静电场中的导体

合集下载

大学物理-第3章-静电场中的导体

大学物理-第3章-静电场中的导体

R2 R1
在金属球壳与导体球之间(r0 < r < R1时):
q r0
作过 r 处的高斯面S1
q
S1 E2 dS 0

E2 r
q
40r 2
q
E2 40r 2 er
在金属球壳内(R1< r < R2时):电场 E3 0
在金属球壳外( r > R2时): 作过 r 处的高斯面 S 2
S2
E4
dS
在它形成的电场中平行放置一无限大金属平板。求:
金属板两个表面的电荷面密度?
解:带电平面面电荷密度0 ,导体两面感应电荷面密度分 别为1 和 2,由电荷守恒有
1 2 0 (1)
导体内场强为零(三层电荷产生)
σ0 σ1
σ2
E0 E1 E2 0
(2)
E0
0 1 2 0
(3)
20 20 20
导体表面任一点的电场强度都与导体表面垂 直。
20
2.导体在静电平衡状态下 的一些特殊性质
❖ 导体是等势体,导体表面是等势面。
在导体内部任取两点P和Q,它们之间的电势差可以表示为
VP VQ
Q
E
dl
0
P
❖ 导体表面的电场强度方向与导体的表面相垂直。
❖ 导体上感应电荷对原来的外加电场施加影响,改
Q1
Q2
0
q
q
0

E4r
q
4 0 r 2
E4
q
4 0 r 2
er
43
思考:(3)金属球壳和金属球的电势各 为多少?
解:设金属球壳的电势为U壳 ,则:
U壳
R2 E4 dl

(整理)静电场中的导体和电介质

(整理)静电场中的导体和电介质

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。

(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。

中国民航大学大学物理2第03章 静电场中的导体

中国民航大学大学物理2第03章 静电场中的导体

QA QB

S
1 2 3 4
S
1 4 0 2 3 0 1 2 QA S 3 4 QB S
QA QB 2S Q Q 2 3 A B 2S
1 4
(电荷守恒)
A
B
第四章 静电场中的导体
物理学
于是
证明(1) :在导体内部和表面任取 P,Q 和 R 各
Q R 点, Eint 0 , Eint dr Eint dr 0 E
P P
即: P Q R

l
R S P
Q
证明(2) :设 R 和 S 各为导体表面紧邻处的两点,
+ r Q --q + - O a + - + + + +
Qq 故,球心 O 的电势为 4 0 r 4 0 a 4 0b q q
例4 一导体球半径为R1 , 外罩一半径为R2 的 同心薄导体球壳,外球壳所带总电荷为, 而内 Q 球的电量为+q。 求此系统的电势和电场分 布。 Qq
4-4 有导体时静电场计算
和 QB,求:(1)两导体板之间及左右两侧的电场强度;(2)
解:设四个导体平面上面电荷密度分别为 1,2,3 和 4 。(1)每一面电荷单独存在时产生的场强为 i/20 ( i = 1, 2, 3, 4) ,取导体板 B 中任一点,利用静电平衡条件,有
1 2 3 4 Eint,B 0 2 0 2 0 2 0 2 0 取如图所示的高斯面 S’ , E dS S 2 3 0 0
电荷: 1)导体内部无未抵消的净电荷存在,电荷只分布

1、静电场中的导体-13

1、静电场中的导体-13
1= 4
P
3S + 4S = QB
又电荷守恒,所以有: 1S + 2S = QA
Q A QB 联立得: 1 4 2S QB Q A Q A QB 3 2 2S 2S
两板中间的场强为:
1 2 3 4 E 2 0 2 0 2 0 2 0 2 0 B 2 Q A QB U AB E dl Ed d d A 0 2 0 S
U ab
b
a
E dl
0
导体整体是等势体 导体表面是等势面
E0
三、静电平衡时导体上电荷的分布
导体的静电平衡条件; 根据:
1 静电场的高斯定理: E dS S 0
q
S内
i
(1)导体内部无净电荷,电荷分布在导体表面; 在导体内任作一高斯面S ,则:
1 SE dS 0
球A与壳B之间的电势差为:
q3 q2
q1
R3 R1 R2
U AB
R2
R1
q1 1 1 q1 ( ) dr 2 4 π 0 R1 R2 4 π 0 r
q3 q2
q1
R3 R1 R2
q1 q 2 0 q2 - q1
由电荷守恒定律:
q3 q q2 q q1
考虑电荷分布的对称性,由高斯定理得:
E 0 r R1
q1 E 2 4π 0 r
R1 r R2
E 0 R3 r R2 q1 q E r R3 2 4π o r
S内
q
S内
i
=0
S
qi 0 不存在净电荷
(2)导体表面上各处的面电荷密度与该处表面外 附近的场强大小成正比;

4静电场中的导体

4静电场中的导体

3) 推论:处于静电平衡的导体是等势体 导体表面是等势面 导 体 是 等 势 体
en
E dl
E
+
+ + +
E dl 0
导体内部电势相等
dl
+
+
et
U AB E dl 0
AB
A
B
注意 当电势不同的导体相互接触或用另一导体(例如导 线)连接时,导体间将出现电势差,引起电荷宏观 的定向运动,使电荷重新分布而改变原有的电势差, 直至各个导体之间的电势相等、建立起新的静电平 衡状态为止。
各个分区的电场分布(电场方向以向右为正):
1 2 3 4 在Ⅰ区:E 2 0 2 0 2 0 2 0 1 Q 方向向左 0 2 0 S
Eint 0
◆ 导体表面紧邻处的场强必定和导体表面垂直。
E S 表面
证明(1):如果导体内部有一点场强不为零,该点的 自由电子就要在电场力作用下作定向运动,这就不 是静电平衡了。 证明(2):若导体表面紧邻处的场强不垂直于导体表 面,则场强将有沿表面的切向分量 Et,使自由电子 沿表面运动,整个导体仍无法维持静电平衡。
const .
E dS
S
q
i
i
0
E dl 0
L
3. 电荷守恒定律
讨论题:
1. 将一个带电+q、半径为 RB 的大导体球 B 移近一 个半径为 RA 而不带电的小导体球 A,试判断下列说 法是否正确。 +q B (1) B 球电势高于A球。 (2) 以无限远为电势零点,A球的电势 A 0 。 (3) 在距 B 球球心的距离为r ( r >> RB ) 处的一点P, q /(40。 r2) 该点处的场强等于 (4) 在 B 球表面附近任一点的场强等于 B / 0 ,

大学物理-静电场中的导体

大学物理-静电场中的导体

E内= 0 等势体
静电平衡时的导体
接地 :取得与无限远相同的电势 通常取为零)。 (通常取为零)。
6
半径为R的金属球与地相连接 的金属球与地相连接, 例1. 半径为 的金属球与地相连接,在与球心 相距d=2R处有一点电荷 处有一点电荷q(>0),问球上的 相距 处有一点电荷 , 感应电荷 q'=? q'?q =
q3
q2 q1
B
R1 R2
A
R3
22
解: (1)当球体和球壳为一般带电体时 ) 用高斯定理可求得场强分布为
r −R E3 = (q1 + 3 Q) ( R2 ≤ r ≤ R3 ) 2 4πε0r R3 − R 1
3 3 2 3 2
4πε0 R q1 E2 = 2 4πε0r
E1 =
q1
3 1
r
(r ≤ R1 )
E = σ / εo
1 3.面电荷密度正比于表面曲率 σ ∝ R 面电荷密度正比于表面曲率
31
例4-2 (3)如果外壳接地,情况如何? )如果外壳接地,情况如何? (4)如果内球接地,情况又如何? )如果内球接地,情况又如何? (3)如果外壳接地 ) 则: 外壳电势= 外壳电势= 无穷远处电势 =0 外壳带电量= 外壳带电量=Q’
S
ε0 V
S 是任意的。 是任意的。 令S→ 0,则必有ρ 内 = 0。 。
8
必为零。 2.导体壳: 外可不为零,但σ内 和 E内必为零。 导体壳: 可不为零, 导体壳 σ
σ内 = 0
E内 = 0
S内
σ外
理由: 理由: 在导体中包围空腔选取 高斯面S 高斯面 , 则:
S
r r ∫ E导内 ⋅ d s = 0

静电场中的导体和电介质

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体一、导体的静电平衡1、金属导体的电结构及静电感应(1)金属导体:由带正电的晶格和带负电的自由电子组成.带电导体:总电量不为零的导体;中性导体:总电量为零的导体;孤立导体:与其他物体距离足够远的导体.“足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略.(2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程.(3)静电平衡状态:导体中自由电荷没有定向移动的状态.2、导体静电平衡条件(1)从场强角度看:①导体内任一点,场强;②导体表面上任一点与表面垂直.证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直.说明:①静电平衡与导体的形状和类别无关.②“表面”包括内、外表面;(2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体.①导体内各点电势相等;②导体表面为等势面.证明:在导体上任取两点A,B,.由于=0,所以.(插话:空间电场线的画法.由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.)二、静电平衡时导体上的电荷分布1、导体内无空腔时电荷分布如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为:导体静电平衡时其内,, 即.S面是任意的,导体内无净电荷存在.结论:静电平衡时,净电荷都分布在导体外表面上.2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:由于静电平衡时,导体内因此,即S内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷空腔内表面上的净电荷为0.讨论:在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A点附近出现+q,B点附近出现-q,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,,但静电平衡时,导体为等势体,即,因此,假设不成立.结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同).(2)空腔内有点电荷情况如图所示,导体电量为Q,其内腔中有点电荷+q,在导体内作一高斯面S,高斯定理为静电平衡时 , .又因为此时导体内部无净电荷,而腔内有电荷+q,腔内表面必有感应电荷-q.结论:静电平衡时,腔内表面有感应电荷-q,外表面有感应电荷+q. 3、导体表面附近的电场强度和电荷面密度的关系(1)导体表面上电荷分布设在导体表面上某一面积元(很小)上,电荷分布如图所示 ,过边界作一闭合柱面,S上下底、均与平行,S侧面与垂直,柱面的高很小,即与非常接近,此柱面并且是关于对称的.S作为高斯面,高斯定理为(注意与无限大带电平面的区别).结论:导体表面附近,.(2)导体表面曲率对电荷分布影响理论证明某些规则形状的孤立导体带电后,在表面上曲率越大的地方场强越强, 必大,所以曲率大的地方电荷面密度大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.但不是绝对结论.(3)、尖端放电尖端附近场强较大,该处的空气可能被电离成导体而出现尖端放电现象.如图,BC相对AC更容易放电.“电晕”:离子撞击空气分子时,有时能量较小不能使分子电离,但能使分子获得高能量而跃迁到高能级,返回基态时就会发出光子,在尖端出现暗淡的光环.夜晚高压线周围笼罩的绿色光晕.“电风”:金属针接起电机,针尖紧贴蜡烛焰.假设金属针带足量正电荷,针尖附近场强足够大,电离空气分子,吸引负电荷离子,排斥正电荷离子,则正电荷离子吹向蜡烛焰,形成“电风”.4、静电屏蔽(1)空腔内无带电体.由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响.(2)空腔导体接地.由于空腔外表面电荷因接地而与大地中和,所以腔内物体带电不影响腔外物体.静电屏蔽现象:空腔导体可以保护腔内物体不受腔外电荷和电场的影响,或接地的空腔导体可以保护外部物体不受腔内电荷和电场的影响.应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,在高压线与电话线之间装一金属网等.例10-1:在电荷+q的电场中,放一不带电的金属球,从球心 到点电荷所在距离处的矢径为,试问(1)金属球上净感应电荷?(2)这些感应电荷在球心处产生的场强?解:(1)0(2)球心处场强(静电平衡要求),即+q在处产生的场强与感应电荷在处产生场强的矢量和=0.方向指向+q.(感应电荷在处产生电势=?球电势=?选无穷远处电势=0.)P49.课本例题例10.1;10.2§10-2 电介质的电极化和有介质时的高斯定理一、电介质的电结构1、结构电介质:通常所说的绝缘体,常温下电阻率在108-1018Ω•m范围内.主要特征:它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差.与导体的主要区别:在外电场作用下达静电平衡时,电介质内部的场强不为零.2、电介质分类(2类)(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如等).其固有电矩为零,对外不显电性.(2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:等).由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).分子正负电荷中心不重合时相当于一电偶极子.二、电介质的极化1、电极化现象实验表明,将电容器充电后,再去掉电源,然后将某种电介质(如:玻璃,硬橡胶等)插入电容器之间,会发现极板间电压减小了.由知,E减小了.那么E是如何减少的呢?从平板电容场强公式知,E的减小,意味着电介质与极板的近邻处的电荷面密度减小了.但是,极板上的电荷没变,即电荷面密度没变,这种改变只能是电介质上的两个表面出现了如图所示的正、负电荷.电介质在外电场作用下,其表面或体内出现净电荷的现象称为电介质的极化.电极化时电介质表面处出现的净电荷称为极化电荷(属于束缚电荷范畴),称为自由电荷.可见,电荷面密度(自由电荷面密度)-(极化电荷面密度),即减小了.(束缚电荷受到限制,束缚电荷量比自由电荷少的多,故比少的多.)E减小.更直观的解释是,产生的场强与产生的场强相反,所以它的场强为,即减小了,这也可以解释实验结果.2、两类电介质的极化(1)无极分子的位移极化无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个电偶极子,其偶极矩方向沿外电场方向,如图b所示.对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了.由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷.结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化.(2)有极分子的取向极化有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d所示,所以电介质内部呈电中性.当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿着外电场方向排列起来,如图f所示.但随着外电场的增强,排列整齐的程度要增大.无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷.结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化.说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们.(3)附加电场由于电介质极化后出现极化电荷,介质内空间一点的场强:.:介质外的电荷产生的电场,即外电场;:介质上的极化电荷产生的电场.对均匀电介质,外场为匀强电场时,介质内的与方向严格相反,大小||<||.作用是减小介质内电场的,..(插话:1、对电介质的要求对于均匀电介质,极化电荷只出现在电介质表面;对于不均匀电介质,极化电荷出现在表面和内部.一般考虑均匀电介质.均匀电介质:电介质的物理和化学性质各处一致.比如,密度均匀,力学、热学、光学、电磁效应各处一致.2、极化电荷与自由电荷极化电荷:电介质因极化而出现在电介质表面(或体内)的宏观电荷;自由电荷:在外场作用下可以自由运动的宏观电荷.(1)极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作的微小位移,或者整个分子作微小旋转所引起的.因此,极化电荷的运动范围不能超出分子线度;而自由电荷是由于原子或分子的电离或者金属中自由电子的重新分布引起的,它的活动范围可以是整个物体或物体之间;(2)极化电荷不能转移,自由电荷可以转移;可略(3)极化电荷可以吸附导体中自由电荷,但不能被中和掉,而自由电荷可以被中和.3、静电场中的电介质与静电场中的导体(1)它们都会因受电场的作用而出现宏观电荷;这些电荷反过来又会影响电场,这种影响都削弱了原电场;(比较微观本质的不同)(2)都会达到稳定状态——电介质的稳定极化状态和导体的静电平衡状态.(比较微观本质的不同)导体处于静电平衡状态时,表面的感应电荷在导体内产生的感应电场能把外电场完全抵消,导体内场强处处为零;而电介质被极化后,表面出现的极化电荷在介质内产生的电场不能完全抵消外电场,介质内存在电场.)3、电偶极子在外场受到的力和力矩均匀外场下,电偶极子所受总静电力:;总力矩: (10.3)虽然=0,但不为0. 的效果将使电偶极矩旋转到与外电场方向一致,使趋于0,形成稳定状态.三、电极化强度、极化电荷与极化强度的关系1、定义.电极化强度矢量定义为(10.4)即电极化强度矢量是单位体积内分子电矩的矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量可以用来描述电介质的极化程度.上式给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量不同.但对于均匀的无极分子电介质处在均匀的外电场中,,其中n是分子数密度(单位体积的分子数),p是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量的单位为库仑/米2(C/m2).2、电极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元dS,设其电场E的方向(因而P的方向)与dS的法线方向成θ角(如图6.7所示),由于E的作用,分子的正负电荷中心将沿电场方向拉开距离l.为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移l.在面元dS后侧取一斜高为l,底面积为dS的体元dV.由于电场E的作用,此体元内所有分子的正电荷中心将穿过dS面到前侧去.以q表示每个分子的正电荷量,则由于电极化而越过dS面元的总电荷为(1)介质表面处dS是电介质的表面,由于电介质极化(10.5)是其外法向单位矢.讨论:(2)封闭曲面处由于极化穿过有限面积S的电荷为,若dS是封闭曲面,则穿过整个封闭曲面的电荷为.因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为(10.6)(10.6)可称为“极化强度的高斯定理”.从闭合面内向外的极化强度的通量,等于从闭合面内移出去的极化电荷的量.结论:式(10.5)和式(10.6)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(10.6)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,即:.对非均匀电介质,电介质内部也有束缚电荷分布.四、电极化强度与场强的关系电介质的极化状态通过极化强度来描述,由于电介质的极化是电场对电介质作用的结果,因此,电介质内任意一点的极化强度应由该点总电场()决定.与的关系与电介质的性质有关,对各向同性电介质:. (10.7):各向同性均匀电介质的电极化率.电场不太强时,由电介质性质决定,是无量纲量.该式是一个经验定律.课程中讨论的都是各向同性的均匀电介质.五、有介质时的高斯定理1、有介质时的高斯定理(1)定理推导根据真空中的高斯定理,通过闭合曲面S的电场强度通量为所给面包围的电荷除以,即此处, 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,;在有介质存在时,S内既有自由电荷,又有极化电荷,应是S内一切自由电荷与极化电荷的代数和,即、分别表示自由电荷和极化电荷.由于难以测量和计算,应消除.根据.上式变换为令.得(2)定理形式(10.8)其中,称为电位移矢量.利用经验规律(10.9)其中,称为相对介电常数,称为绝对介电常数(也叫电容率).(10.9)式称为各向同性经验电介质的性能方程.(10.8)式称为“高斯定理的普遍形式”——“有介质时的高斯定理”.表明通过任意曲面的电位移通量,等于该封闭曲面内包围的自由电荷的代数和.说明:(1)上式为电介质中的高斯定理,是高斯定理的普遍形式.(2)是辅助量,无真正的物理意义,是为了回避难以量化的极化电荷而引入的辅助量.算出后,可求.(3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切线方向即为的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电位移线条数)等于该处的大小.所以,通过任一曲面上电位移线条数为,称此为通过S的电位移通量;对闭合曲面,此通量为.(4)根据,以平行板电容器产生的线、线和线说明其区别.①电位移线总是始于正的自由电荷,止于负的自由电荷,与极化电荷无关.因而线在电介质和真空中一致;②电力线是可始于一切正电荷和止于一切负电荷(包括自由电荷与极化电荷).真空中,线与线一致,而在极化电荷内部,由于与反向,减弱了,如图.③电极化强度线起于极化负电荷,终于极化正电荷,只存在于极化电介质内,真空中=0,电介质内,.2、定理的应用例10-2:平行板电容器,板间有二种各向同性的均匀介质,分界面平行板面,介电常数分别为、,厚度为、,自由电荷面密度为.求(1)、=?(2)电容C=?解:(1) 设二种介质中电位移矢量分别为、,在左极板处做高斯面S,一对面平行板面,面积均为A,侧面垂直板面,由高斯定理有其中,左底面=0,侧面上.又,,即 ,方向垂直板面向右.同样在右极板处做高斯面,一对面平行极板面,面积均为,侧面与板面垂直,由高斯定理有:,即,方向向右.可见,,即两种介质中法向不变.方向向右.(2)例10-3:在半径为R的金属球外,有一外半径为的同心均匀电介质层,其相对介电常数为,金属球电量为Q,试求:(1)场强空间分布;(2)电势空间分布.解:(1)由题意知,均是球对称的,取球形高斯面S,由有Q>0:沿半径向外;Q<0:沿半径向内.(2)介质外任一点P电势介质内任一点Q电势球为等势体,电势为例10-4:有一个带电为+q半径为的导体球,与内外半径分别为、 带电量为-q的导体球壳同心,二者之间有两层均匀电介质,内层和外层电介质的介电常数分别为、,且二电介质分界面也是与导体球同心的半径为的球面.试求:(1)电位移矢量分布;(2)场强分布;(3)导体球与导体空间电势差;(4)导体球壳构成电容器的电容.解:(1)由题意知,场是球对称的,选球形高斯面S, 由有得 ,沿半径向外.(2)与同向,即沿半径向外.(3)(4)根据自由电荷分布利用高斯定理求解,和前面一样,必须满足对称性:第一,自由电荷的分布和电介质的分布同时满足三种对称性之一,即平面对称、轴对称、球对称,概括为“电介质的表面为等势面”;第二,电介质充满整个电场.在满足上述对称性后,可以利用高斯定理唯一地求解电场问题,此时电位移矢量与极化电荷无关.§10-3 电容 电容器一、孤立导体的电容在真空中设有一半径为R的孤立的球形导体,它的电量为q,那么它的电势为(取无限远处电势=0)对于给定的导体球,即R一定,当变大时,V也变大;变小时,V也变小,但是却不变.此结论虽然是对球形孤立导体而言的,但对一定形状的其它导体也是如此,仅与导体大小和形状等有关,因而有下面定义.定义:孤立导体的电量q与其电势V之比称为孤立导体电容,用C表示,记作:(10.11)对于孤立导体球,其电容为.C的单位为:F(法),1F=1C/1V.在实用中F太大,常用或,他们之间换算关系:.(电容与电量的存在与否无关)二、电容器及其电容实际上,孤立的导体是不存在的,周围总会有别的导体.当有其它导体存在时,则必然因静电感应而改变原来的电场分布,进而影响导体电容.下面我们具体讨论电容器的电容.1、电容器:两个带有等值而异号电荷的导体所组成的带电系统称为电容器.电容器可以储存电荷,也可以储存能量.2、电容器电容:如图所示,两个导体A、B放在真空中,它们所带的电量分别为+q,-q,如果A、B电势分别为、,那么A、B电势差为,电容器的电容定义为:(10.12)由上可知,如将B移至无限远处,=0.所以,上式就是孤立导体的电容.所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差.所以,孤立导体电容是B放在无限远处时的特例.导体A、B常称电容器的两个电极.3、电容器电容的计算①极间分别带有+Q,-Q电量,利用高斯定理,计算极间电场强度分布;②根据电场去分布,求出极间电势差;③将极板电量和极间电势差代入电容器电容定义式,计算出电容.(1)、平行板电容器的电容设A、B二极板平行,面积均为S,相距为d,电量为+q,-q,极板线度比d大得多,且不计边缘效应.所以A、B间为均匀电场.板间充满电介质,介电常数为ε.由高斯定理知,A、B间场强大小为.则 (10.13)为该电容器极板间真空时的电容值.(2)、球形电容器设二均匀带电同心球面A、B,半径、,电荷为+q,-q. 板间充满电介质,介电常数为ε.A、B间任一点场强大小为:,.为该电容器极板间真空时的电容值.讨论:①当时,有,令,为平行板电容器电容.②当为孤立球形电容器电容.A为导体球或A、B均为导体球壳结果如何?(3)、圆柱形电容器圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A、B半径为、,电荷为+q,-q,板间充满电介质,介电常数为ε.除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量,是柱高.由高斯定理知,A、B内任一点P处的大小为则 (10.15)(可知:在计算电容器时主要是计算两极间的电势差).(插话:4、电介质对电容器电容的影响以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C要比真空情况电容大,可表示,或.与介质有关,称为相对介电系数 .以上各情况若充满电介质(极间),有:球形: ;平板:;柱形:.称为介质的介电常数.())下面以平行板电容器为例求:(1)电介质中场强 E由电容器定义,有(无介质) 为电压,为电量.(有介质) 为电压,为电量.(2)极化电荷面密度介质内电场:.即: (极化电荷面密度)三、电容器的串联与并联在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因.因此有必要根据需要把若干电容器适当地连接起来.若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容.1、 串联:几个电容器的极板首尾相接(特点:各电容的电量相同).设A、B间的电压为,两端极板电荷分别为+q,-q,由于静电感应,其它极板电量情况如图,.由电容定义有(10.16a)2、并联:每个电容器的一端接在一起,另一端也接在一起.(特点:每个电容器两端的电压相同,均为,但每个电容器上电量不一定相等)等效电量为:,由电容定义有:(10.16b)例10-5:平行板电容器,极板宽、长分别为a和b,间距为d,今将厚度t,宽为a的金属板平行电容器极板插入电容器中,不计边缘效应,求电容与金属板插入深度x的关系(板宽方向垂直底面).解:由题意知,等效电容如左下图所示,电容为:说明:C大小与金属板插入位置(距极板距离)无关;注意:(1)掌握串并联公式;(2)掌握平行板电容器电容公式.例8-3:半径为a的二平行长直导线相距为d(d>>a),二者电荷线密度为,,试求(1)二导线间电势差;(2)此导线组单位长度的电容.解:(1)如图所取坐标,P点场强大小为:(2)注意:(1)公式.(2)此题的积分限,即明确导体静电平衡的条件.§10.4 电场的能量一、电容器储存的静电能一个电中性的物体,周围没有电场,当把电中性物体的正、负电荷分开时,外力作了功,这时该物体周围建立了电场.所以,通过外力做功可以把其它形式能量转变为电能,贮藏在电场中.。

静电场中的导体

静电场中的导体
静电场中的 导体
一、导体的静电平衡条件
+
++++ + + + +
感应电荷
静电平衡条件
导体 内部 的场
E0
E E0 E'
E'
静电平衡时
E E' E0
E E0 E' 0
外场
E0
•静电平衡条件: 导 感应场 E '
体内部场强为0。
导体内部的场 E
二、处于静电平衡的导体的性质
1.静电平衡时导体为等势体,导体表面 为等势面。
R2 R3
(1)球壳B内、外表面上的电量及球A和球壳B的电势
(2)将球壳B接地然后断开,再把金属球A接地,求金 属球A和球壳B内、外表面上各带有的电量以及球A 和球壳B的电势
• 例:有一块大金属平板,面 积为S,带有总电量Q,在 其近旁平等放置第二块 大金属板,此板原来不带 电.求静电平衡时,金属板 上的电荷 分布及其空间
如尖端放电
三、静电空腔内表面无电荷,全部电 荷分布于外表面。
证明:在导体内作高斯面
S
E
dS
q
0
导体内 E 0, q 0
面内电荷是否会等量异号?
如在内表面存在等量异号 电荷,则腔内有电力线, 电势沿电力线降落,所以 导体不是等势体,与静电 平衡条件矛盾。
所以内表面无电荷,所有电荷分布于外表 面。
• 不管外电场如何变化,由于导体表面电 荷的重新分布,总要使内部场强为 0。
• 空腔导体具有静电屏蔽作用。例如:高 压带电作业人员穿的导电纤维编织的工 作服。
2.腔内有电荷
空腔原带有电荷 Q ,将 q 电荷放入空腔内。 结论:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1 R2 q′ = Q R1 R3 − R1 R2 − R2 R3
R2
− q′ + q′
R 1
Q + q′
R2
R3
附录: 附录:证明
1 σ∝ Rl >> R1 导线
R2
Q2
R2
证明: 证明: 用导线连接两导体球
则 VR1 = VR2
Q2 = 即 4πε0R 4πε0R2 1
Q σ3 = − Q 联立求解: 联立求解: σ1 = 0 σ2 = S S EA = EC = 0 EB = Q εoS
若第二块板原来带有电荷Q’,现让其接地,结果如何? 现让其接地,结果如何?
半径为R的金属球与地相连接 在与球心相距d=2R 的金属球与地相连接,在与球心相距 例2 半径为 的金属球与地相连接 在与球心相距 处有一点电荷q(>0),问球上的感应电荷 q'=? 处有一点电荷 问球上的感应电荷 解: 利用金属球是等势 球体上处处电势: 球体上处处电势 U= 0 球心处: 球心处:
r r r r ∫ E ⋅ ds = ∫ E内 ⋅ ds = 0 体内无净电荷! ∴ ∑ q内 = 0 即:体内无净电荷!
2 空腔导体 ,空腔内无电荷时
A B
内表面? 内表面? 外表面? 外表面?
v v ∫ E⋅dS = 0
S
∑q = 0
i
若内表面带电, 若内表面带电,必等量异号
UAB = ∫
AB
3. 导体表面附近的场强
σ∆S
在导体表面上任取面元∆ 在导体表面上任取面元∆S, 如图作底面积为∆ 的高斯柱面,轴线垂直∆ 如图作底面积为∆S的高斯柱面,轴线垂直∆S 则有: 则有:r r r r r r0 r 0 r
∫ E⋅dS = ∫上E⋅dS + ∫下E⋅dS + ∫侧E⋅dS
= E ⋅ ∆S 1 ∑ q σ ⋅ ∆S = E ⋅ ∆ S ∴ E = σ i = εo εo εo
R 1
R2
R3
法一: 由高斯定理, 法一 由高斯定理 得
E1 = 0 ( r < R1 )
q E2 = ( R1 < r < R 2 ) 2 4 π ε0r E3 = 0 ( R2 < r < R3 ) Q +q E4 = (r > R3 ) 2 4 π ε0r

+q
R 1
−q
Q+ q +
R2
v v R3 Vo = ∫ E ⋅ dl 0 v R2 v v R3 v v ∞ v v R1 v = ∫ E1 ⋅ dl + ∫ E2 ⋅ dl + ∫ E3 ⋅ dl + ∫ E4 ⋅ dl
+ +
+ + + + + 带电云

-- - - -
静电感应 电晕放电 可靠接地
0 R1 R2 R3
q q q+Q 1 = ( − + ) 4 π ε0 R1 R2 R3
法二: 直接用大叠加法!
思考:1)用导线连接A,B 再作计算 思考:1)用导线连接 :1)用导线连接 连接A,B q (−q) 中和 连接 球壳外表面带电
r < R3
R3
Q+ q
Q+ q
B
−q q
A R1 O
R2
R1
v v E ⋅ dl
−q
q
R 1
+q
=∫
R2
R1
1 1 dr = ( − ) 2 4πε 0 r 4πε 0 R1 R2 q
R3 3)若接地不是外壳球而是内球 内球上所带电量为零吗? 3)若接地不是外壳球而是内球 内球上所带电量为零吗??
q′ q′ Q + q′ 1 V球 = ( − + )=0 R3 4 π ε 0 R1 R2
反证法: 反证法: 设导体内部某点 E≠0, ≠ ,
r r 则该处有 F = − eE 此力将驱动电子运动
导体未达静电平衡。 ∴ 导体未达静电平衡。同理可证 (2)
2)推论 导体静电平衡条件的另一种表述 推论(导体静电平衡条件的另一种表述 推论 导体静电平衡条件的另一种表述): (1) 导体是等势体。 导体是等势体。 (2) 导体表面是等势面。 导体表面是等势面。 2. 导体上电荷分布 ** 体内无净电荷 ρ=0),电荷只分布在导体表面上 体内无净电荷(ρ , 证明: 证明:1 体内无空腔 .p 围任一点P作高斯面 由高斯定理得: 围任一点 作高斯面S, 由高斯定理得: 作高斯面
Q 1
σ14πR12 σ2 4πR22 σ1 R2 = ∴ = 4πε0R 4πε0R2 σ2 R 1 1
尖端放电现象 带电导体尖端附近的 电场特别大, 电场特别大,可使尖端附 近的空气发生电离而成为 导体产生放电现象. 导体产生放电现象.
σ↑E↑
< 电风实验 >
+++ ++
+ +
+ + +
避雷针的工作原理
表面尖端处, 表面尖端处,E较大 表面凹进处, 表面凹进处,E最弱
避雷针 尖端放电 除尘器 ……
注:具体证明和例子详见附录
5.静电屏蔽 静电屏蔽 模型: 空腔内有带电体的导体壳 模型:**空腔内有带电体的导体壳 设导体带电荷Q,空腔内有一带电体 , 设导体带电荷 ,空腔内有一带电体+q,则导体 壳内表面所带电荷为-q 壳内表面所带电荷为 证明: 在导体壳内作一高斯面S 证明: 在导体壳内作一高斯面
§4 静电场中的导体(金属导体 静电场中的导体 金属导体) 金属导体
导体 将实物按电特性划分: 将实物按电特性划分: 半导体 绝缘体 在均匀场放入一导体的情况 : 静电感应
r E′
r E
E内 = 0
电荷不动 表面出现感应电荷 uu ur r 电荷积累到一定程 达静电平衡 E' + E = 0 度
1. 导体静电平衡条件 导体的静电平衡状态: 导体内部和表面都 导体内部和表面都没有 导体的静电平衡状态:—导体内部和表面都没有 静电平衡状态 电荷作宏观定向 宏观定向运动的状态 电荷作宏观定向运动的状态 。 1) 导体静电平衡条件: 导体静电平衡条件: (1)导体内部任何一点的场强等于 0 。 导体内部任何一点的场强等于 导体内部任何一点的 (2)导体表面任何一点的场强都垂直表面 (2)导体表面任何一点的场强都垂直表面 。 导体表面任何一点的
Q+q
−q S
+q
r r 由高斯定理: 由高斯定理:∫ E ⋅ dS = 0 ∴∑qi = 0 ∑ q i = q + q内 = 0
i
即:q内 = −q 得证
i
由电荷守恒: 由电荷守恒: q外 = Q + q
讨论
Q+ q +q
1)若将腔内带电体与导体壳连接, 若将腔内带电体与导体壳连接, 若将腔内带电体与导体壳连接 会出现什么情况? 会出现什么情况? 腔内无电荷分布: 腔内无电荷分布:E内=0 屏蔽外场
Q
+q
−q
2)若将导体壳接地,又会出现 若将导体壳接地, 若将导体壳接地 什么情况? 什么情况? 导体壳外: q外 = 0 导体壳外:E外=0 屏蔽内场
一金属平板, 面积为S带电 带电Q, 在其旁放置第二块同面 例1 一金属平板 面积为 带电 积的不带电金属板. 静电平衡时,电荷分布及电场分布 积的不带电金属板 求 (1)静电平衡时 电荷分布及电场分布 静电平衡时 电荷分布及电场分布. (2) 若第二块板接地 忽略边缘效应 若第二块板接地?忽略边缘效应 忽略边缘效应. 解: (1) 设四个面上电荷面度为 σ1 σ2 σ3 σ4 σ1 σ2 σ3 σ4 σ1 + σ2 = Q 由电荷守恒律,有 由电荷守恒律 有: S Q σ3 + σ4 = 0 A B C 如图取高斯柱面, 由静电平衡条件: 如图取高斯柱面, 即:σ2 + σ3 = 0 .P 导体内任意一点 其电场 E=0 导体内任意一点P, r σ1 σ 2 σ 3 σ 4 E 即:2ε + 2ε + 2ε − 2ε = 0 o o o o 得: σ1 = σ2 = Q 2S
vi v 与导体是等势体矛盾! E ⋅ dl ≠ 0 与导体是等势体矛盾!
即电荷全分布在导体外表面上! 电荷全分布在导体外表面上!
?若导体内空腔有带电体, 若导体内空腔有带电体,
电荷分布? 电荷分布?
结论:一般情况下, 结论:一般情况下, 净电荷分布在导体 的外表面, 若导体 外表面, 空腔内有带电体, 空腔内有带电体, 内外表面都有净电荷 内外表面都有净电荷
即:∫
q′ 4πε o R
q′
R
o
R
Uo= 0
q
d q′ q + =0 4πε o 2R 0 4πε oR
=− q 4πε o 2 R
q ∴ q′ = − 2
课堂练习: 课堂练习: 有一外半径R3, 内半径R2的金属球
的同心金属球, 壳,在球壳中放一半径R1的同心金属球,若使 球壳带电Q 球壳带电Q和球带电q. +Q 问: 两球体上的电荷如何 +q 分布?球心电势为多少? 分布?球心电势为多少?
σ3 = − Q 2S σ4 = Q 2S
EC =
Q 2εoS
EA = −
Q 2εoS
EB =
Q 2εoS
σ1 σ2 σ3 σ4
Q
(2)第二块板接地 第二块板接地 则 σ4与大地构成一导体
σ4 = 0
A
B
C
.P
r E
σ1 + σ2 = Q S 同理可得: 同理可得: σ + σ = 0 2 3
相关文档
最新文档