除的四则运算式中,使得该等式成立。

要求9个数字均出现一次且仅出现一次,且数字1不能出现在乘和除的一位数中(即排除运算式中一位数为1的平凡情形)。

×+÷-= 05. 设计算法求解a n mod m,其中a、n和m均为大于1的整数。

(提示:为了避免a n 超出int型的表示范围,应该每做一次乘法之后对n取模)#include<iostream>using namespace std;int square(int x){return x*x;}设计算法,在数组r[n]中删除所有元素值为x的元素,要求时间复杂性为O(n),空间复杂性为O(1)。

7.设计算法,在数组r[n]中删除重复的元素,要求移动元素的次数较少并使剩余元素间的相对次序保持不变。

#include <iostream>using namespace std;void deletere(int a[],int N){int b[100]={0};int i,k;k=0;static int j=0;for(i=0;i<N;i++)b[a[i]]++;for(i=0;i<100;i++){if(b[i]!=0){if(b[i]==2){k++;}a[j]=i;j++;}}for(i=0;i<N-k;i++)cout<<a[i]<<endl;}int main(){int a[]={1,2,1,3,2,4};deletere(a,6);return 0;}设表A={a1, a2, …, a n},将A拆成B和C两个表,使A中值大于等于0的元素存入表B,值小于0的元素存入表C,要求表B和C不另外设置存储空间而利用表A的空间。

荷兰国旗问题。

要求重新排列一个由字符R , W , B (R 代表红色,W 代表白色,B 代表兰色,这都是荷兰国旗的颜色)构成的数组,使得所有的R 都排在最前面,W 排在其次,B 排在最后。

为荷兰国旗问题设计一个算法,其时间性能是O (n )。

设最近对问题以k 维空间的形式出现,k 维空间的两个点p 1=(x 1, x 2, …, x k )和p 2=(y 1, y 2, …, y k )的欧几里德距离定义为:∑==k i ii -x y p p d 1221)(),(。

相关文档
最新文档