【解析版】2014-2015学年杭州市滨江区七年级上期末数学试卷
2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(2)

2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(2)一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)下列各对数中,互为相反数的是()A.和0.2 B.和C.﹣1.75和+1.75 D.+2和﹣(﹣2)2.(3分)如果一个角是36°,那么()A.它的余角是64°B.它的补角是64°C.它的余角是144° D.它的补角是144°3.(3分)一个数的立方就是它本身,则这个数是()A.1 B.0 C.﹣1 D.1或0或﹣14.(3分)如图,图中线段、射线、直线的条数分别为()A.5,4,1 B.8,12,1 C.5,12,3 D.8,10,35.(3分)化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n6.(3分)下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A.1个 B.2 C.3个 D.4个7.(3分)一副三角板按如图方式摆放,且∠1比∠2小60°,则∠AOB的度数是()A.140°B.150°C.160° D.165°8.(3分)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.x﹣1=x+3变形得4x﹣6=3x+18C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.3x=2变形得x=9.(3分)若现在的时间为下午2:30,那么时针与分针的夹角为()A.120°B.115°C.110° D.105°10.(3分)一列匀速前进的火车,从它进入500m的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.m B.100m C.120m D.150m二、填空题(本题有8小题,每小题3分,共24分)11.(3分)64的平方根是.12.(3分)用代数式表示比a的5倍大3的数是.13.(3分)已知一个角的补角加上10°后等于这个角的余角的3倍,则这个角的余角为.14.(3分)大于﹣不大于的整数有(写出这些数).15.(3分)当n为正整数时,(﹣1)2n+(﹣1)2n+1=.16.(3分)小刚他们玩扑克牌游戏,首先把扑克牌分成左、中、右三堆,每堆的扑克牌不少于2张,且每堆的扑克牌数量相等,后按下列步骤操作:①从左边一堆拿一张扑克牌放入中间一堆;②从右边一堆拿二张扑克牌放入中间一堆;③左边一堆有多少张扑克牌就从中间一堆拿多少张扑克牌放入左边一堆扑克牌中,这时,中间一堆的扑克牌数是张.17.(3分)如图,甲以3km/h的速度从A地到C地,乙以4km/h的速度从A地到B地,CB=4km,D是CB的中点,设AD=x km(x<12),则甲所用的时间比乙时间少h.(结果用x的代数式表示,要化简)18.(3分)如图,平面内有公共端点的六条射线:OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字:1,2,3,4,5,6,7,….根据规律将射线OD上的第n个数字(从O向D数)用含正整数n的式子表示为.三、解答题(本题有7题,共66分)19.(12分)计算(1)21﹣(﹣5)2×(﹣1)(2)﹣(+4)(3)50°24′×3+98°12′25″÷5(4)4.8×104﹣8.4×103.20.(6分)化简或求值(1)﹣2(3x﹣2y)+3[5x﹣(2y﹣4x)](2)已知A=3b2﹣2a2,B=ab﹣2b2﹣a2.求A﹣2B的值,其中a=2,b=﹣.21.(12分)解方程(1)16﹣2(x﹣3)=x(2)1﹣=(3)+x=.22.(8分)某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?23.(8分)(1)已知线段AB 长为6cm ,点C 是线段AB 上一点,满足AC=CB ,点D 是直线AB 上一点,满足BD=AC ,求出线段CD 的长.(2)如图,已知O 是直线MN 上的一点,∠AOB=90°,OC 平分∠BON ,∠3=24°,求∠1和∠MOC 的度数.24.(10分)我们知道,任何一个三角形三个内角的和是180°,如图,△ABC 中,∠BAC +∠ABC +∠ACB=180°.(1)请画出∠ABC 和∠ACB 的角平分线,交点是D .(2)若∠BAC=x 度,请用x 的代数式表示出∠BDC 的度数,并简单说明理由.(3)若∠BAC 和∠BDC 互补,求x 的值.25.(10分)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:(1)甲农民一年的实际医疗费为3000元,则按标准报销的金额为 元;乙农民一年的实际医疗费为12000元,则按标准报销的金额为元;(2)设某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费为多少元?2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(2)参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)(2013秋•蓝山县期末)下列各对数中,互为相反数的是()A.和0.2 B.和C.﹣1.75和+1.75 D.+2和﹣(﹣2)【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 互为倒数,故A错误;B 互为倒数,故B错误;C 只有符号不同,故C正确;D 两数相等,故D错误;故选:C.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.2.(3分)(2004•郫县)如果一个角是36°,那么()A.它的余角是64°B.它的补角是64°C.它的余角是144° D.它的补角是144°【分析】根据余角、补角的定义计算.【解答】解:如果一个角是36°,那么它的余角是90°﹣36°=54°,补角为180°﹣36°=144°.故选D.【点评】本题考查余角、补角的定义;α的余角为90°﹣α,补角为180°﹣α.3.(3分)(2013春•临沂期末)一个数的立方就是它本身,则这个数是()A.1 B.0 C.﹣1 D.1或0或﹣1【分析】本题考查立方的意义,在解答时,根据立方的意义求得结果.【解答】解:一个数的立方就是它本身,则这个数是1或0或﹣1.故选D.【点评】解决此类题目的关键是熟记立方的意义.根据立方的意义,一个数的立方就是它本身,则这个数是1,﹣1或0.4.(3分)(2012秋•下城区期末)如图,图中线段、射线、直线的条数分别为()A.5,4,1 B.8,12,1 C.5,12,3 D.8,10,3【分析】已知直线上的两个端点即可确定一条线段,直线上的一点就可确定两条射线,据此即可求解.【解答】解:图中的线段有:AB、AO、AC、BO、BC、OC、DO、EO,共有8条;图中的射线有:AC、BC、OC、CH、CO、OB、BA、AK、OD、DM、OE、EN,共有12条.图中的直线有:直线AC.共1条.故选B.【点评】本题考查了直线、射线、线段.在线段、射线的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.5.(3分)(2008•咸宁)化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n【分析】考查整式的加减运算,首先去括号,然后合并同类项.【解答】解:m+n﹣(m﹣n)=m+n﹣m+n=2n.故选C.【点评】去括号时,当括号前面是负号,括号内各项都要变号.合并同类项时把系数相加减,字母与字母的指数不变.6.(3分)(2013秋•杭州期末)下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A.1个 B.2 C.3个 D.4个【分析】根据直线的性质判断①;根据线段的性质判断②;根据垂线的性质判断③;根据线段的中点的定义判断④.【解答】解:①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中点到线段的两个端点的距离相等,说法正确.故选C.【点评】本题考查了直线的性质,线段的性质,垂线的性质,线段的中点的定义,是基础知识,需牢固掌握.7.(3分)(2014秋•杭州期末)一副三角板按如图方式摆放,且∠1比∠2小60°,则∠AOB的度数是()A.140°B.150°C.160° D.165°【分析】根据三角板可得∠1+∠2=90°,∠AOC=90°,根据∠1比∠2小60°可得∠2﹣∠1=60°,然后与∠1+∠2=90°结合可计算出∠1和∠2的度数,进而得到∠AOB 的度数.【解答】解:∵∠1+∠2=90°,∠2﹣∠1=60°,∴∠1=15°,∠2=75°,∴∠AOB=∠AOC+∠2=90°+75°=165°.故选:D.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.8.(3分)(2015秋•红河州校级期末)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.x﹣1=x+3变形得4x﹣6=3x+18C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.3x=2变形得x=【分析】各项利用去分母,去括号,移项合并,将x系数化为1的方法计算得到结果,即可做出判断.【解答】解:A、4x﹣5=3x+2变形得:4x﹣3x=﹣2﹣5,故选项错误;B、x﹣1=x+3变形得:4x﹣6=3x+18,故选项正确;C、3(x﹣1)=2(x+3)变形得:3x﹣3=2x+6,故选项错误;D、3x=2变形得x=,故选项错误.故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.(3分)(2014秋•杭州期末)若现在的时间为下午2:30,那么时针与分针的夹角为()A.120°B.115°C.110° D.105°【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:2点30分时,时针和分针中间相差3.5大格.∵钟表12个数,每相邻两个数字之间的夹角为30°,∴2点30分时分针与时针的夹角是3.5×30°=105°.故选;D.【点评】此题考查的知识点是钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.10.(3分)(2013秋•蓝山县期末)一列匀速前进的火车,从它进入500m的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.m B.100m C.120m D.150m【分析】设这列火车的长度为xm,则火车通过隧道时的速度为米/秒,而火车通过灯光时的速度为你米/秒,根据这两个速度相等建立方程求出其解即可.【解答】解:设这列火车的长度为xm,由题意,得=,解得:x=100.故选B.【点评】本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,解答时根据速度不变为等量关系建立方程是关键.二、填空题(本题有8小题,每小题3分,共24分)11.(3分)(2010•婺源县校级模拟)64的平方根是±8.【分析】直接根据平方根的定义即可求解.【解答】解:∵(±8)2=64,∴64的平方根是±8.故答案为:±8.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(3分)(2014秋•海曙区期末)用代数式表示比a的5倍大3的数是5a+3.【分析】比a的5倍大3的数也就是用a乘5再加上3,直接列式即可.【解答】解:根据题意可知,比a的5倍大3的数是5a+3.故答案为:5a+3.【点评】此题考查列代数式,注意字母和数字相乘的简写方法.13.(3分)(2014秋•杭州期末)已知一个角的补角加上10°后等于这个角的余角的3倍,则这个角的余角为50°.【分析】先设出这个角,可表示出其补角和余角,根据题意我们可列出等式,解这个等式即可得出这个角的度数,然后求得其余角即可.【解答】解:设这个角为x°,则它的余角为90°﹣x°,补角为180°﹣x°,根据题意,得180°﹣x°+10°=3×(90°﹣x°),解得x=40,余角为50°,故答案为:50°.【点评】本题考查的是角的余角和补角的关系,以及对题意的准确把握.14.(3分)(2014秋•杭州期末)大于﹣不大于的整数有﹣1,0,1,2,3(写出这些数).【分析】根据﹣,的取值范围得出符合题意的整数即可.【解答】解:∵写大于﹣不大于的整数,∴符合题意的有:﹣1,0,1,2,3.故答案为:﹣1,0,1,2,3.【点评】此题主要考查了估算无理数,正确得出﹣,接近的有理数是解题关键.15.(3分)(2014秋•杭州期末)当n为正整数时,(﹣1)2n+(﹣1)2n+1=0.【分析】利用﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1进而化简得出即可.【解答】解:(﹣1)2n+1+(﹣1)2n=﹣1+1=0.故答案为:0.【点评】此题主要考查了有理数的乘法运算,利用﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1得出是解题关键.16.(3分)(2010秋•永康市期末)小刚他们玩扑克牌游戏,首先把扑克牌分成左、中、右三堆,每堆的扑克牌不少于2张,且每堆的扑克牌数量相等,后按下列步骤操作:①从左边一堆拿一张扑克牌放入中间一堆;②从右边一堆拿二张扑克牌放入中间一堆;③左边一堆有多少张扑克牌就从中间一堆拿多少张扑克牌放入左边一堆扑克牌中,这时,中间一堆的扑克牌数是4张.【分析】本题需先根据题意求出中间一堆扑克牌的数量和左边一堆扑克牌的数量,再把结果相减即可.【解答】解:设左、中、右三堆扑克牌分别有x张,当①从左边一堆拿一张扑克牌放入中间一堆时中间一堆扑克牌的数量是x+1张,当②从右边一堆拿二张扑克牌放入中间一堆时中间一堆扑克牌的数量是x+3张,此时左边的扑克牌张数是x﹣1,中间是x+3,故当③左边一堆有多少张扑克牌就从中间一堆拿多少张扑克牌放入左边一堆扑克牌中时,中间一堆的扑克牌数是(x+3)﹣(x﹣1)=4张.故答案为4.【点评】本题主要考查了整式的加减,在解题时要注意根据题意找出规律是解题的关键.17.(3分)(2009秋•江东区期末)如图,甲以3km/h的速度从A地到C地,乙以4km/h的速度从A地到B地,CB=4km,D是CB的中点,设AD=x km(x<12),则甲所用的时间比乙时间少(﹣x+)h.(结果用x的代数式表示,要化简)【分析】甲比乙少用的时间=乙走(x+2)km所用的时间﹣甲走(x﹣2)km所用的时间,把相关数值代入后化简即可.【解答】解:∵CB=4km,D是CB的中点,∴CD=BD=2,∴AC=x﹣2,BA=x+2,∴甲比乙少用的时间=﹣=﹣x+(h),故答案为:(﹣x+).【点评】考查列代数式;得到两人所走的路程是解决本题的突破点.18.(3分)(2013秋•天柱县期末)如图,平面内有公共端点的六条射线:OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字:1,2,3,4,5,6,7,….根据规律将射线OD上的第n个数字(从O向D数)用含正整数n的式子表示为6n﹣2.【分析】写出线段上的数据,再寻找并发现规律.【解答】解:射线OD上的第1个数字为4,第2个为旋转一周后,是第10个,第3个,再旋转一周,转过了6个数字;…由此发现规律:每两个数字之差为6,那么射线OD上的第n个数字表示为6n﹣2.【点评】通过观察图形,仔细分析数据后,发现并找出规律,规律题是近年中考的热点之一.三、解答题(本题有7题,共66分)19.(12分)(2014秋•杭州期末)计算(1)21﹣(﹣5)2×(﹣1)(2)﹣(+4)(3)50°24′×3+98°12′25″÷5(4)4.8×104﹣8.4×103.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用平方根,立方根定义计算即可得到结果;(3)原式利用度分秒运算法则计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=21+25=46;(2)原式=4+3﹣4=3;(3)原式=150°72′+19°38′29″=170°50′29″;(4)原式=48000﹣8400=39600.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2014秋•杭州期末)化简或求值(1)﹣2(3x﹣2y)+3[5x﹣(2y﹣4x)](2)已知A=3b2﹣2a2,B=ab﹣2b2﹣a2.求A﹣2B的值,其中a=2,b=﹣.【分析】(1)原式去括号合并即可得到结果;(2)把A与B代入A﹣2B中,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:(1)原式=﹣6x+4y+15x﹣6y+12x=21x﹣2y;(2)∵A=3b2﹣2a2,B=ab﹣2b2﹣a2,∴A﹣2B=3b2﹣2a2﹣2ab+4b2+2a2=7b2﹣2ab,当a=2,b=﹣时,原式=+2=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(12分)(2014秋•杭州期末)解方程(1)16﹣2(x﹣3)=x(2)1﹣=(3)+x=.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:16﹣2x+6=x,移项合并得:3x=22,解得:x=;(2)去分母得:6﹣3x+5=2+10x,移项合并得:13x=9,解得:x=;(3)方程整理得:+x=,去分母得:15x﹣9+6x=2x+20,移项合并得:19x=29,解得:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.22.(8分)(2006•恩施州)某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?【分析】本题最后的问题是旅游团住了三人普通间和双人普通间客房各多少间,跟表中的豪华间是没有关系的.那么根据人数和钱数就可以得到两个等量关系:三人普通间的人数+双人普通间的人数=50;三人普通间的钱数+双人普通间的钱数=1510.【解答】解:设三人普通房和双人普通房各住了x、y间.根据题意,得化简得:,②﹣①×5得:y=13,将y=13代入①得:x=8,∴(7分)答:三人间普通客房、双人间普通客房各住了8、13间.【点评】解题关键是弄清题意,摒弃没用的条件,找到有用的条件,最简单的等量关系,列出方程组.23.(8分)(2014秋•杭州期末)(1)已知线段AB长为6cm,点C是线段AB上一点,满足AC=CB,点D是直线AB上一点,满足BD=AC,求出线段CD的长.(2)如图,已知O是直线MN上的一点,∠AOB=90°,OC平分∠BON,∠3=24°,求∠1和∠MOC的度数.【分析】(1)由AB的长,即AC为BC的一半求出AC与BC的长,再由BD为AC 一半求出BD的长,由BC﹣BD及BD+BC即可求出CD的长;(2)根据∠AOB=90°,∠3=24°,求出∠1+∠2=90°﹣24°=66°,从而求出∠1和∠MON的度数.【解答】解:如图1,2,分两种情况讨论:(1)由题意得AC=2cm,BC=4cm,BD=1cm,由图1得CD=BC﹣BD=3cm,由图2得CD=BC+BD=5cm;如图3:∵∠AOB=90°,∠3=24°,∴∠1+∠2=90°﹣24°=66°,又∵OC平分∠BON,∴∠1=∠2=66°×=33°,∴∠MOC=180°﹣33°=147°.【点评】本题考查了两点间的距离和角的计算,熟悉线段的加减运算和角的相关运算是解题的关键.24.(10分)(2013秋•江干区期末)我们知道,任何一个三角形三个内角的和是180°,如图,△ABC中,∠BAC+∠ABC+∠ACB=180°.(1)请画出∠ABC和∠ACB的角平分线,交点是D.(2)若∠BAC=x度,请用x的代数式表示出∠BDC的度数,并简单说明理由.(3)若∠BAC和∠BDC互补,求x的值.【分析】(1)用量角器作出两个角的角平分线即可;(2)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义表示出∠DBC+∠DCB,然后利用三角形的内角和定理列式整理即可得解;(3)根据互为补角的两个角的和等于180°列出方程求解即可.【解答】解:(1)如图所示;(2)∠BDC=90°+.理由如下:由三角形内角和180°得,∠ABC+∠ACB=180°﹣∠A,∵∠ABC和∠ACB的角平分线的交点是D,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(180°﹣∠A)=90°+∠A,∵∠BAC=x,∴∠BDC=90°+;(3)由题意得,90°++x=180°,解得,x=60°.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.25.(10分)(2014秋•杭州期末)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:(1)甲农民一年的实际医疗费为3000元,则按标准报销的金额为1750元;乙农民一年的实际医疗费为12000元,则按标准报销的金额为8250元;(2)设某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费为多少元?【分析】(1)根据该医疗报销比例,可以直接求出医疗费分别为3000元和12000元时,分别报销金额;(2)当实际医疗费为x元(500<x≤10000)时,按标准报销的金额为:(x﹣500)×70%;(3)要求该农民当年实际医疗费用,应先设实际医疗费为y元,根据自付医疗费2600元=实际医疗费﹣按标准报销的金额,这个等量关系列出方程求解.【解答】解:(1)甲农民一年的实际医疗费为3000元,则按标准报销的金额为:(3000﹣500)×70%=1750元;乙农民一年的实际医疗费为12000元,则按标准报销的金额为:(10000﹣500)×70%+(12000﹣10000)×80%=8250元;(2)由题意得:某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为:(x﹣500)×70%=0.7(x﹣500)元;(3)设该农民当年实际医疗费为y元,由题意得:当该农民当年实际医疗费为10000元时:该农民自付费用为:10000﹣0.7(10000﹣500)=3350元,所以:500<y<10000元,即:y﹣0.7(y﹣500)=2600,解得,y=7500元.所以,该农民当年实际医疗费为7500元.【点评】本题的关键在于准确理解题意,是“超过部分而非全部”并理解其报销的比例关系以及找出等量关系列方程求解.参与本试卷答题和审题的老师有:2300680618;fuaisu;自由人;py168;dbz1018;HJJ;刘超;sd2011;sks;马兴田;hdq123;疯跑的蜗牛;117173;73zzx;sjzx;gbl210;lantin;lanchong;星期八;HLing;CJX;xingfu123(排名不分先后)菁优网2017年6月1日第21页(共21页)。
2014-2015学年杭州市滨江区七下期末数学试卷

2014-2015学年杭州市滨江区七下期末数学试卷一、选择题(共10小题;共50分)1. 下列各图案中,是由一个基本图形通过平移得到的是A. B.C. D.2. 下列方程是二元一次方程的是A. B.C. D.3. 下列计算中,正确的是A. B. C. D.4. 如图,直线,平分,,则的度数是A. B. C. D.5. 根据2010~2014 年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是A. 2012~2014 年杭州市每年 GDP 增长率相同B. 2014 年杭州市的 GDP 比 2010 年翻一番C. 2010 年杭州市的 GDP 未达到亿元D. 2010~2014 年杭州市的 GDP 逐年增长6. 下列式子运算正确的是A. B.C. D.7. 分式的值为,则A. B. C. D.8. 如图,将沿方向平移得到,若的周长为.则四边形的周长为A. B. C. D.9. 设,,,则数,,的大小关系是A. B. C. D.10. 已知,分式的值为A. B. C. D.二、填空题(共6小题;共30分)11. ______.12. 如图的折线统计图分别表示我国A市与B市在2015年4月份的日平均气温的情况,记该月A市和B市日平均气温是的天数分别为天和天,则 ______.13. 年出生人数减年死亡人数的差与年平均人口数的比,叫做年人口自然增长率.如果用表示年出生人数,表示年死亡人数,表示年平均人口数,表示年人口自然增长率,则年人口自然增长率.若把公式变形已知,,,求,则 ______.14. 因式分解: ______.15. ,则的值为______.16. 有一个计算程序,每次运算都是把一个数先乘以,再除以它与的和,多次重复进行这种运算的过程如下:次的运算结果是______.(用含字母和的代数式表示).三、解答题(共8小题;共104分)17. 计算:(1).(2).18. 如图,已知四边形,平移四边形,使点经平移后落在点处,请用作图的方法作出经这一平移后所得的图形.19. 解方程(组)(1).(2)20. (1)用简便方法计算:.(2)先化简,再求值:,其中,.21. 一次统计七年级若干名学生每分钟跳绳次数的频数直方图和扇形统计图如图,请根据图给的信息回答下列问题:(1)参加测试的总人数是多少?(2)数据分组时,组距是多少?(3)频数分布直方图中,自左至右第一组的两个边界值分别是多少?该组频数是多少?(4)请补全频数直方图(并标上频数),在扇形统计图中补上另外三个扇形的圆心角度数.22. 如图,直线分别交,于点,,平分,平分,并且,请说明的理由.23. 小聪家以年利率不同的两种储蓄方式存了元和元,一年到期,扣除利息税后共得利息元,如果这两笔钱的种储蓄方式交换一下,则扣除利息税后共得利息元,已知利息税的税率,问当时这两种储蓄的年利率各是多少(精确到)?24. 一张如图 1 的长方形铁皮,四个角都剪去边长为厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是,宽是,这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用的代数式表示图 1 中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为,则油漆这个铁盒需要多少钱(用的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用的代数式表示)?若铁盒的底面积是全面积的,求的值;(4)是否存在一个正整数,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个,若不存在,请说明理由.答案第一部分1. D2. B3. A4. B5. D6. D7. C8. C9. D 10. B第二部分11.12.13.14.15.16.第三部分17. (1)原式.(2)原式.18. 如图所示:19. (1)去分母得:整理得:解得:经检验是增根,分式方程无解.(2)得:即把代入得:则方程组的解为原式20. (1)原式(2)当,时,原式.21. (1)第三组所在扇形圆心角的度数是,占,又频数为,参加测试的总人数为;(2)组距为;(3)频数分布直方图中,自左至右第一组的两个边界值分别是,,该组频数是;(4)第四组的频数为,,,.如下图:22. 理由是:,,平分,平分,,,,,.23. 设两种储蓄的年利率分别为,,由题意得,解得:答:当时这两种储蓄的年利率分别为和.24. (1)原铁皮的面积是.(2)油漆这个铁盒的表面积是:,则油漆这个铁盒需要的钱数是:(元).(3)铁盒的底面积是全面积的根据题意得:解得(4)铁盒的全面积是,底面积是,假设存在正整数,使,则,则,或,或,或,.所以存在一个正整数,使得铁盒的全面积是底面积的正整数倍,这时或或或.。
2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(3)(含解析)

2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(3)一、选择题1.把0.70945四舍五入到千分位是()A.0.7095B.0.710C.0.71D.0.7092.在实数:4.、π、-、、、0.1010010001…中,无理数的个数是()A.1个B.2个C.3个D.4个3.下面的说法正确的是()A.单项式-ab2的次数是2次B.的系数是3C.-2x2y与2xy2是同类项D.不是多项式4.小亮在解方程时,由于粗心,错把-x看成了+x,结果解得x=-2,求a的值为()A.11B.-11C.D.5.有理数a,b在数轴上的位置如图所示,则下列结论中,不正确的是()A.a+b<0B.a-b>0C.<0D.|a|>|b|6.如图,图中线段、射线、直线的条数分别为()A.5,4,1B.8,12,1C.5,12,3D.8,10,37.下列方程变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程,未知数系数化为1,得t=1D.方程,去分母,得5(x-1)-2x=18.如图,已知Rt∠COE的顶点O在直线AB上,OF平分∠AOE,OC平分∠AOF,则∠BOE的度数是()A.30°B.40°C.50°D.60°9.如图为手的示意图,从大拇指开始,按食指,中指,无名指,小指,再回到大拇指的顺序,依次数正整数1,2,3,4,5当数到2014时,对应的手指是()A.食指B.中指C.无名指D.小指10.如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B,若∠ABE=45°,∠GBH=30°,那么∠FBC的度数为()A.15°B.30°C.45°D.60°二、填空题11.绝对值小于4.1的所有整数的和是 __________ .12.某厂七月份生产a个零件,八月份比七月份增产10%,九月份比八月份减产10%,那么九月份的生产零件是__________.13.若两个无理数的和为5,则这两个无理数可以是__________.14.如图,OA⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个;其中正确的结论有 __________ 个.15.已知方程,则代数式3+的值为__________.16.若a、b为实数,且b=+4,则a+b的值为 __________ .17.有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满__________个大纸杯.18.西周戎生青铜编钟是由八个大小不同的小编钟组成,其中最大编钟高度比最小编钟高度的3倍少5cm,且它们的高度相差37cm.则最大编钟的高度是 __________ cm.19.对于正数x规定f(x)=,例如f(3)==,f()==,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…f(2013)+f(2014)+f(2015)= __________ .20.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是 __________ .三、解答题21.计算:(1)-14-÷(-)2+|-3|(2)+×÷(-)2(3)106°43′12″-53.46°(结果用度分秒表示)(4)先化简再求值:已知(a-3b)2+|b+2c|+=0,求代数式2(a2-abc)-3(a2-abc)的值.22.解方程:(1)3-1.2x=x-12(2)-3(-1)=2.23.如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.24.已知数轴上点A、B、C所表示的数分别是-3,+7,x.(1)求线段AB的长;(2)若AC=4,①求x的值;②若点M、N分别是AB、AC的中点,求线段MN的长度.25.如图,将一张长方形纸片分别沿着EP,FP对折,使点B落在点B′,点C落在点C′.(1)若点P,B′,C′在同一直线上(如图1),求两条折痕的夹角∠EPF的度数;(2)若点若点P,B′,C′不在同一直线上(如图2),且∠B′PC′=10°,求∠EPF的度数.26.目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(3)试卷的答案和解析1.答案:D试题分析:试题分析:对一个数精确到哪位,就是对这个数位后边的数进行四舍五入.试题解析:把0.709 45四舍五入到千分位,就是对9后面的数进行四舍五入,得到0.709.故选D.2.答案:C试题分析:试题分析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.试题解析:=-3,无理数为:π、-、0.1010010001…,共3个.故选C.3.答案:D试题分析:试题分析:根据同类项及多项式的定义,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,判断各选项可得出答案.试题解析:A、单项式-ab2的次数是3次,故本选项错误;B、的系数是,故本选项错误;C、-2x2y与2xy2不是同类项,故本选项错误;D、不是多项式,故本选项正确;故选D.4.答案:B试题分析:试题分析:把x=-2代入列出关于a的方程,通过解该方程来求a的值.试题解析:根据题意知,x=-2是方程的解,则-a-2=,即a+6=-5,解得,a=-11.故选B.5.答案:B试题分析:试题分析:根据数轴反映的基本信息,对两数的和、差、商及绝对值逐一判断.试题解析:观察数轴可知,a<0<b,|a|>|b|,A、异号两数相加,取绝对值较大的加数符号,a+b<0,正确;B、因为a小b大,a-b<0,错误;C、因为a、b异号,所以<0,正确;D、观察数轴可知|a|>|b|,正确.故选B.6.答案:B试题分析:试题分析:已知直线上的两个端点即可确定一条线段,直线上的一点就可确定两条射线,据此即可求解.试题解析:图中的线段有:AB、AO、AC、BO、BC、OC、DO、EO,共有8条;图中的射线有:AC、BC、OC、CH、CO、OB、BA、AK、OD、DM、OE、EN,共有12条.图中的直线有:直线AC.共1条.故选B.7.答案:D试题分析:试题分析:根据移项的法则以及去括号的法则、等式的基本性质即可判断.试题解析:A、方程3x-2=2x+1,移项,得3x-2x=1+2,选项错误;B、方程3-x=2-5(x-1),去括号,得3-x=2-5x+5,选项错误;C、方程,未知数系数化为1,得t=,选项错误;D、正确.故选D.8.答案:D试题分析:试题分析:首先根据角平分线的性质可得∠AOF=∠EOF,∠AOC=∠COF,设∠AOC=x°,再利用方程思想可得x+2x=90,解出x的值,即可算出∠AOE的度数,继而算出答案.试题解析:∵OF平分∠AOE,∴∠AOF=∠EOF,∵OC平分∠AOF,∴∠AOC=∠COF,设∠AOC=x°,则∠COF=x°,∠AOF=2x°,∠FOE=2x°,∵∠COE=90°,∴x+2x=90,解得:x=30,∴∠AOE=4×30°=120°,∴∠EOB=60°.故选:D.9.答案:C试题分析:试题分析:观察不难发现,除去第一个数1,从2开始每8个数为一个循环组依次循环,用2014减去1,然后除以8,再根据余数的情况确定所对应的手指即可.试题解析:∵从2开始,每8个数为一个循环组依次循环,∴(2014-1)÷8=251…5,∴数字2013与6相对应的手指相同,为无名指.故选:C.10.答案:A试题分析:试题分析:根据∠ABE=45°,求出∠CBG,再根据∠GBH=30°,求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG-∠CBG=60°-45°=15°,故选:A.11.答案:试题分析:试题分析:找出绝对值小于4.1的所有整数,求出之和即可.试题解析:绝对值小于4的所有整数是-4,-3,-2,-1,0,1,2,3,4,其和为(-4)+(-3)+(-2)+(-1)+0+1+2+3+4=0.故答案为:012.答案:试题分析:试题分析:根据八月份比七月份增产10%,表示出八月份生产零件的个数,再根据九月份比八月份减产10%,即可表示出九月份生产零件的个数.试题解析:根据题意得:八月份生产零件的个数为(1+10%)a=1.1a(个),则九月份生产零件的个数为1.1a(1-10%)=0.99a(个).故答案为:0.99a13.答案:试题分析:试题分析:本题答案不唯一,符合题意即可.5-+=5;故答案可为:5-和.14.答案:试题分析:试题分析:根据垂直定义得出∠AOC=∠BOD=90°,再逐个进行判断即可.试题解析:甲,乙,丁理由是:∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOC-∠BOC=∠BOD-∠BOC,∴∠AOB=∠COD,∴甲同学说的正确;∵∠BOC+∠AOD=∠AOC+∠COD+∠BOC=∠AOC+∠BOD=90°+90°=180°,∴乙同学说的正确;∵∠AOB+∠BOC=∠AOB=90°,∠BOC和∠COD不一定相等,∴丙同学说的错误;∵图中小于平角的角有∠AOB、∠AOC、∠AOD、∠BOC、∠BOD、∠COD,共6个,∴丁同学说的正确;故答案为:3.15.答案:试题分析:试题分析:首先求得x-=,代入所求的式子整体代入求解.试题解析:∵,∴x-=代入代数式3+=3+20×=4故答案是4.16.答案:试题分析:试题分析:根据被开方数大于等于0,分母不等于0列式计算求出a,再求出b,然后代入代数式计算即可得解.试题解析:由题意得,a-1≥0且1-a≥0,解得a≥1且a≤1,所以,a=1,b=4,a+b=1+4=5.故答案为:5.17.答案:试题分析:试题分析:设乙桶内的果汁最多可以装满x个大纸杯,利用甲桶果汁与乙桶果汁的体积比为4:5,列出方程求解即可.试题解析:设乙桶内的果汁最多可以装满x个大纸杯,根据题意得:120×2:3x=4:5解得:x=100故答案为100.18.答案:试题分析:试题分析:设小编钟的高是xcm,大编钟的高是ycm,根据其中最大编钟高度比最小编钟高度的3倍少5cm,且它们的高度相差37cm可列方程组求解.试题解析:设小编钟的高是xcm,大编钟的高是ycm,,.所以最大编钟的高为58cm.19.答案:试题分析:试题分析:由规定的计算可知f(x)+f()=1,由此分组求得答案即可.试题解析:∵f(3)==,f()==,f(4)=,f()=,…∴f(x)+f()=1,∴f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…f (2013)+f(2014)+f(2015)=f()+f(2015)+f()+f(2014)+f()+f(2013)+…+f()+f (3)+f()+f(2)+f(1)=2014+=2014.故答案为:2014.20.答案:试题分析:试题分析:根据“移位”的特点,然后根据例子寻找规律,从而得出结论.试题解析:∵小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”,∴3→4→5→1→2五个顶点五次移位为一个循环返回顶点3,同理可得:小宇从编号为2的顶点开始,四次移位一个循环,第10次“移位”,即连续循环两次,再移位两次,即第十次移位所处的顶点和第二次移位所处的顶点相同,故回到顶点3.故答案为:3.21.答案:试题分析:试题分析:(1)分别进行乘方、二次根式的化简、绝对值的化简等运算,然后合并;(2)分别进行开立方、二次根式的乘法等运算,然后合并;(3)直接进行度分秒换算;(4)先根据非负数的性质得出a=3b,b=-2c,a=6,求出a、b、c的值,然后代入求解.试题解析:(1)原式=-1-16+3=-14;(2)原式=-4+6÷2=-1;(3)原式=原式=106°43′12″-53°27′36″=53°15′36″;(4)∵(a-3b)2+|b+2c|+=0,∴a=3b,b=-2c,a=6,∴a=6,b=2,c=-1,则2(a2-abc)-3(a2-abc)=96-3(24+12)=96-108=-12.22.答案:试题分析:试题分析:(1)移项、合并同类项、化系数为1即可求解;(2)去分母、去括号、移项、合并同类项、化系数为1即可求解.试题解析:(1)原式即3-x=x-12,移项,得-x-x=-12-3,合并同类项,得:-2x=-15,系数化成1得:x=;(2)去括号,得-+3=2,去分母,得:2(10x-3)-5(x-1)+30=20,去括号,得20x-6-5x+5+30=20,移项,得20x-5x=20-30+6-5,合并同类项,得15x=-9,系数化成1得:x=-.23.答案:试题分析:试题分析:(1)根据∠AOC:∠AOD=3:7,可求出∠AOC的度数,再根据对顶角的性质可求出∠DOB的度数,根据角平分线的性质即可解答.(2)根据垂直的定义可求出∠DOF的度数,再根据平角的定义解答即可.试题解析:(1)∵两直线AB,CD相交于点O,∠AOC:∠AOD=3:7,∴∠AOC=180°×=54°,∴∠BOD=54°,又∵OE平分∠BOD,∴∠DOE=54°÷2=27°.(2)∵OF⊥OE,∠DOE=27°,∴∠DOF=63°,∠COF=180°-63°=117°.24.答案:试题分析:试题分析:(1)线段AB的长等于B点表示的数减去A点表示的数;(2)①AC的长表示为|x-(-3)|,则|x-(-3)|=4,再去绝对值解得x=1或-7;②讨论:当点A、B、C所表示的数分别是-3,+7,1时,得到点M表示的数为2,点N的坐标是-1;当点A、B、C所表示的数分别是-3,+7,-7时,则点M表示的数为2,点N的坐标是-5,然后分别计算MN的长.(1)AB=7-(-3)=10;(2)①∵AC=4,∴|x-(-3)|=4,∴x-(-3)=4或(-3)-x=4,∴x=1或-7;②当点A、B、C所表示的数分别是-3,+7,1时,∵点M、N分别是AB、AC的中点,∴点M表示的数为2,点N的坐标是-1,∴MN=2-(-1)=3;当点A、B、C所表示的数分别是-3,+7,-7时,∵点M、N分别是AB、AC的中点,∴点M表示的数为2,点N的坐标是-5,∴MN=2-(-5)=7;∴MN=7或3.25.答案:试题分析:试题分析:(1)由对称性得到两对角相等,而这两对角之和为180°,利用等量代换及等式的性质即可求出折痕的夹角∠EPF的度数;(2)由对称性得到两对角相等,根据题意得到这两对角之和为190°,利用等量代换及等式的性质即可求出∠EPF的度数.(1)由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∵∠BPE+∠B′PE+∠CPF+∠C′PF=180°,∴∠EPF=∠B′PE+∠C′PF=×180°=90°;(2)由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∵∠BPE+∠B′PE+∠CPF+∠C′PF=180°+10°=190°,∴∠BPE+∠CPF=95°,∴∠FPE=85°.26.答案:试题分析:试题分析:(1)根据往返的时间、速度和路程可得到一个一元一次方程,解此方程可得舟山与嘉兴两地间的高速公路路程;(2)根据表格和林老师从舟山到嘉兴所花的高速公路通行费可以将解析式y=ax+b+5转换成一个含有未知数a的一元一次方程,解此方程可得轿车的高速公路里程费.试题解析:(1)设舟山与嘉兴两地间的高速公路路程为s千米,由题意得,-=10.4.5s-4s=180,0.5s=180,解得s=360,所以舟山与嘉兴两地间的高速公路路程为:360千米;(2)轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,根据表格和林老师的通行费可知,y=295.4,x=360-48-36=276,b=100+80=180,将它们代入y=ax+b+5中得,295.4=276a+180+5,解得a=0.4,所以轿车的高速公路里程费为:0.4元/千米.。
2014-2015学年浙江省杭州市开发区七年级上学期期末数学试卷(解析版)

2014-2015 学年浙江省杭州市开发区七年级上学期数学期末试卷
一、仔细选一选:每小题 3 分,共 30 分. 1. (3 分)下列各式中结果为负数的是( A.﹣(﹣3) B. (﹣3)2 C.﹣|﹣3| D. 2. (3 分)根据《中国青年报》2014 年 11 月 13 日报道,阿里巴巴网站公布了 2014 年“双十一”全天的交易数据:天猫“双十一”全天成交金额为 571 亿元.571 亿元用科学记数法表示为( ) )
12. (4 分)已知∠α=52°45′,则它的余角等于
13. (4 分)如果 x=﹣1 是关于 x 的方程 2x﹣3m=﹣1 的解,则 m 的值是
14. (4 分)某车间原计划 13 小时生产一批零件,后来每小时多生产 10 件,用 了 12 小时不但完成了任务,而且还多生产了 60 件,设原计划每小时生产 y 个零 件,可列方程为 .
第 2 页(共 15 页)
(1)一次性购物在 100 元(不含 100 元)以内的,不享受优惠; (2)一次性购物在 100 元(含 100 元)以上,300 元(不含 300 元)以内的, 一律享受九折优惠; (3)一次性购物在 300 元(含 300 元)以上时,一律享受八折优惠. 李明在本超市两次购物分别付款 80 元、252 元.如果李明改成在本超市一次性 购买与上两次完全相同的商品,则应付款 元.
15. (4 分)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报 1,乙报 2, 丙报 3,再甲报 4,乙报 5,丙报 6,…依次循环反复下去,当报出的数为 2015 时游戏结束,若报出的数是偶数,则该同学得 1 分,当报数结束时甲同学的得分 是 分.
263 2015学年7上滨江区期末数学试卷(学生版)

七年级(上)数学杭州市滨江区期末统考卷一、选择题(本大题有10小题,每小题3分,共30分) 1.35-的倒数是( ) A.35 B.53 C. 35- D.53-2.下列计算正确的是( )A.431a a -=B.2222x y xy xy -= C 2ax xa ax -=D.3224358a a a += 3.下列各式;①25x y +=;②13x x +=;③1x =;④3a b -;⑤3241m m -=+是一元一次方程的有( )A.1个B.2个C.3个D.4个4.在实数13,2.37,π,,227,0.101 001 000 1无理数的个数是( ) A.0个 B1个 C.2个 D.3个5.如图,B 是线段AC 上一点,AB=2,BC=3,DE=5.下列说法正确的是( )A.线段AC 是线段AB ,BC 的和,线段DE 不是AB ,BC 的和B.线段DE 是线段AB ,BC 的和,线段AC 不是AB ,BC 的和C.线段AB 是线段AC 与线段BC 的差D.线段BC 不是线段DE 与线段AB 的差6.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是( )A.0a b +<B.0a b ->C.0a b >D.a b <7.已知12.3是由a 四舍五入得到的近似数,则a 的可能取值范围是( )A.12.2512.35a <≤B.12.2512.35a <≤C.12.2512.35a ≤≤ C.12.2512.35a <<8.估计你家卧室门的面积大约为( )A.1800平方厘米B.180平方分米C.18平方米D.1.8平方千米9 )A.2.24B.1.68C.1.71D.1.7510.已知当32x =时,代数式532ax bx x x +++的值为1,那么当32x =-时,该代数式的值是( ) A.1- B.54 C.52 D.72二、填空题(本大题有6小题,每小题4分,共24分)11.月球上面有阴暗的部分和明亮的区域,位于南极附近的贝利环形直径是295000米,可以把整个海南岛装进去,最深的山是牛顿环形山,深达8788米,把上面表述中最大的数用科学记数法表示为 。
2024届杭州市滨江区江南实验学校七年级数学第一学期期末监测模拟试题含解析

2024届杭州市滨江区江南实验学校七年级数学第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.关于函数2y x =-的图象,有如下说法:①图象过(0,2)-点;②图象与x 轴交点是(20)-,;③从图象知y 随x 的增大而增大;④图象不过第一象限;⑤图象与直线y x =平行.其中正确说法有( )A .2种B .3种C .4种D .5种2.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y3.如图,说法正确的是( )A .A ∠和1∠是同位角B .A ∠和2∠是内错角C .A ∠和3∠是同旁内角D .A ∠和B 是同旁内角4.如图,5表示在数轴上的位置正确的是 ( )A .点A 、B 之间B .点B 、C 之间 C .点C 、D 之间 D .点D 、E 之间5.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +6.已知代数式2x y -的值是5,则代数式361x y -+的值是( )A .16B .-14C .14D .-167.下列各组是同类项的是( )A .32a 和2aB .32和3aC .3a -和3aD .3ab 和3a b8.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( )A .2,﹣3,﹣1B .2,3,1C .2,3,﹣1D .2,﹣3,19.如图,观察图中正方形四个顶点所标的数字规律,可知数2020应标在( )A .第505个正方形的左下角B .第505个正方形的右下角C .第506个正方形的左下角D .第506个正方形的右下角 10.下列命题为假命题的是( )A .对顶角相等B .如果AB CD ⊥,垂足为O ,那么90AOC ∠=︒C .经过一点,有且只有一条直线与这条直线平行D .两直线平行,同位角相等二、填空题(本大题共有6小题,每小题3分,共18分)11.已知1x +是5231x x kx +-+的一个因式,那么k 的值为______________.12.长方形的长是20cm ,宽是10cm .以长为轴旋转一周所得的几何体的体积是(___________)cm 1.(π≈1.14)13.若∠1=35°21′,则∠1的余角是__. 14.若2x =-是关于x 的方程256x a +=的解,则a =____________.15.比较大小: ________ ( 填 >、< 或 = )。
2014-2015学年初一数学期末试题及答案
2014~2015学年度七年级第一学期期末数学试卷 2015.1(时间:100分钟 满分:100分)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表1.有理数6的相反数是( ) A.-6 B.6 C.61 D.-612. 下列数轴画正确的是( )3.在32)5(,5,)5(),5(-------中正数有()A.1个B.2个C.3个D.4个 4.如图是一个正方体的表面展开图,则原正方体中与“我”字所在的面 相对的面上标的字是 A .爱 B .的C .学D .美5.单项式-2ab的系数是A.1B.-1 C .2 D . 36. 8点30分时,时钟的时针与分针所夹的锐角是( )A 、70°B 、75°C 、80°D 、60°7. 如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )展开A1-1B1 2C1 22- DAB C第7题图上折右折 沿虚线剪下8.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),按收方由密文→明文(解密),已知加密规则为明文a ,b ,c 对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文为2,8,18,如果接收的密文7,18,15,•则解密得到的明文为( ) A .4,5,6 B .2,6,7 C . 6,7,2 D .7,2,6二、填空题(本题共24分,每小题3分)9. 现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破57000 000 000元,将57000 000 000元用科学记数法表示为 .10.把两块三角板按如图所示那样拼在一起,那么∠ABC 的度数是11.若427y x m +-2z 与n y x 33-tz 是同类项,则=m ____, =n _____;t =12. 如图,∠AOB=90°,以O 为顶点的锐角共有 个13. 如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为)2(b a +米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了)3(b a -米. 那么小明家楼梯的竖直高度(即:BC 的长度)为 米.14.方程413)12(2=++-x x a是一元一次方程,则=a ______________。
杭州市滨江区2014-2015学年七年级下期末数学试卷含答案解析
2014-2015学年浙江省杭州市滨江区七年级(下)期末数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把代表正确选项的字母涂黑.1.下列各图案中,是由一个基本图形通过平移得到的是()A.B. C.D.2.下列方程是二元一次方程的是()A.x+=1 B.2x+3y=6 C.x2﹣y=3 D.3x﹣5(x+2)=23.下列计算中,正确的是()A.a6÷a3=a3B.a2•a3=a6C.(a2b)3=a6b D.()3=4.如图,直线AC∥BD,AB平分∠CAD,∠1=62°,则∠2的度数是()A.50°B.59°C.60°D.62°5.根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长6.下列式子运算正确的是()A.(2a+b)(2a﹣b)=2a2﹣b2B.(a+2)(b﹣1)=ab﹣2C.(a+1)2=a2+1 D.(x﹣1)(x﹣2)=x2﹣3x+27.分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=08.如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF 的周长为()A.10cm B.11cm C.12cm D.14cm9.设a=73×1412,b=9322﹣4802,c=5152﹣1912,则数a、b、c的大小关系是()A.c<b<a B.a<c<b C.b<c<a D.c<a<b10.已知﹣=3,分式的值为()A.0 B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)11.()﹣2+(2015)0=.12.如图的折线统计图分别表示我国A市与B市在2015年4月份的日平均气温的情况,记该月A 市和B市日平均气温是20℃的天数分别为m天和n天,则n m=.13.年出生人数减年死亡人数的差与年平均人口数的比,叫做年人口自然增长率.如果用p表示年出生人数,q表示年死亡人数,s表示年平均人口数,k表示年人口自然增长率,则年人口自然增长率k=.若把公式变形已知k、s、p,求q,则q=.14.因式分解:16m4﹣8m2n2+n4=.15.x2+=4,则x+的值为.16.有一个计算程序,每次运算都是把一个数先乘以3,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是(用含字母x和n的代数式表示).三、全面答一答(本题有8个小题,共66分)17.计算:(1)2x3•x2﹣x11+(x2)3(2)(x﹣5)(x+1)﹣(x﹣2)2.18.如图,已知四边形ABCD,平移四边形ABCD,使点B经平移后落在点D处,请用作图的方法作出经这一平移后所得的图形.19.解方程(组)(1)﹣=1(2).20.(1)用简便方法计算:20082﹣4016×2001+20012(2)先化简,再求值:(﹣)÷,其中a=﹣,b=﹣.21.一次统计七年级若干名学生每分钟跳绳次数的频数直方图和扇形统计图如图,请根据图给的信息回答下列问题:(1)参加测试的总人数是多少?(2)数据分组时,组距是多少?(3)频数分布直方图中,自左至右第一组的两个边界值分别是多少?该组频数是多少?(4)请补全频数直方图(并标上频数),在扇形统计图中补上另外三个扇形的圆心角度数.22.如图,直线EF分别交AB、CD于点M、N,MG平分∠EMB,NH平分∠END,并且MG∥NH,请说明∠1+∠2=180°的理由.23.小聪家以年利率不同的两种储蓄方式存了8000元和4000元,一年到期,扣除利息税后共得利息283.2元,如果这两笔钱的两种储蓄方式交换一下,则扣除利息税后共得利息249.6元,已知利息税的税率是20%,问当时这两种储蓄的年利率各是多少(精确到0.01%)?24.一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.2014-2015学年浙江省杭州市滨江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把代表正确选项的字母涂黑.1.下列各图案中,是由一个基本图形通过平移得到的是()A.B. C.D.【考点】利用平移设计图案.【分析】利用平移的性质和旋转的性质分别分析得出即可.【解答】解:A、利用旋转可以得到,故此选项错误;B、利用旋转可以得到,故此选项错误;C、利用位似结合旋转可得到,故此选项错误;D、是由一个基本图形通过平移得到的,故此选项正确.故选:D.【点评】此题主要考查了利用平移设计图案,正确把握平移的定义是解题关键.2.下列方程是二元一次方程的是()A.x+=1 B.2x+3y=6 C.x2﹣y=3 D.3x﹣5(x+2)=2【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A、x+=1是分式方程,故A错误;B、2x+3y=6是二元一次方程,故B正确;C、x2﹣y=3是二元二次方程,故C错误;D、3x﹣5(x+2)=0是一元一次方程,故D错误;故选:B.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.3.下列计算中,正确的是()A.a6÷a3=a3B.a2•a3=a6C.(a2b)3=a6b D.()3=【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;分式的乘除法.【分析】直接利用同底数幂的乘除法运算法则以及积的乘方运算法则分别计算得出即可.【解答】解:A、a6÷a3=a3,正确;B、a2•a3=a5,故此选项错误;C、(a2b)3=a6b3,故此选项错误;D、()3=,故此选项错误;故选:A.【点评】此题主要考查了同底数幂的乘、除法运算以及以及积的乘方运算等知识,正确掌握运算法则是解题关键.4.如图,直线AC∥BD,AB平分∠CAD,∠1=62°,则∠2的度数是()A.50°B.59°C.60°D.62°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由补角的定义求出∠CAD的度数,根据角平分线的性质即可得出结论.【解答】解:∵直线AC∥BD,∠1=62°,∴∠3=∠1=62°,∴∠CAD=180°﹣62°=118°.∵AB平分∠CAD,∴∠2=∠CAD=×118°=59°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长【考点】条形统计图.【专题】数形结合.【分析】根据条形统计图得,利用每年GDP都在增长,但每年的增长量逐渐减小,于是可对A、D 进行判断;根据2014年的GDP和20110的GDP可对B、C进行判断.【解答】解:A、每年的增长量逐渐减小,所以每年GDP增长率不相同,所以A选项错误;B、2014年的GDP没有2010年的2倍,所以B选项错误;C、2010年杭州市的GDP超过到5400亿元,所以C选项错误;D、2010~2014年杭州市的GDP逐年增长,所以D选项正确.故选D.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.6.下列式子运算正确的是()A.(2a+b)(2a﹣b)=2a2﹣b2B.(a+2)(b﹣1)=ab﹣2C.(a+1)2=a2+1 D.(x﹣1)(x﹣2)=x2﹣3x+2【考点】平方差公式;多项式乘多项式;完全平方公式.【专题】计算题.【分析】A、原式利用平方差公式化简,计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式化简得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【解答】解:A、原式=4a2﹣b2,错误;B、原式=ab﹣a+2b﹣2,错误;C、原式=a2+2a+1,错误;D、原式=x2﹣3x+2,正确,故选D【点评】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=0【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC,即可得出答案.【解答】解:根据题意,将周长为10cm的△ABC沿AC向右平移1cm得到△DEF,∴BE=1cm,AF=AC+CF=AC+1cm,EF=BC;又∵AB+AC+BC=10cm,∴四边形ABEF的周长=BE+AB+AF+EF=1+AB+AC+1+BC=12cm.故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=BE,EF=BC是解题的关键.9.设a=73×1412,b=9322﹣4802,c=5152﹣1912,则数a、b、c的大小关系是()A.c<b<a B.a<c<b C.b<c<a D.c<a<b【考点】因式分解的应用.【分析】利用平方差公式计算b、c,然后比较a、b、c的大小.【解答】解:a=73×1412=1412×343,b=(932+480)(932﹣480)=1412×452,c=5152﹣1912=(515+191)(515﹣191)=706×324=1412×162.∵452>343>162,∴1412×452>1412×343>1412×162,即b>a>c.故选:D.【点评】本题考查了因式分解的应用.注意观察构成a、b、c的因式间的关系,然后进行比较.10.已知﹣=3,分式的值为()A.0 B.C.D.【考点】分式的化简求值.【分析】先根据题意得出2x﹣y=﹣3xy,再代入原式进行计算即可.【解答】解:∵﹣=3,∴2x﹣y=﹣3xy,∴原式====.故选B.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.二、认真填一填(本题有6个小题,每小题4分,共24分)11.()﹣2+(2015)0=5.【考点】负整数指数幂;零指数幂.【分析】根据负整数指数幂和零整数指数幂计算即可.【解答】解:()﹣2+(2015)0=4+1=5,故答案为:5.【点评】此题考查负整数指数幂和零整数指数幂,关键是根据负整数指数幂和零整数指数幂的定义计算.12.如图的折线统计图分别表示我国A市与B市在2015年4月份的日平均气温的情况,记该月A 市和B市日平均气温是20℃的天数分别为m天和n天,则n m=100.【考点】折线统计图.【分析】根据观察纵坐标,可得m、n的值,根据乘方运算,可得答案.【解答】解:由纵坐标看出A市日平均气温是20℃的天数为2天,B市日平均气温是20℃的天数为10天,即m=2,n=10.n m=100,故答案为:100.【点评】本题考查了折线统计图,观察统计图获得m、n的值是解题关键.13.年出生人数减年死亡人数的差与年平均人口数的比,叫做年人口自然增长率.如果用p表示年出生人数,q表示年死亡人数,s表示年平均人口数,k表示年人口自然增长率,则年人口自然增长率k=.若把公式变形已知k、s、p,求q,则q=p﹣ks.【考点】分式的混合运算.【专题】应用题.【分析】由k=,直接去分母,移项,即可求得答案.【解答】解:∵k=,∴p﹣q=ks,∴q=p﹣ks.故答案为:p﹣ks.【点评】此题考查了分式的混合运算.注意掌握运算顺序是关键.14.因式分解:16m4﹣8m2n2+n4=(2m﹣n)2(2m+n)2.【考点】因式分解-运用公式法.【分析】首先利用完全平方公式分解因式,进而利用平方差公式分解因式.【解答】解:16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m﹣n)2(2m+n)2.故答案为:(2m﹣n)2(2m+n)2.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.15.x2+=4,则x+的值为±.【考点】完全平方公式.【专题】计算题.【分析】原式平方后,利用完全平方公式化简,将已知等式代入计算,开方即可求出值.【解答】解:∵x2+=4,∴(x+)2=x2++2=4+2=6,则x+=±,故答案为:±【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.有一个计算程序,每次运算都是把一个数先乘以3,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是y n=(用含字母x和n的代数式表示).【考点】规律型:数字的变化类.【专题】图表型.【分析】将y1代入y2计算表示出y2,将y2代入y3计算表示出y3,归纳总结得到一般性规律即可得到结果.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:y n=.【点评】此题考查数字的变化规律,从特殊到一般找出数字之间的运算规律,利用规律解决问题.三、全面答一答(本题有8个小题,共66分)17.计算:(1)2x3•x2﹣x11+(x2)3(2)(x﹣5)(x+1)﹣(x﹣2)2.【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用同底数幂的乘法,以及幂的乘方运算法则计算,合并即可得到结果;(2)原式利用多项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=2x5﹣x11+x6;(2)原式=x2+x﹣5x﹣5﹣x2+4x﹣4=﹣9.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.如图,已知四边形ABCD,平移四边形ABCD,使点B经平移后落在点D处,请用作图的方法作出经这一平移后所得的图形.【考点】作图-平移变换.【分析】根据图形平移的性质画出平移后的四边形即可.【解答】解:如图所示:【点评】本题考查的是作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.19.解方程(组)(1)﹣=1(2).【考点】解二元一次方程组;解分式方程.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用加减消元法求出解即可.【解答】解:(1)去分母得:x(x+2)﹣4x=x2﹣4,整理得:x2+2x﹣4x=x2﹣4,解得:x=2,经检验x=2是分式方程的解;(2),①×5+②得:8x=32,即x=4,把x=4代入①得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1)用简便方法计算:20082﹣4016×2001+20012(2)先化简,再求值:(﹣)÷,其中a=﹣,b=﹣.【考点】分式的化简求值;因式分解-运用公式法.【分析】(1)观察可得原式可整理得:20082﹣2×2008×2001+20012,2008和2001两数的平方和减去他们它们乘积的2倍,符合完全平方公式结构特征,因此可应用完全平方公式进行计算;(2)先根据分式混合运算的法则把原式进行化简,再把a=﹣,b=﹣代入进行计算即可.【解答】解:(1)原式=20082﹣2×2008×2001+20012=(2008﹣2001)2=72=49;(2)原式=÷=•=a﹣b,当a=﹣,b=﹣时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.一次统计七年级若干名学生每分钟跳绳次数的频数直方图和扇形统计图如图,请根据图给的信息回答下列问题:(1)参加测试的总人数是多少?(2)数据分组时,组距是多少?(3)频数分布直方图中,自左至右第一组的两个边界值分别是多少?该组频数是多少?(4)请补全频数直方图(并标上频数),在扇形统计图中补上另外三个扇形的圆心角度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)由第三组所在扇形圆心角的度数是144°,占=,又频数为6,用6÷,计算即可求出参加测试的总人数;(2)横轴上相邻两个组中值的差就是组距;(3)由自左至右第一组的组中值是62,组距为25,即可求出第一组的两个边界值,利用图2可得该组频数;(4)用数据总数减去第一、二、三组的频数可得第四组的频数,可补全频数直方图;用360°乘以各组所占的百分比即可求得另外三个扇形的圆心角度数.【解答】解:(1)∵第三组所在扇形圆心角的度数是144°,占=,又∵频数为6,∴参加测试的总人数为6÷=15;(2)组距为87﹣62=25;(3)频数分布直方图中,自左至右第一组的两个边界值分别是62﹣=49.5,62+=74.5,该组频数是2;(4)第四组的频数为15﹣(2+4+6)=3,360°×=48°,360°×=96°,360°×=72°.如下图:【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.如图,直线EF分别交AB、CD于点M、N,MG平分∠EMB,NH平分∠END,并且MG∥NH,请说明∠1+∠2=180°的理由.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∠EMG=∠ENH,根据角平分线定义求出∠EMB=2∠EMG,∠END=2∠ENH,推出∠EMB=∠END,根据平行线的判定得出AB∥CD,即可得出答案.【解答】解:理由是:∵MG∥NH,∴∠EMG=∠ENH,∵MG平分∠EMB,NH平分∠END,∴∠EMB=2∠EMG,∠END=2∠ENH,∴∠EMB=∠END,∴AB∥CD,∴∠1+∠2=180°.【点评】本题考查了平行线的性质和判定,角平分线定义的应用,能求出AB∥CD是解此题的关键,注意:①两直线平行,同位角相等,②同位角相等,两直线平行,③两直线平行,同旁内角互补.23.小聪家以年利率不同的两种储蓄方式存了8000元和4000元,一年到期,扣除利息税后共得利息283.2元,如果这两笔钱的两种储蓄方式交换一下,则扣除利息税后共得利息249.6元,已知利息税的税率是20%,问当时这两种储蓄的年利率各是多少(精确到0.01%)?【考点】二元一次方程组的应用.【分析】两个等量关系为:(8000元×8000元存款的年利率+4000元×4000元存款的年利率)×(1﹣20%)=283.2;(8000元×4000元存款的年利率+4000元×8000元存款的年利率)×(1﹣20%)=249.6,把相关数值代入计算即可.【解答】解:设两种储蓄的年利率分别为x、y,由题意得,,解得:.答:当时这两种储蓄的年利率分别为3.30%和2.25%.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.24.一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.【考点】整式的混合运算.【分析】(1)根据图形表示出原长方形铁皮的面积即可;(2)根据原长方形铁皮的面积剪去四个小正方形的面积,求出铁盒的表面积,乘以单价即可得到结果;(3)用铁盒的底面积除以全面积即可得出底面积是全面积的几分之几,再根据铁盒的底面积是全面积的,求出a的值即可;(4)假设存在,列出铁盒的全面积和底面积的公式,求整数倍数即可.【解答】解:(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;(2)油漆这个铁盒的表面积是:12a2+2×30×4a+2×30×3a=12a2+420a,则油漆这个铁盒需要的钱数是:(12a2+420a)÷=(12a2+420a)×=600a+21000(元);(3)铁盒的底面积是全面积的=;根据题意得:=,解得a=105;(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,由题意可知a>>10,则a只能为35,n=2.所以存在铁盒的全面积是底面积的正整数倍,这时a=35.【点评】此题考查整式的混合运算,掌握正方体的全面积与底面积的计算方法是解决问题的关键.。
2014-2015学年浙江省杭州市江干区七年级(上)期末数学试卷及答案
2014-2015学年浙江省杭州市江干区七年级(上)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)﹣2015的相反数是()A.﹣2015 B.2015 C.D.﹣2.(3分)杭州1月份连续四天每天的平均气温分别是:1°C、﹣1°C、0°C、﹣2°C、则平均气温中最低的是()A.﹣1°C B.0°C C.1°C D.﹣2°C3.(3分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10104.(3分)下列计算正确的是()A.=±2 B.3=3 C.﹣=﹣3 D.=﹣35.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.b<a B.ab>0 C.|b|<|a|D.a+b=06.(3分)以下说法正确的是()A.有理数与数轴上的点一一对应B.两个无理数的积一定是无理数C.负数没有平方根也没有立方根D.算术平方根等于它本身的数只有0或17.(3分)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3 D.﹣3a+2a=﹣a8.(3分)有以下5个说法:①两点之间,线段最短:②相等的角是对顶角:③互补的两个角中必定一个是锐角一个钝角;④两个说角的和一定是锐角:⑤同角或等角的余角相等.其中正确的有()A.2个 B.3个 C.4个 D.5个9.(3分)阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时,若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何进没电?()A.晚上7点20分B.晚上8点20分C.晚上7点40分D.晚上8点40分10.(3分)如图是一个运算程序的示意图,若开始入x的值为81,则第2015次输出的结果为()A.3 B.27 C.9 D.1二.认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)﹣的倒数是;|1﹣|=.12.(4分)2﹣=7;=.13.(4分)已知x=2是关于x的方程2x+a﹣5=0的解,则a的值为.14.(4分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为.15.(4分)若+(x﹣y+1)2=0,则(x+y)2=.16.(4分)一列式子按一定规律排列:﹣,,﹣,,…,则第5个式子是,则第n个式子是.三.全面答一答(本题有7小题,共66分,要求写出文字说明、证明过程或推演步骤)17.(6分)下列5个数:﹣,﹣,1.5,π,0.(1)属于无理数的是;(2)将它们表示在数轴上,并用“<”连接.18.(10分)计算:(1)(﹣3)×2+(2)﹣32﹣|﹣2|+(3)(﹣12)×(﹣﹣)﹣(﹣)2.19.(8分)(1)解方程:5x﹣2(x﹣1)=14(2)解方程:﹣=1.20.(8分)画出图形并进行解答:已知线段AB=12cm,点C是直线AB上一点,且AC:BC=1:2,若点D是线段AC的中点,求线段BD的长.21.(10分)(1)已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.求a和b的值;(2)先化简,再求值:7ab+3(2a﹣4ab)﹣2(ab﹣3b),其中a与b互为相反数,且ab=﹣.22.(12分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是(把符合条件的角都填出来).(2)图中除直角相等外,还有其它相等的角,请写出四对(相等的角只算一对):①;②;③;④.(3)设∠EOF=a,求∠AOD(用含a的式子表示);请写出∠AOD与∠EOF的符合何种关系?23.(12分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:(1)若一户居民七月份用电420度,则需缴电费多少元?(2)若一户居民某月用电x度(x大于200小于400),则需缴电费多少元?(用含x的代数式表示)(3)某户居民五、六月份共用电500度,缴电费262元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度,问该户居民五、六月份各用电多少度?2014-2015学年浙江省杭州市江干区七年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)﹣2015的相反数是()A.﹣2015 B.2015 C.D.﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2015的相反数是2015,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)杭州1月份连续四天每天的平均气温分别是:1°C、﹣1°C、0°C、﹣2°C、则平均气温中最低的是()A.﹣1°C B.0°C C.1°C D.﹣2°C【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由题意,得1>0>﹣1>﹣2,故选:D.【点评】本题考查了有理数的大小比较,正数大于零,零大于负数,注意负数的绝对值越大负数越小.3.(3分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:350 000 000=3.5×108.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)下列计算正确的是()A.=±2 B.3=3 C.﹣=﹣3 D.=﹣3【分析】根据二次根式的性质、立方根的定义进行计算,判断即可.【解答】解:=2,A错误;=﹣3,B错误;C正确;=3,D错误,故选:C.【点评】本题考查的是二次根式的化简,掌握二次根式的性质、立方根的定义是解题的关键.5.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.b<a B.ab>0 C.|b|<|a|D.a+b=0【分析】先根据各点在数轴上的位置判断出a、b的符号,进而可得出结论.【解答】解:∵由图可知,﹣2<a<﹣1<0<b<1,∴a<b,ab<0,|b|<|a|,a+b<0,∴A、B、D错误,C正确.故选C.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.6.(3分)以下说法正确的是()A.有理数与数轴上的点一一对应B.两个无理数的积一定是无理数C.负数没有平方根也没有立方根D.算术平方根等于它本身的数只有0或1【分析】根据平方根的意义、立方根的意义、实数与数轴的关系,可得答案.【解答】解:A、实数与数轴上的点一一对应,故A不符合题意;B、×2=4,故B不符合题意;C、负数立方根是负数,故C不符合题意;D、算术平方根等于它本身的数只有0或1,故D符合题意;故选:D.【点评】本题考查了实数,利用平方根的意义、立方根的意义、实数与数轴的关系是解题关键.7.(3分)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3 D.﹣3a+2a=﹣a【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.8.(3分)有以下5个说法:①两点之间,线段最短:②相等的角是对顶角:③互补的两个角中必定一个是锐角一个钝角;④两个说角的和一定是锐角:⑤同角或等角的余角相等.其中正确的有()A.2个 B.3个 C.4个 D.5个【分析】根据对顶角,邻补角的定义,线段的性质,余角和补角的性质判断即可.【解答】解:①两点之间,线段最短,正确;②相等的角,且两边分别互为反向延长线的两个角是对顶角,故②是假命题;③互补的两个角可能都是直角,所以互补的两个角一定是一个锐角,另一个为钝角是假命题;④两个说角的和不一定是锐角,故④是假命题;⑤同角或等角的余角相等,正确.故选A.【点评】本题考查了对顶角,邻补角的定义,线段的性质,余角和补角的性质,熟记定义和性质是解题的关键.9.(3分)阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时,若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何进没电?()A.晚上7点20分B.晚上8点20分C.晚上7点40分D.晚上8点40分【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:设阿伟的游戏机x时没电,[36﹣(15﹣7)]÷6=x﹣3,解得,x=,即阿伟的游戏机晚上七点40分没电,故选C.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出形应的方程.10.(3分)如图是一个运算程序的示意图,若开始入x的值为81,则第2015次输出的结果为()A.3 B.27 C.9 D.1【分析】把x=81代入运算程序中计算即可得到结果.【解答】解:把x=81代入得:×81=27,把x=27代入得:×27=9,把x=9代入得:×9=3,把x=3代入得:×3=1,把x=1代入得:1+8=9,把x=9代入得:×9=3,依此类推,∵(2015﹣1)÷2=1007,∴第2015次输出的结果为9,故选C.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.二.认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)﹣的倒数是﹣2;|1﹣|=﹣1.【分析】根据倒数的定义,可得答案;根据差的绝对值是大数减小数,可得答案.【解答】解:﹣的倒数是﹣2;|1﹣|=﹣1,故答案为:﹣2,﹣1.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.12.(4分)2﹣(﹣5)=7;=.【分析】依据减数=被减数﹣差列出算式,然后再进行计算;先把被开方数转化为假分数,然后利用算术平方根的性质求解即可.【解答】解:2﹣7=﹣5;原式==.故答案为:(﹣5),.【点评】本题主要考查的是算术平方根、有理数的减法,熟练掌握相关法则是解题的关键.13.(4分)已知x=2是关于x的方程2x+a﹣5=0的解,则a的值为1.【分析】把x=2代入方程计算即可求出a的值.【解答】解:把x=2代入方程得:4+a﹣5=0,解得:a=1,故答案为:1【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.(4分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为55°.【分析】根据角平分线的定义,可得∠COM,根据余角的定义,可得答案.【解答】解:由题意,得∠COM=∠AOM=35°.由ON⊥OM,得∠CON=∠MON﹣∠COM=90°﹣35°=55°,故答案为:55°.【点评】本题考查了垂线,利用余角的定义是解题关键.15.(4分)若+(x﹣y+1)2=0,则(x+y)2=9.【分析】依据非负数的性质可求得x,y的值,然后再依据有理数的乘法法则计算即可.【解答】解:∵+(x﹣y+1)2=0,∴x﹣1=0,x﹣y+1=0,解得x=1,y=2.∴(x+y)2=32=9.故答案为:9.【点评】本题主要考查的是算术平方根的定义、偶次方的性质求得x,y的值是解题的关键.16.(4分)一列式子按一定规律排列:﹣,,﹣,,…,则第5个式子是﹣,则第n个式子是(﹣1)n.【分析】系数的规律是﹣,,﹣,…,指数的规律是1,3,5,7…,【解答】解:根据题意可知第n的式子为:(﹣1)n当n=5时,该单项式为:﹣故答案为:,【点评】本题考查数字规律,解题的关键是根据题意找出单项式之间的规律,本题属于基础题型.三.全面答一答(本题有7小题,共66分,要求写出文字说明、证明过程或推演步骤)17.(6分)下列5个数:﹣,﹣,1.5,π,0.(1)属于无理数的是﹣,0;(2)将它们表示在数轴上,并用“<”连接.【分析】(1)根据无理数的定义即可得出结论;(2)在数轴上表示出各数,从左到右用“<”连接起来即可.【解答】解:(1)属于无理数的是:﹣,π.故答案为:﹣,0;(2)如图,由图可知,﹣<<0<1.5<π.【点评】本题考查的是实数的大小,熟知数轴上右边的数总比左边的大是解答此题的关键.18.(10分)计算:(1)(﹣3)×2+(2)﹣32﹣|﹣2|+(3)(﹣12)×(﹣﹣)﹣(﹣)2.【分析】(1)原式利用乘法法则,算术平方根定义计算即可得到结果;(2)原式利用乘方的意义,绝对值的代数意义,以及立方根定义计算即可得到结果;(3)原式利用乘法分配律,以及乘方的意义计算即可得到结果.【解答】解:(1)原式=﹣6+3=﹣3;(2)原式=﹣9﹣2+3=﹣8;(3)原式=﹣2+4+3﹣=.【点评】此题考查了实数的运算,绝对值,平方根、立方根定义,以及乘法分配律,熟练掌握运算法则是解本题的关键.19.(8分)(1)解方程:5x﹣2(x﹣1)=14(2)解方程:﹣=1.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:5x﹣2x+2=14,移项合并得:3x=12,解得:x=4;(2)去分母得:2﹣4x﹣x﹣1=6,移项合并得:﹣5x=5,解得:x=﹣1.【点评】此题考查了解一元一次方程,去分母时注意方程各项都乘以各分母的最小公倍数.20.(8分)画出图形并进行解答:已知线段AB=12cm,点C是直线AB上一点,且AC:BC=1:2,若点D是线段AC的中点,求线段BD的长.【分析】根据线段的比例,可得AC的长,根据线段中点的性质,可得CD的长,根据线段的和差,可得答案.【解答】解:如图1,由AB=12cm,AC:BC=1:2,得AC=AB=4cm,BC=AB=8cm.由D是线段AC的中点,得CD=AC=2cm.由线段的和差,得BD=CD+BC=2+8=10cm;如图2,由AB=12cm,AC:BC=1:2,得AC=AB=12cm,BC=2AB=24cm.由D是线段AC的中点,得CD=AC=6cm.由线段的和差,得BD=BC﹣CD=24﹣6=18cm;综上所述:BD的长是10cm或18cm.【点评】本题考查了两点间的距离,利用线段的比例得出AC的长是解题关键,要分类讨论,以防遗漏.21.(10分)(1)已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.求a和b的值;(2)先化简,再求值:7ab+3(2a﹣4ab)﹣2(ab﹣3b),其中a与b互为相反数,且ab=﹣.【分析】(1)根据题意得到三个单项式为同类项,利用同类项定义求出a与b 的值即可;(2)原式去括号合并得到最简结果,由a与b互为相反数且ab的值,确定出a 与b的值,代入计算即可求出值.【解答】解:(1)∵三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式,∴三个单项式为同类项,则a=﹣4,b=2或a=5,b=1;(2)原式=7ab+6a﹣12ab﹣2ab+6b=6(a+b)﹣7ab,由题意得到a+b=0,ab=﹣,则原式=1.【点评】此题考查了整式的加减﹣化简求值,以及合并同类项,熟练掌握去括号法则与合并同类项法则是解本题的关键.22.(12分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠AOC,∠EOF,∠BOD(把符合条件的角都填出来).(2)图中除直角相等外,还有其它相等的角,请写出四对(相等的角只算一对):①∠AOC=∠EOF;②∠AOF=∠EOD;③∠EOC=∠BOF;④∠AOD=∠BOC.(3)设∠EOF=a,求∠AOD(用含a的式子表示);请写出∠AOD与∠EOF的符合何种关系?【分析】(1)根据余角的定义即可得到结论;(2)根据余角的定义,对顶角的性质即可得到结论;(3)根据余角的定义,平角的定义即可得到结论.【解答】解:(1)∵OE⊥AB,OF⊥CD.∴∠COF+∠AOF=∠AOE+∠AOF=90°,∵∠AOC=∠BOD,∴图中∠AOF的余角是∠AOC,∠EOF,∠BOD;故答案为:∠AOC,∠EOF,∠BOD;(2)①∠AOC=∠EOF,②∠AOF=∠EOD,③∠EOC=∠BOF,④∠AOD=∠BOC;故答案为:∠AOC=∠EOF,∠AOF=∠EOD,∠EOC=∠BOF,∠AOD=∠BOC(3)互补,∵OE⊥AB,OF⊥CD.∴∠COF+∠AOF=∠AOE+∠AOF=90°,∴∠AOC=∠EOF,∵∠AOC=∠BOD,∴∠BOD=∠EOF,∴∠AOD+∠BOD=∠AOD+∠EOF=180°,∴∠AOD=180°﹣α,∴∠AOD与∠EOF互补.【点评】此题考查的知识点是垂线、角的计算及对顶角知识,关键是根据垂线,所求角与已知角的关系转化求解.23.(12分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:(1)若一户居民七月份用电420度,则需缴电费多少元?(2)若一户居民某月用电x度(x大于200小于400),则需缴电费多少元?(用含x的代数式表示)(3)某户居民五、六月份共用电500度,缴电费262元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度,问该户居民五、六月份各用电多少度?(1)根据阶梯电价收费制,用电420度在第三档,则需缴电费0.5×200+0.6【分析】×200+0.8(420﹣400),计算即可;(2)根据阶梯电价收费制,用电x度(x大于200小于400),需交电费0.5×200+0.6(x﹣200),化简即可;(3)设五月份用电x度,则六月份用电(500﹣x)度,分两种情况进行讨论:①x≤200;②200<x<250.【解答】解:(1)0.5×200+0.6×200+0.8(420﹣400)=236(元).答:需缴电费236元;(2)0.5×200+0.6(x﹣200)=100+0.6x﹣120=0.6x﹣20(元);(3)设五月份用电x度,则六月份用电(500﹣x)度.分两种情况:①当x≤200时,500﹣x≥300,0.5x+0.5×200+0.6(500﹣200﹣x)=262,解得x=180,500﹣x=320;②当200<x<250时,250≤500﹣x≤300,100+0.6(x﹣200)+100+0.6(500﹣200﹣x)=262,260≠262,x无解,所以,该户居民五月份用电180度,六月份用电320度.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。
2014-2015学年浙江省杭州市西湖区七年级(上)期末数学试卷带解析答案
2014-2015学年浙江省杭州市西湖区七年级(上)期末数学试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)下列四个数中,结果为负数的是()A.﹣(﹣)B.|﹣|C.(﹣)2D.﹣|﹣|2.(3分)下列计算正确的是()A. B.=﹣2 C.D.(﹣2)3×(﹣3)2=723.(3分)用代数式表示:“a,b两数的平方和与a,b乘积的差”,正确的是()A.a2+b2﹣ab B.(a+b)2﹣ab C.a2b2﹣ab D.(a2+b2)ab4.(3分)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学记数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×1055.(3分)若﹣2a m﹣1b2与5ab n可以合并成一项,则m+n的值是()A.1 B.2 C.3 D.46.(3分)如图,A是直线l外一点,点B、C、E、D在直线l上,且AD⊥l,D 为垂足,如果量得AC=8cm,AD=6cm,AE=7cm,AB=13cm,那么,点A到直线l 的距离是()A.13cm B.8cm C.7cm D.6cm7.(3分)下列式子变形正确的是()A.﹣(a﹣1)=﹣a﹣1 B.3a﹣5a=﹣2aC.2(a+b)=2a+b D.|π﹣3|=3﹣π8.(3分)若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.9.(3分)下列说法:①两点确定一条直线;②射线AB和射线BA是同一条射线;③相等的角是对顶角;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的是()A.①③④B.①②④C.①④D.②③④10.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,则线段AM的长为()A.2cm B.4cm C.2cm或6cm D.4cm或6cm二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)若∠1=40°50′,则∠1的余角为,∠1的补角为.12.(4分)在实数,,0,,,﹣1.414,0.131131113…(两个“3”之间依次多一个“1”),﹣中,其中无理数是.13.(4分)关于x的方程3x+2a=6的解是a﹣1,则a的值是.14.(4分)如果a﹣3b=6,那么代数式5﹣3a+9b的值是.15.(4分)若当x=3时,代数式(3x+4+m)与2﹣mx的值相等,则m=.16.(4分)下面每个正方形中的五个数之间都有相同的规律,根据这种规律,(用则第4个正方形中间数字m为,第n个正方形的中间数字为.含n的代数式表示)三.全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)计算(1)(﹣2.25)﹣(+)+(﹣)﹣(﹣0.125)(2)﹣32+5×(﹣6)﹣(﹣4)2÷(﹣2)18.(8分)解方程(1)4x﹣2=3x﹣(2)=﹣2.19.(8分)如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有OD⊥OE,试说明理由;(2)若∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.20.(10分)在同一平面内有n条直线,当n=1时,如图①,一条直线将一个平面分成两个部分;当n=2时,如图②,两条直线将一个平面最多分成四个部分.(1)在作图区分别画出当n=3时,三条直线将一个平面分成最少部分和最多部分的情况;(2)当n=4时,请写出四条直线将一个平面分成最少部分的个数和最多部分的个数;(3)若n条直线将一个平面最多分成a n个部分,(n+1)条直线将一个平面最多分成a n+1个部分,请写出a n,a n+1,n之间的关系式.21.(10分)在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)请画一条数轴并在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离;(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.22.(12分)图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于2015,2020吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)23.(12分)某超市在“元旦”促销期间规定:超市内所有商品按标价的75%出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:消费金额a(元)的范围100≤a<400400≤a<600600≤a<800获得奖券金额(元)40100130根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣+相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:440×75%=330元,获得的优惠额为:440×(l﹣75%)+40=150元.(1)购买一件标价为800元的商品,求获得的优惠额;(2)若购买一件商品的消费金额在450≤a<800之间,请用含a的代数式表示优惠额;(3)对于标价在600元与900元之间(含600元和900元)的商品,顾客购买标价为多少元的商品时可以得到的优惠率?(设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价)2014-2015学年浙江省杭州市西湖区七年级(上)期末数学试卷参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)下列四个数中,结果为负数的是()A.﹣(﹣)B.|﹣|C.(﹣)2D.﹣|﹣|【解答】解:A、﹣(﹣)=>0,故A错误;B、|﹣|=>0,故B错误;C、(﹣)2=>0,故C错误;D、﹣|﹣|=﹣<0,故D正确;故选:D.2.(3分)下列计算正确的是()A. B.=﹣2 C.D.(﹣2)3×(﹣3)2=72【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.3.(3分)用代数式表示:“a,b两数的平方和与a,b乘积的差”,正确的是()A.a2+b2﹣ab B.(a+b)2﹣ab C.a2b2﹣ab D.(a2+b2)ab【解答】解:“a,b两数的平方和与a,b乘积的差”,列示为a2+b2﹣ab.故选:A.4.(3分)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学记数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×105【解答】解:13 940 000=1.394×107,故选:A.5.(3分)若﹣2a m﹣1b2与5ab n可以合并成一项,则m+n的值是()A.1 B.2 C.3 D.4【解答】解:由﹣2a m﹣1b2与5ab n可以合并成一项,得m﹣1=1,n=2.解得m=2,n=2.m+n=2+2=4,故选:D.6.(3分)如图,A是直线l外一点,点B、C、E、D在直线l上,且AD⊥l,D 为垂足,如果量得AC=8cm,AD=6cm,AE=7cm,AB=13cm,那么,点A到直线l 的距离是()A.13cm B.8cm C.7cm D.6cm【解答】解:点A到直线l的距离是AD的长,故点A到直线l的距离是6cm,故选:D.7.(3分)下列式子变形正确的是()A.﹣(a﹣1)=﹣a﹣1 B.3a﹣5a=﹣2aC.2(a+b)=2a+b D.|π﹣3|=3﹣π【解答】解:A、﹣(a﹣1)=﹣a+1,故本选项错误;B、3a﹣5a=﹣2a,故本选项正确;C、2(a+b)=2a+2b,故本选项错误;D、|π﹣3|=π﹣3,故本选项错误.故选:B.8.(3分)若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【解答】解:∵m<1<﹣m,∴,解得:m<﹣1.故选:A.9.(3分)下列说法:①两点确定一条直线;②射线AB和射线BA是同一条射线;③相等的角是对顶角;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的是()A.①③④B.①②④C.①④D.②③④【解答】解:①两点确定一条直线,正确;②射线AB和射线BA是同一条射线,错误;③相等的角是对顶角,错误;④三角形任意两边和大于第三边的理由是两点之间线段最短,正确,故选:C.10.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,则线段AM的长为()A.2cm B.4cm C.2cm或6cm D.4cm或6cm【解答】解:当点C在线段AB上时,由线段的和差,得AC=AB﹣BC=8﹣4=4(cm),由线段中点的性质,得AM=AC=×4=2(cm);点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的性质,得AM=AC=×12=6(cm);故选:C.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)若∠1=40°50′,则∠1的余角为49°10′,∠1的补角为139°10′.【解答】解:∵∠1=40°50′,∴∠1的余角为90°﹣∠1=49°10′,∠1的补角为180°﹣∠1=139°10′,故答案为:49°10′,139°10′.12.(4分)在实数,,0,,,﹣1.414,0.131131113…(两个“3”之间依次多一个“1”),﹣中,其中无理数是,,0.131131113…(两个“3”之间依次多一个“1”).【解答】解:无理数有,,0.131131113…(两个“3”之间依次多一个“1”),故答案为:,,0.131131113…(两个“3”之间依次多一个“1”).13.(4分)关于x的方程3x+2a=6的解是a﹣1,则a的值是.【解答】解:把x=a﹣1代入方程得:3a﹣3+2a=6,解得:a=,故答案为:.14.(4分)如果a﹣3b=6,那么代数式5﹣3a+9b的值是﹣13.【解答】解:∵a﹣3b=6,∴5﹣3a+9b=5﹣3(a﹣3b)=5﹣3×6=﹣13.故答案为:﹣13.15.(4分)若当x=3时,代数式(3x+4+m)与2﹣mx的值相等,则m=﹣.【解答】解:把x=3代入得:(13+m)=2﹣m,去分母得:4(13+m)=28﹣21m,去括号得:52+4m=28﹣21m,移项合并得:25m=﹣24,解得:m=﹣,故答案为:﹣16.(4分)下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为29,第n个正方形的中间数字为8n﹣3.(用含n的代数式表示)【解答】解:如图,因此第4个正方形中间数字m为14+15=29,第n个正方形的中间数字为4n﹣2+4n﹣1=8n﹣3.故答案为:29,8n﹣3.三.全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)计算(1)(﹣2.25)﹣(+)+(﹣)﹣(﹣0.125)(2)﹣32+5×(﹣6)﹣(﹣4)2÷(﹣2)【解答】解:(1)原式=(﹣2.25﹣0.75)+(﹣0.625+0.125)=﹣3﹣0.5=﹣3.5;(2)原=﹣9﹣30+8=﹣31.18.(8分)解方程(1)4x﹣2=3x﹣(2)=﹣2.【解答】解:(1)方程移项合并得:x=2﹣;(2)去分母得:4x+2=1﹣2x﹣12,移项合并得:6x=﹣13,解得:x=﹣.19.(8分)如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有OD⊥OE,试说明理由;(2)若∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.【解答】解:(1)如图,∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠DOE=(∠AOB+∠BOC)=∠AOC=90°,即OD⊥OE;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.20.(10分)在同一平面内有n条直线,当n=1时,如图①,一条直线将一个平面分成两个部分;当n=2时,如图②,两条直线将一个平面最多分成四个部分.(1)在作图区分别画出当n=3时,三条直线将一个平面分成最少部分和最多部分的情况;(2)当n=4时,请写出四条直线将一个平面分成最少部分的个数和最多部分的个数;(3)若n条直线将一个平面最多分成a n个部分,(n+1)条直线将一个平面最多分成a n+1个部分,请写出a n,a n+1,n之间的关系式.【解答】解:(1)如图,(2)四条直线最少可以把平面分成5部分,最多可以把平面分成11部分;(3)当n=1时,分成2部分,当n=2时,分成4=2+2部分,当n=3时,分成7=4+3部分,当n=4时,分成11=7+4部分,…可以发现,有几条线段,则分成的部分比前一种情况多几部分,a n、a n+1、n之间的关系是:a n+1=a n+(n+1).21.(10分)在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)请画一条数轴并在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离;(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.【解答】解:(1)如图,(2)青少年宫与商场之间的距离|500﹣(﹣300)|=800m,(3)①∵小新家在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,∴小新家到医院的距离为800m,设小新家在数轴上为xm,则600﹣x=800,解得x=﹣200m,∴小新家与学校的距离为200m.②当小新家在商场的西边时,设小新家在数轴上为xm,则﹣300﹣x+500﹣x=600﹣x,解得x=﹣400m∴小新家与学校的距离为400m.22.(12分)图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于2015,2020吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)【解答】解:(1)设中间的数是a,则a的上一个数为a﹣18,下一个数为a+18,前一个数为a﹣2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a﹣18=403﹣18=385,2n﹣1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.23.(12分)某超市在“元旦”促销期间规定:超市内所有商品按标价的75%出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:消费金额a(元)的范围100≤a<400400≤a<600600≤a<800获得奖券金额(元)40100130根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣+相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:440×75%=330元,获得的优惠额为:440×(l﹣75%)+40=150元.(1)购买一件标价为800元的商品,求获得的优惠额;(2)若购买一件商品的消费金额在450≤a<800之间,请用含a的代数式表示优惠额;(3)对于标价在600元与900元之间(含600元和900元)的商品,顾客购买标价为多少元的商品时可以得到的优惠率?(设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价)【解答】解:(1)优惠额为800×(l﹣75%)+130=330元;(2)消费金额在400≤a<600之间时,优惠额为(a÷75%)(1﹣75%)+100=a+100;消费金额在600≤a<800之间时,优惠额为(a÷75%)(1﹣75%)+130=a+130;(3)设购买标价为x元时,由题意得x+100=x,或x+130=x,解得:x=640或x=832答:购买标价为640元或832元的商品时可以得到的优惠率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年浙江省杭州市滨江区七年级(上)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.3的倒数是()A.﹣3 B. 3 C. D.2.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. c>a>0>b B. a>b>0>c C. b>0>a>c D. b>0>c>a3.2014年6月止,高新区(滨江)实现地区生产总值279.8亿元,比去年增长11.5%.近似数279.8亿是精确到()位.A.十分 B.千 C.万 D.千万4.在实数:3.1415926,,1.010010001…(每两个1之间依次多一个0),3.,中,有理数的个数为()A. 1 B. 2 C. 3 D. 45.一个角的补角是它的余角的3倍,则这个角的度数是()A. 30° B. 45° C. 60° D. 75°6.已知:如图所示,直线AB、CD相交于O,OD平分∠BOE,∠AOC=42°,则∠AOE的度数为()A. 126° B. 96° C. 102° D. 138°7.下列图形中,表示立体图形的个数是()A. 2个 B. 3个 C. 4个 D. 5个8.下列说法正确的是()A.若MN=2MC,则点C是线段MN的中点B.点到直线的距离是指从直线外一点到这条直线的垂线的长度C.有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外D.一条射线把一个角分成两个角,这条射线是这个角的平分线9.某种商品的进价为300元,出售标价为440元,后来由于该商品积压,商店准备打折销售,但要保证利润率为10%,则商店可打()A. 6折 B. 6.5折 C. 7.3折 D. 7.5折10.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①,图②,已知大长方形的长为a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A.﹣a B. a C.﹣ a D. a二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.粗心的小马在画数轴时只标了单位长度(一格表示单位长度为1)和正方向,而忘了标上原点(如图),若点B和点C点表示的两个数的绝对值相等,则点A表示的数是.12.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个负无理数,你写出的一个代数式是.13.已知(x﹣2)2+=0,则y x= .14.若x=﹣3是关于x的方程x=m+1的解,则关于x的方程2(2x+1)=m+1的解为.15.已知S1=x,S2=3S1﹣2,S3=3S2﹣2,S4=3S3﹣2,…,S2014=3S2013﹣2,则S2014= .(结果用含x的代数式表示).16.已知∠AOB=α,∠BOC=β,(α>β),且OD,OE分别为∠AOB,∠BOC的角平分线,则∠DOE的度数为(结果用α,β的代数式表示).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,说理过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.计算:(1)(﹣+1﹣)×(﹣24)(2)﹣14﹣|0.5﹣1|××[2﹣(﹣3)2](3)|1﹣|+﹣(4)38°45′+72.5°(结果用度表示)18.解方程:(1)y﹣1=2y+3(2)x﹣=1﹣.19.如图:点C是∠AOB的边OB上的一点,按下列要求画图并回答问题.(1)过C点画OB的垂线,交OA于点D;(2)过C点画OA的垂线,垂足为E;(3)比较线段CE,OD,CD的大小(请直接写出结论);(4)请写出第(3)小题图中与∠AOB互余的角(不增添其它字母).20.(1)先化简,再求值:2(a+b)+4(2a﹣b)﹣(a﹣b),其中a=﹣1,b=2.(2)已知代数式x2+bx+c当x=1时它的值为2,当x=﹣1时它的值为8.求b,c的值.21.如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.22.小聪和小明假期到服装厂参加社会实践活动,设计每1平方米布裁剪成衣身2片或裁剪成衣袖3个,且1片衣身和2个衣袖恰好做成一件衣服,为了充分利用材料,要求做好的衣身和衣袖正好配套.(1)填空:由题意得,每片衣身需要平方米布,每个衣袖需平方米布.(2)请用列方程的方法解决下列问题:①现有21平方米的布,问最多能做多少件衣服?②若有25平方米的布,问做成的衣身和衣袖能恰好配套吗?请通过计算说明.③现有n平方米的布,为了使这样设计出来的衣身和衣袖能恰好配套,请求出n所需要满足的条件.23.已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B,P所表示的数(可以用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距2个单位长度?(3)若M为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.2014-2015学年浙江省杭州市滨江区七年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.3的倒数是()A.﹣3 B. 3 C. D.考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可知.解答:解:3的倒数是.故选C.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. c>a>0>b B. a>b>0>c C. b>0>a>c D. b>0>c>a考点:有理数大小比较;数轴.专题:综合题.分析:数轴上的数,右边的数总比左边的数大,利用这个特点可比较四个数的大小.解答:解:∵数轴上的数,右边的数总比左边的数大,∴b>0>a>c.故选C.点评:本题考查了利用数轴比较有理数的大小,也就是把“数”和“形”结合起来,注意数轴上的数右边的数总比左边的数大.3.2014年6月止,高新区(滨江)实现地区生产总值279.8亿元,比去年增长11.5%.近似数279.8亿是精确到()位.A.十分 B.千 C.万 D.千万考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:279.8亿中最后一位8表示8千万,则精确到千万位.故选:D.点评:本题考查了近似数和精确到的数位,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容.4.在实数:3.1415926,,1.010010001…(每两个1之间依次多一个0),3.,中,有理数的个数为()A. 1 B. 2 C. 3 D. 4考点:实数.分析:根据有理数是有限小数或无限循环小数,可得答案.解答:解:3.1415926,3.,是有理数,故选:C.点评:本题考查了实数,有理数是有限小数或无限循环小数.5.一个角的补角是它的余角的3倍,则这个角的度数是()A. 30° B. 45° C. 60° D. 75°考点:余角和补角.分析:根据补角和余角的定义,利用“一个角的补角是它的余角的3倍”作为相等关系列方程求解即可得出结果.解答:解:设这个角的度数是x,则180°﹣x=3(90°﹣x),解得x=45°.故选B.点评:本题考查了余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角;如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角,难度适中.6.已知:如图所示,直线AB、CD相交于O,OD平分∠BOE,∠AOC=42°,则∠AOE的度数为()A. 126° B. 96° C. 102° D. 138°考点:角的计算;角平分线的定义;对顶角、邻补角.专题:计算题.分析:根据对顶角的性质,易得∠AOC=∠BOD,而OD平分∠BOE,则∠BOE=2∠AOC,∠AOE 与∠BOE又互补,即可得答案.解答:解:根据对顶角的性质,易得∠AOC=∠BOD=42°,又由OD平分∠BOE,则∠BOE=2∠AOC=84°,则∠AOE=180°﹣84°=96°;故选B.点评:本题涉及到角的计算,注意结合图形,把握角平分线的性质,角与角之间的关系解题.7.下列图形中,表示立体图形的个数是()A. 2个 B. 3个 C. 4个 D. 5个考点:认识立体图形.分析:利用立体图形的特征判定即可.解答:解:根据立体图形的特征可得第2,第4,第5个图形是立体图形共3个,故选:B.点评:本题主要考查了认识立体图形,解题的关键是利用立体图形的特征判定.8.下列说法正确的是()A.若MN=2MC,则点C是线段MN的中点B.点到直线的距离是指从直线外一点到这条直线的垂线的长度C.有AB=M A+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外D.一条射线把一个角分成两个角,这条射线是这个角的平分线考点:点到直线的距离;两点间的距离;角平分线的定义;平行线的性质.分析:根据线段中点的性质,可判断A,根据点到直线的距离,可判断B,根据线段的和差,可判断C,根据角平分线的性质,可判断D.解答:解:A、点C不在线段MN上时,MN=2MC,则点C不是线段MN的中点,故A错误;B、点到直线的距离是指从直线外一点到这条直线的垂线段的长度,故B错误;C、有AB=MA+MB,则点M在线段AB上,AB<NA+NB,点N在线段AB外,故C正确;D、一条射线把一个角平均分成两个角,这条射线是这个角的平分线,故D错误;故选:C.点评:本题考查了点到直线的距离,点到直线的距离是指从直线外一点到这条直线的垂线段的长度.9.某种商品的进价为300元,出售标价为440元,后来由于该商品积压,商店准备打折销售,但要保证利润率为10%,则商店可打()A. 6折 B. 6.5折 C. 7.3折 D. 7.5折考点:一元一次方程的应用.分析:可设商店可打x折,则售价是440×0.1x=44x元.根据等量关系:利润率为10%就可以列出方程,解方程即可求解.解答:解:设商店可打x折则440×0.1x﹣300=300×10%,解得x=7.5.即商店可打7.5折.故选:D.点评:本题考查一元一次方程的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.10.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①,图②,已知大长方形的长为a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A.﹣a B. a C.﹣ a D. a考点:整式的加减.专题:计算题.分析:设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.解答:解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=a,图①中阴影部分的周长为2(b﹣2y+a)=2b﹣4y+2a,图②中阴影部分的周长2b+x+2y+a﹣x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b﹣4y+2a﹣a﹣2b﹣2y=a﹣6y=a﹣=﹣.故选C.点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.粗心的小马在画数轴时只标了单位长度(一格表示单位长度为1)和正方向,而忘了标上原点(如图),若点B和点C点表示的两个数的绝对值相等,则点A表示的数是﹣3 .考点:绝对值;数轴.分析:如果点C,B表示的数的绝对值相等,那么CB的中点即为坐标原点,即可得出A表示的数.解答:解:如图,CB的中点即数轴的原点O,则B点表示的数为﹣2,可以得到点A表示的数是﹣3.故答案为:﹣3.点评:此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键.12.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个负无理数,你写出的一个代数式是﹣ab3.考点:代数式.专题:开放型.分析:根据单项式、单项式次数的定义,结合题意要求书写即可,答案不唯一.解答:解:此代数式可为:﹣ab3.故答案可为:﹣ab3.点评:本题考查了单项式的定义,属于基础题,注意按照题目要求书写.13.已知(x﹣2)2+=0,则y x= 16 .考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵(x﹣2)2+=0,∴,解得,∴y x=(﹣4)2=16,故答案为16.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.若x=﹣3是关于x的方程x=m+1的解,则关于x的方程2(2x+1)=m+1的解为x=﹣.考点:一元一次方程的解.分析:把x=﹣3代入方程x=m+1,即可求得m的值,然后把m的值代入2(2x+1)=m+1求解即可.解答:解:把x=﹣3代入方程x=m+1得:m+1=﹣3,解得:m=﹣4.则2(2x+1)=m+1即2(2x+1)=﹣3,解得:x=﹣.故答案是:x=﹣.点评:本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.15.已知S1=x,S2=3S1﹣2,S3=3S2﹣2,S4=3S3﹣2,…,S2014=3S2013﹣2,则S2014= 32013x﹣32013+1 .(结果用含x的代数式表示).考点:规律型:数字的变化类.分析:首先求出S1=x,S2=3S1﹣2=3x﹣2,S3=3S2﹣2=3(3x﹣2)﹣2=9x﹣8,S4=3S3﹣2=27x ﹣26,…,进而得出S2014=3S2013﹣2系数与项数的关系即可.解答:解:∵S1=x,S2=3S1﹣2=3x﹣2,S3=3S2﹣2=3(3x﹣2)﹣2=9x﹣8,S4=3S3﹣2=27x﹣26,S5=3S4﹣2=81x﹣80,…,S2014=3S2013﹣2,30=1,31=3,32=9…;2=31﹣1,8=32﹣1,26=33﹣1,80=34﹣1…∴S2014=32013x﹣32013+1.故答案为:32013x﹣32013+1.点评:此题主要考查了数字变化规律,根据各项的值得出系数变化规律是解题关键.16.已知∠AOB=α,∠BOC=β,(α>β),且OD,OE分别为∠AOB,∠BOC的角平分线,则∠DOE的度数为α或α+β(结果用α,β的代数式表示).考点:角平分线的定义.分析:需要分类讨论:射线OC在∠AOB的内部和射线OC在∠AOB的外部两种情况.以第一种情况为例进行解答:如图1:利用角平分线线的定义求得∠BOD=∠AOB=(α+β),同理知∠EOB=∠BOC=β,易求∠DOE=∠BOD﹣∠EOB.同理,如图2,易求∠DOE=∠BOD+∠EOB.解答:解:①如图1,∵∠AOC=α,∠BOC=β,且OD,OE分别为∠AOB,∠BOC的角平分线,∴∠BOD=∠AOB=(α+β),∠EOB=∠BOC=β,∴∠DOE=∠DOB﹣∠EOB=(α+β)﹣β=α.②如图2,∠DOE=∠DOB﹣∠EOB=(α+β)+β=α+β.综上所述,∠DOE的度数为α或α+β.故答案是:α或α+β.点评:本题考查了角平分线线的定义.解题时,注意结合图形求得角与角间的和差关系:∠DOE=∠BOD﹣∠EOB或∠DOE=∠BOD+∠EOB.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,说理过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.计算:(1)(﹣+1﹣)×(﹣24)(2)﹣14﹣|0.5﹣1|××[2﹣(﹣3)2](3)|1﹣|+﹣(4)38°45′+72.5°(结果用度表示)考点:实数的运算;度分秒的换算.专题:计算题.分析:(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式利用绝对值,立方根,以及平方根定义计算即可得到结果;(4)原式利用度分秒运算法则计算即可得到结果.解答:解:(1)原式=18﹣44+21=﹣5;(2)原式=﹣1﹣××(﹣7)=﹣1+=;(3)原式=﹣1+2﹣3=﹣2;(4)原式=38.75°+72.5°=111.25°.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)y﹣1=2y+3(2)x﹣=1﹣.考点:解一元一次方程.专题:计算题.分析:(1)方程移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)移项合并得:y=﹣4;(2)去分母得:6x﹣2x﹣4=6﹣3x+3,移项合并得:7x=13,解得:x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.19.如图:点C是∠AOB的边OB上的一点,按下列要求画图并回答问题.(1)过C点画OB的垂线,交OA于点D;(2)过C点画OA的垂线,垂足为E;(3)比较线段CE,OD,CD的大小(请直接写出结论);(4)请写出第(3)小题图中与∠AOB互余的角(不增添其它字母).考点:作图—基本作图;比较线段的长短;余角和补角.分析:(1)作DC⊥OB即可;(2)作CE⊥OA即可;(3)根据垂线段最短及直角三角形的斜边大于任一直角边即可得出结论;(4)根据两角互余的定义即可得出结论.解答:解:(1)、(2)如图所示;(3)∵CE⊥OA,∴CE<CD.∵△OACD中OD是斜边,CD是直角边,∴CD<OD,∴CE<CD<OD;(4)∵CE⊥OA,∴∠AOB+∠OCE=90°.∵CD⊥OB,∴∠AOB+∠ODC=90°,∴与∠AOB互余的角是∠OCE与∠ODC.点评:本题考查的是作图﹣基本作图,熟知垂线的作法是解答此题的关键.20.(1)先化简,再求值:2(a+b)+4(2a﹣b)﹣(a﹣b),其中a=﹣1,b=2.(2)已知代数式x2+bx+c当x=1时它的值为2,当x=﹣1时它的值为8.求b,c的值.考点:整式的加减—化简求值;代数式求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)把x=1代入代数式,使其值为2得到关于b与c的方程,把x=﹣1代入,使其值为8列出b与c的方程,联立即可求出b与c的值.解答:解:(1)原式=2a+2b+8a﹣4b﹣a+b=9a﹣b,当a=﹣1,b=2时,原式=﹣9﹣2=﹣11;(2)把x=1代入得:4+2b+c=2,即2b+c=﹣2①,把x=﹣1代入得:1﹣b+c=8②,联立①②,解得:b=﹣3,c=4.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.考点:实数与数轴;算术平方根.专题:作图题.分析:(1)根据勾股定理求出正方形的边长,再根据边长的长和面积公式即可求出答案;(2)根据勾股定理和正方形的面积公式即可画出图形,利用圆规,以O为圆心,正方形的边长为半径画弧可得实数的位置.解答:解:(1)正方形的边长是:=,面积为:×=5.(2)见图:在数轴上表示实数,点评: 本题考查了三角形的面积,实数与数轴,用到的知识点是勾股定理,以及勾股定理的应用,在直角三角形中,两直角边的平方和等于斜边的平方.22.小聪和小明假期到服装厂参加社会实践活动,设计每1平方米布裁剪成衣身2片或裁剪成衣袖3个,且1片衣身和2个衣袖恰好做成一件衣服,为了充分利用材料,要求做好的衣身和衣袖正好配套.(1)填空:由题意得,每片衣身需要 平方米布,每个衣袖需 平方米布.(2)请用列方程的方法解决下列问题:①现有21平方米的布,问最多能做多少件衣服?②若有25平方米的布,问做成的衣身和衣袖能恰好配套吗?请通过计算说明.③现有n 平方米的布,为了使这样设计出来的衣身和衣袖能恰好配套,请求出n 所需要满足的条件.考点: 一元一次方程的应用.分析: (1)根据每1平方米布裁剪成衣身2片或裁剪成衣袖3个,由分式除法的意义即可求解;(2)①可设能做x 件衣服,根据等量关系:有21平方米的布,列出方程求解即可; ②可设能做y 件衣服,根据等量关系:有25平方米的布,列出方程求解即可;③可设能做z 件衣服,根据等量关系:有n 平方米的布,列出方程求解即可.解答: 解:(1)由题意得,每片衣身需要 平方米布,每个衣袖需 平方米布.(2)①设能做x 件衣服,依题意有x+×2x=21,解得x=18.故最多能做18件衣服.②设能做y 件衣服,依题意有y+×2y=25,解得y=21,∵y 为整数,∴若有25平方米的布,做成的衣身和衣袖不能恰好配套.③设能做z 件衣服,依题意有z+×2z=n ,解得z=,∵z 为整数,∴n 所需要满足的条件是7的倍数. 故答案为:,.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.同时考查了整数的性质.23.已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B,P所表示的数(可以用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距2个单位长度?(3)若M为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据已知可得B点表示的数为8﹣12;点P表示的数为8﹣3t;(2)点P运动x秒时,与Q相距2个单位长度,则AP=3x,BQ=2x,根据AP+BQ=AB﹣2,或AP+BQ=AB+2,列出方程求解即可;(3)根据点P在点A、B两点之间运动,故MN=MQ+NP﹣PQ,由此可得出结论.解答:解:(1)∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8﹣12=﹣4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒,∴点P表示的数是8﹣3t.(2)设点P运动x秒时,与Q相距2个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB﹣2,∴3x+2x=10,解得:x=2,∵AP+BQ=AB+2,∴3x+2x=14解得:x=∴点P运动2秒或秒时与点Q相距2个单位长度.(3)线段MN的长度不发生变化,都等于7;理由如下:MN=MQ+NP﹣PQ=AP+BP﹣PQ=(AP+BP)﹣PQ=AB﹣PQ=12﹣PQ,即MN+PQ=12.点评:本题考查了数轴和一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。