反应精馏实验报告材料
催化反应精馏实验报告

催化反应精馏实验报告
一、实验目的
1. 了解催化反应精馏的原理和应用。
2. 掌握催化反应精馏装置的操作方法。
3. 测定催化反应精馏的效率。
二、实验原理
催化反应精馏是一种将化学反应和精馏过程相结合的技术,它可以在一个设备中同时实现反应和分离。
在催化反应精馏中,催化剂被放置在精馏塔的适当位置,反应物在催化剂上进行反应,生成的产物随着精馏过程被分离出来。
三、实验步骤
1. 搭建催化反应精馏装置。
2. 加入反应物和催化剂。
3. 加热并调节回流比,使反应进行。
4. 收集产物,并测定其组成和产量。
四、实验结果与分析
1. 催化反应精馏的效率较高,可以在较短的时间内获得较高的转化率和选择性。
2. 催化剂的选择和用量对反应结果有较大的影响,需要根据具
体情况进行优化。
3. 回流比的调节对分离效果有较大的影响,需要根据产物的组成和要求进行调整。
五、实验结论
通过本次实验,我们了解了催化反应精馏的原理和应用,掌握了催化反应精馏装置的操作方法,并测定了催化反应精馏的效率。
实验结果表明,催化反应精馏是一种高效的反应分离技术,但在实际应用中需要根据具体情况进行优化和调整。
精馏实验实验报告3篇

精馏实验实验报告3篇精馏实验实验报告1学院:化学工程学院姓名:学号:专业:化学工程与工艺班级:同组人员:课程名称:化工原理实验实验名称:精馏实验实验日期北京化工大学实验五精馏实验摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
通过实验,了解精馏塔工作原理。
关键词:精馏,图解法,理论板数,全塔效率,单板效率。
一、目的及任务①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽-液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。
塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。
当然,这不符合工业实际,所以最小回流比只是一个操作限度。
若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。
但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的1.2~2.0倍。
在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率EE=N/Ne式中E——总板效率;N——理论板数(不包括塔釜);Ne——实际板数。
(2)单板效率EmlEml=(xn-1-xn)/(xn-1-xn__)式中 Eml——以液相浓度表示的单板效率;xn ,xn-1——第n块板和第n-1块板的液相浓度;xn__——与第n块板气相浓度相平衡的液相浓度。
有关精馏实验报告范文

有关精馏实验报告范文篇一:精馏试验报告采纳乙醇—水溶液的精馏试验讨论学校:漳州师范学院系别:化学与环境科学系班级:姓名:学号:采纳乙醇—水溶液的精馏试验讨论①全回流操作在精馏全回流操作时,操作线在y-x图上为对角线,如下图1所示,依据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。
全回流时理论板数的确定图2.部分回流时理论板数的确定②部分回流操作部分回流操作时,如上图2,图解法的主要步骤为:A.依据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为帮助线;B.在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b;C.在y轴上定出yC= xD /(R+1)的点c,连接a、c作出精馏段操作线;D.由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d;E.连接点d、b作出提馏段操作线;F.从点a开头在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止;G.所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。
2.3试验装置流程示意图1-塔釜排液口;2-电加热管;3-塔釜;4-塔釜液位计;5-θ填料;6-窥视节;7-冷却水流量计;8-盘管冷凝器;9-塔顶平衡管;10-回流液流量计;11-塔顶出料流量计;12-产品取样口;13-进料管路;14-塔釜平衡管;15-旁管换热器;16-塔釜出料流量计;17-进料流量计;18-进料泵;19-产品、残液储槽;20-料槽液位计;21-料液取样口。
2.4试验操作步骤2.4.1全回流槽操作(1)配料:在料液桶中配制浓度20%(酒精的质量百分比)的料液。
取料液少许分析浓度,达到要求后把料液装入原料罐中。
(2)打开仪器掌握箱电源、仪表开关,仪表开头自检,完毕,按功能键调整显示界面到所需工作界面。
精馏实验报告范例

精馏实验报告范例
实验目的:通过精馏过程对混合物进行分离,了解精馏的原理和方法,掌握基本的实验操作技能。
实验原理:精馏是利用不同物质沸点的差异,将混合物中具有较低沸点的组分分离出来的一种物理分离方法。
其基本应用原理是利用加热使其中一种或几种物质先挥发,在冷凝管中先于其他物质冷凝,从而使它们分离出来。
实验器材:三角瓶、漏斗、漏斗支架、接头、冷凝器、蒸馏管等。
实验步骤:
1. 将混合物倒入三角瓶中,加入少量饱和氯化钠水溶液,振荡均匀,待沉淀后均匀液体慢慢倒入漏斗中。
2. 将漏斗装入漏斗支架中,漏斗的下端用接头连接到蒸馏管。
3. 将三角瓶中的混合物馏分到漏斗中,逐渐加热,直至混合物沸腾,产生气体。
4. 混合物在升温过程中,产生的气体经过蒸馏管进入冷凝器,冷凝成液态,留下的气体凝固于管内。
5. 记录液体分离的时间和温度,并观察发生的现象。
实验结果:通过实验,初始时沸点为78℃的乙醇首先分离出来,在加热过程中沸点为100℃的水渐渐分离出来,最后完全分离。
实验结论:本次实验通过精馏实验对混合物进行分离,可以成功地实现沸点差异对混合物分离的基本应用原理,达到了实验目的。
实验感悟:通过本次实验,了解到了精馏的基本原理和方法,并掌握了基本的实验操作技能。
通过实验得出结论,使我更加深入地认识了混合物分离的过程,为以后的学习积累了经验和知识。
反应精馏实验实验报告

实验报告:反应精馏实验摘要:本实验旨在通过反应精馏的方法分离和纯化混合物。
通过针对反应精馏实验过程中的变量的调节,我们成功地实现了对混合物的分离和纯化。
本实验采用了硫酸盐的反应,通过反应精馏使得反应物和产物分离,最终得到纯净的产物。
通过对实验中不同变量的观察和分析,我们探讨了对反应精馏实验结果的影响,为进一步研究和应用反应精馏提供了指导。
引言:反应精馏是一种常用的分离和纯化技术,广泛应用于化学、医药等领域。
其基本原理是通过利用不同组分的沸点差异,在特定的条件下将反应物和产物分离和纯化。
在本实验中,我们选取了硫酸盐的反应作为研究对象,通过反应精馏将反应物和产物进行分离和纯化。
材料与方法:1. 反应装置:包括反应釜、冷凝器、接收瓶等。
2. 反应物:硫酸盐。
3. 溶剂:适量的有机溶剂。
4. 加热设备:加热板或电炉。
5. 实验操作:根据实验需求,调整反应物和溶剂的比例,加热设备的温度等。
结果与讨论:在实验过程中,我们观察到随着温度的升高,反应物开始发生反应,产生气体。
通过冷凝器将气体冷凝成液体,并收集于接收瓶中。
通过不同温度下的收集物的分析和比较,我们可以得到不同组分的沸点,从而实现对混合物的分离和纯化。
通过对实验结果的分析,我们发现温度是影响反应精馏实验的关键因素之一。
合适的温度可以促使反应物迅速发生反应,并将产物分离出来。
然而,过高的温度可能导致副反应的发生,影响产物的纯度。
因此,在进行反应精馏实验时,选择适当的温度非常重要。
此外,反应物和溶剂的比例也会对实验结果产生影响。
较高的溶剂浓度可能导致反应物无法充分反应,产生过多的副产品。
相反,过低的溶剂浓度可能使得反应物无法充分溶解,影响反应的进行。
因此,需要根据具体实验情况来选择适当的反应物和溶剂的比例。
结论:通过本实验,我们成功地应用了反应精馏的方法对混合物进行了分离和纯化。
通过对实验过程中变量的调节,如温度和反应物与溶剂的比例,我们得到了纯净的产物。
反应精馏实验

实验二反应精馏反应精馏是精馏技术中的一个特殊领域。
在操作过程中,化学反应与分离同时进行,故能显著提高总体转化率,降低能耗。
此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。
一、实验目的:1.了解反应精馏是既服从质量作用定律又服从相平衡规律的复杂过程。
2.掌握反应精馏的操作。
3.能进行全塔物料衡算和塔操作的过程分析。
4.了解反应精馏与常规精馏的区别。
5.学会分析塔内物料组成。
二、实验原理:反应精馏过程不同于一般精溜,它既有精馏的物理相变之传递现象,又有物质变性的化学反应现象。
两者同时存在,相互影响,使过程更加复杂。
因此.反应精馏对下列两种情况特别适用:(1)可逆平衡反应。
一般情况下,反应受平衡影响,转化率只能维持在平衡转化的水平;但是,若生成物中有低沸点或高沸点物质存在,则精馏过程可使其连续地从系统中排出,结果超过平衡转化率,大大提高了效率。
(2)异构体混合物分离。
通常因它们的沸点接近,靠精馏方法不易分离提纯,若异构体中某组分能发生化学反应并能生成沸点不同的物质,这时可在过程中得以分离。
对醇酸酯化反应来说,适于第一种情况。
但该反应若无催化剂存在,单独采用反应精馏操作也达不到高效分离的目的,这是因为反应速度非常缓馒,故一般都用催化反应方式。
酸是有效的催化剂,常用硫酸。
反应随酸浓度增高而加快,浓度在0.2一1.0%(WT)。
此外,还可用离子交换树脂,重金属盐类和丝光沸石分子筛等固体催化剂。
反应精馏的催化剂用硫酸,是由于其催化作用不受塔内温度限制,在全塔内都能进行催化反应,而应用固体催化剂则由于存在一个最适宜的温度,精馏塔本身难以达到此条件,故很难实现最佳化操作。
本实验是以醋酸和乙醇为原料,在酸催化剂作用下生成醋敢乙酯的可逆反应。
反应的化学方程式为:CH3COOH + C2H5OH →CH3COOC2H5 + H2O 实验的进料有两种方式:一是直接从塔釜进料;另一种是在塔的某处进料。
反应精馏制备乙酸乙酯报告

T2. 反应精馏制备乙酸乙酯(反应工程,指导教师:夏柳荫)一实验目的1 了解反应精馏是既服从质量作用定律又服从相平衡规律的复杂过程,是反应和分离过程的复合,通过实验数据和结果,了解反应精馏技术比常规反应技术在成本和操作上的优越性。
2 了解玻璃精馏塔的构造和原理,学习反应精馏玻璃塔的使用和操作,掌握反应精馏操作的原理和步骤。
3 学习用反应工程原理和精馏塔原理,对精馏过程做全塔物料衡算和塔操作过程分析。
4 了解反应精馏与常规精馏的区别,掌握反应精馏法是适宜的物系。
5 学习气相色谱的原理和使用方法,学会用气相色谱分析塔内物料的组成,了解气相色谱分析条件的选择和确定方法,并学习根据出峰的情况来改变色谱条件。
学习用色谱分析,进行定量和定性的方法,学会求取液相分析物校正因子及计算含量的方法和步骤。
了解气相色谱仪以及热导池检测器的原理,了解分离条件的选择和确定。
二实验原理1. 反应精馏原理反应精馏是随着精馏技术的不断发展与完善,而发展起来的一种新型分离技术。
通过对精馏塔进行特殊改造或设计后,采用不同形式的催化剂,可以使某些反应在精馏塔中进行,并同时进行产物和原料的精馏分离,是精馏技术中的一个特殊领域。
在反应精馏操作过程中,由于化学反应与分离同时进行,产物通常被分离到塔顶,从而使反应平衡被不断破坏,造成反应平衡中的原料浓度相对增加,使平衡向右移动,故能显著提高反应原料的总体转化率,降低能耗。
同时,由于产物与原料在反应中不断被精馏塔分离,也往往能得到较纯的产品,减少了后续分离和提纯工序的操作和能耗。
此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。
反应精馏过程不同于一般精馏,它既有精馏的物理相变之传递现象,又有物质变性的化学反应现象。
两者同时存在,相互影响,使过程更加复杂。
在普通的反应合成酯化、醚化、酯交换、水解等过程中,反应通常在反应釜内进行,而且随着反应的不断进行,反应原料的浓度不断降低,产物的浓度不断升高,反应速度会越来越慢。
精馏实验报告(两篇)

引言概述:本文是关于精馏实验的报告,旨在介绍和分析对精馏实验(二)的实施和结果。
本次实验旨在研究和分析不同馏程时对混合物进行精馏的效果,以提高产品的纯度。
本文将从实验目的、实验过程、实验结果以及实验结论等方面进行详细阐述。
实验目的:本次精馏实验的目的是研究和分析不同馏程对混合物精馏的效果。
通过实验,我们将观察和比较不同馏程下产品的纯度以及回收率,探究合适的馏程对提高产品纯度和回收率的影响。
实验过程:1. 准备实验设备和仪器:包括精馏设备、试管、玻璃棒等。
2. 准备混合物样品:选择适当的混合物样品,确保其成分和比例的准确性。
3. 开始实验:将混合物样品加入精馏设备中,控制好温度和压力等参数。
4. 进行精馏操作:根据实验设备和实验需求,选择合适的馏程进行精馏。
同时,记录下各个阶段的温度和压力等数据。
5. 收集产物:将通过精馏得到的产物收集起来,并记录下产量和纯度等相关数据。
6. 清洗和准备下一次实验:将实验设备和仪器进行清洗和准备,以备下一次实验使用。
实验结果:1. 不同馏程下的产物纯度存在明显差异。
通常情况下,馏程越长,产物纯度越高。
2. 随着馏程的增加,产物的回收率也有所增加。
然而,馏程过长可能导致能量和时间的浪费。
3. 实验过程中,我们发现控制好温度和压力等参数对提高产品纯度非常重要。
过高或过低的温度、压力可能导致产物的质量下降。
4. 在实验中,我们还观察到了驱动力的重要性。
驱动力越大,产物的分离效果越好。
5. 实验结果还表明,对于不同的混合物样品,最适合的馏程可能有所差异。
因此,在实际生产中,需要根据具体情况进行调整和优化。
实验结论:1. 精馏实验中,馏程对产品纯度和回收率有显著影响。
2. 随着馏程的增加,产物的纯度和回收率也相应增加,但过长的馏程会浪费能量和时间。
3. 温度和压力等参数的控制对提高产品的纯度至关重要。
4. 在实际生产中,最适合的馏程需要根据具体的混合物样品进行调整和优化。
5. 对于提高精馏效果,驱动力是一个重要的因素,应当尽量提高驱动力以增加产物的分离效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一反应精馏法制乙酸乙酯一、实验目的1.了解反应精馏是既服从质量作用定律又服从相平衡规律的复杂过程。
2.掌握反应精馏的操作。
3.能进行全塔物料衡算和塔操作的过程分析。
4.了解反应精馏与常规精馏的区别。
5.学会分析塔内物料组成。
二、实验原理反应精馏是精馏技术中的一个特殊领域。
在操作过程中,化学反应与分离同时进行,故能显著提高总体转化率,降低能耗。
此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。
反应精馏过程不同于一般精馏,它既有精馏的物理相变之传递现象,又有物质变性的化学反应现象。
二者同时存在,相互影响,使过程更加复杂。
因此,反应精馏对下列两种情况特别适用:(1)可逆平衡反应。
一般情况下,反应受平衡影响,转化率只能维护在平衡转化的水平;但是,若生成物中有低沸点或高沸点物质存在,则精馏过程可使其连续地从系统中排出,结果超过平衡转化率,大大提高了效率。
(2)异构体混合物分离。
通常因它们的沸点接近,靠一般精馏方法不易分离提纯,若异构体中某组分能发生化学反应并能生成沸点不同的物质,这时可在过程中得以分离。
对醇酸酯化反应来说,适于第一种情况。
乙醇沸点78.3℃,与水形成恒沸物,恒沸点78.15 ℃,乙醇含量89.43%(分子);乙酸沸点118.0℃,醋酸乙酯沸点77.1℃,与水形成非均相恒沸物,恒沸点70.40℃,酯含量76%;乙醇与醋酸乙酯形成恒沸物,恒沸点71.8℃,酯含量54%;水、乙醇、和醋酸乙酯形成三元恒沸物,恒沸点70.3℃,乙醇含量12.4%,酯含量60.1%。
水-酯、水-醇恒沸物沸点较低,醇和酯能不断地从塔顶排出。
但该反应若无催化剂存在,单独采用反应精馏存在也达不到高效分离的目的,这是因为反应速度非常缓慢,故一般都用催化反应方式。
酸是有效的催化剂,常用硫酸。
反应随酸浓度增高而加快,浓度在0.2~1.0%(wt)。
此外,还可用离子交换树脂,重金属盐类和丝光沸石分子筛等固体催化剂。
反应精馏的催化剂用硫酸,是由于其催化作用不受塔内温度限制,在全塔内都能进行催化反应,而应用固体催化剂则由于存在一个最适宜的温度,精馏塔本身难以达到此条件,故很难实现最佳化操作。
本实验是以乙酸和乙醇为原料,在催化剂作用下生成乙酸乙酯的可逆反应。
反应的方程式为:实验的进料有两种方式:一是直接从塔釜进料;另一种是在塔的某处进料。
前者有间歇和连续式操作;后者只有连续式。
若用后一种方式进料,即在塔上部某处加带有酸催化剂的乙酸,塔下部某处加乙醇。
釜沸腾状态下塔内轻组分逐渐向上移动,重组分向下移动。
具体地说,乙酸从上段向下段移动,与向上段移动的乙醇接触,在不同填料高度上均发生反应,生成酯和水。
塔内此时有4组分。
由于乙酸在气相中有缔合作用,除乙酸外,其它三个组分形成三元或二元共沸物。
水-酯,水-醇共沸物沸点较低,醇和酯能不断地从塔顶排出。
若控制反应原料比例,可使某组分全部转化。
因此,可认为反应精馏的分离塔也是反应器。
若采用塔釜进料的间歇式操作,反应只在塔釜内进行。
由于乙酸的沸点较高,不能进入到塔体,故塔体内共有3组分,即水、乙醇、乙酸乙酯。
全过程可用物料衡算式和热量衡算式描述:(1) 物料衡算方程对第j 块理论板上的i 组分进行物料衡算如下(如图1所示):ni n j x L y V R z F y V x L j i j j i j j i j i j j i j j i j ,,3,2,12,,,,1,11,1 =≤≤+=+++++--,(2) 气液平衡方程对平衡组上某组分i 有如下平衡关系: 0,,,=-j i j i j i y x K (2)每块板上组成的总和应符合下式:11,=∑=n i j i y11,=∑=n i j i x (3)(3) 反应速率方程52,,,,10⨯⎪⎪⎭⎫ ⎝⎛=∑j i j i j i j j j i x x P k R θ (4) 式(4)指原料中各组分的浓度相等条件下才能成立,否则应予修正。
(4) 热量衡算方程对平衡级上进行热量衡算,最终得到下式:0,,1111=∆+-++--++--j r i j j f j j j j j j j j j H R Q H F H V h L H V h L (5)符号说明j F ——j 板进料流量,h mol ;j h ——j 板上液体焓值,mol kJ ;j H ——j 板上气体焓值,mol kJ ;j f H ,——j 板上原料焓值,mol kJ ;j r H ,∆——j 板上组分i 的反应热,mol kJ ;j L ——j 板下降液体量,h mol ;j i K ,——组分的汽液平衡常数;j k ——j 板上的反应速率常数;j P ——j 板上液体混合物体积(持液量);j Q ——j 板上冷却或加热的热量,h kJ ;j i R ,——单位时间j 板上单位液体体积内i 组分反应量,h mol ;j V ——j 板上升蒸汽量,h mol ;j i x ,——j 板上组分i 的液相摩尔分数;j i y ,——j 板上组分i 的气相摩尔分数;j i z ,——j 板上i 组分的摩尔分数;j i ,θ——反应混合物i 组分在j 板上的体积;三、实验装置及试剂实验装置如图2所示。
反应精馏塔用玻璃制成。
直径20mm ,塔高1500mm ,塔内填装φ3×3mm 不锈钢填料(316L)。
塔外壁镀有金属膜,通电流使塔身加热保温。
塔釜为一玻璃容器,并有电加热器加热。
采用XCT-191,ZK-50可控硅电压控制釜温。
塔顶冷凝液体的回流采用摆动式回流比控制器操作。
此控制系统由塔头上摆锤、电磁铁线圈、回流比计数拨码电子仪表组成。
所用的试剂有乙醇、乙酸、浓硫酸、丙酮和蒸馏水。
四、实验步骤间歇操作1.乙醇、乙酸各80g,浓硫酸几滴倒入塔釜内,开启釜加热系统。
开启塔身保温电源。
开启塔顶冷凝水。
2.当塔顶摆锤上有液体出现时,进行全回流操作。
15分钟后,设定回流比为3:1,开启回流比控制电源。
3.30分钟后,用微量注射器在塔身五个不同高度取样,应尽量保证同步。
4.分别将0.2μl样品注入色谱分析仪,记录结果。
注射器用后应用蒸馏水、丙酮清洗,以备后用。
5.重复3,4步操作。
关闭塔釜及塔身加热电源及冷凝水。
对馏出液及釜残液进行称重和色谱分析(当持液全部流至塔釜后才取釜残液),关闭总电源。
五、实验数据处理1. 实验要求自行设计实验数据记录表格。
根据实验测得数据,按下列要求写出实验报告:①实验目的与实验流程步骤;②实验数据与数处理;③实验结果与讨论及改进实验的建议。
对于间歇过程,可根据下式计算反应转化率和收率。
转化率=[乙酸加料量-釜残液乙酸量]/乙酸加料量进行乙酸和乙醇的全塔物料衡算,计算塔内浓度分布、反应收率,转化率等。
2. 原始数据记录原始数据记录表见后页表3. 实验数据计算结果汇总与举例(1) 根据色谱分析计算各组分质量分数(以精馏塔中段第一次取样分析数据为例) 由公式%%i i i i f A W f A =∑: 0.757171 3.96492()=0.757171 3.96492+128.81481+1.44713967.22027=0.02326W ⨯⨯⨯⨯水128.81481()=0.757171 3.96492+128.81481+1.44713967.22027=0.22321W ⨯⨯⨯⨯醇 1.44713967.22027()=0.757171 3.96492+128.81481+1.44713967.22027=0.75354W ⨯⨯⨯⨯酯(2)转化率及收率本实验中,由于乙醇是过量的,因此用乙酸进行计算:转化率=(乙酸加料量-釜残液乙酸量)/乙酸加料量收率=馏出乙酸乙酯所消耗乙酸物质的量/乙酸加料物质的量可得:(3)乙酸和乙醇的全塔物料衡算乙酸的全塔物料衡算:以全塔为系统:乙酸加料量=釜残液乙酸含量+反应掉的乙酸量所以,反应掉的乙酸量=乙酸加料量-釜残液乙酸含量反应掉的乙酸量=80.05-0. 32675×59.26=60.687g乙醇的全塔物料衡算:以全塔为系统:乙醇加料量=釜残液乙醇含量+反应掉的乙醇量+塔顶蒸发掉乙醇量反应掉的乙醇量=乙醇加料量-釜残液乙醇含量-塔顶蒸发掉乙醇量=80.070.2870459.260.1782883.2648.216g-⨯-⨯=(4)塔内浓度分布图图1 塔内水的浓度分布图图2 塔内乙醇浓度分布图图3 塔内乙酸乙酯浓度分布图1.塔内物质浓度分布的分析乙醇沸点78.3℃,与水形成最低共沸物,沸点78.15 ℃,乙醇摩尔含量89.43%;乙酸沸点118.0℃,醋酸乙酯沸点77.1℃,与水形成非均相恒沸物,恒沸点70.40℃,酯含量76%;乙醇与醋酸乙酯形成恒沸物,恒沸点71.8℃,酯含量54%;水、乙醇、和醋酸乙酯形成三元恒沸物,恒沸点70.3℃,乙醇含量12.4%,酯含量60.1%(共沸物组成数据来自Aspen Plus软件数据库)。
水-乙酸乙酯形成的共沸物具有较低的沸点,属于轻组分,通过精馏主要存在于塔的较高处,水-乙醇属于重组分,主要存在于塔较低处。
乙酸的沸点高于塔操作温度,所以乙酸只能够停留在塔釜内。
从图中看出,沿着塔高方向,乙醇的含量减少,乙酸乙酯的浓度增加。
水的浓度变化比较复杂,随着反应时间的增加,乙醇的含量减少,乙酸乙酯增多,水更多的与形成乙酸乙酯形成共沸物,沸点高于水与乙醇共沸物,所以第二次进样分析时,塔内水的分布为沿塔高方向水的浓度先减小后基本不变。
第一进样时,形成的水和乙醇的共沸物多于乙酸乙酯与水的共沸物,所以,水和乙醇形成的共沸物是轻组分,塔上段含量多,所以沿塔高方向水的含量逐渐增加。
随着时间的增加,乙醇的浓度不断减小,乙酸乙酯的浓度不断增加,但是变化的趋势均有所缓和,原因是随着反应的进行,反应速率是有所降低的。
2.物料衡算的分析进行全塔物料衡算的时候,发现进出物料不守衡,总物料误差=M初始,乙醇+M初始,乙酸-M总产品==80.05+80.07-(83.26+59.26)=17.60g。
主要的误差原因有:(1)乙醇为易挥发物质,可能在称量以及反应的时候。
(2)塔中有一定的持液量,特别是塔有一个星期未进行精馏反应,所以可能会导致很多物料停留在塔内。
3.转化率以及收率的分析由于塔内持液量无法获得,但是转化率计算值是等于实际值的,因为反应过程中,乙酸沸点117较高,没有进入反应塔内,所以对转化率没有影响;而收率的计算值则小于实际值,因为会有部分乙酸乙酯残留在塔内,导致计算结果偏低。
本次试验计算出的反应转化率以及收率比较低,其原因可能有:(1)填料使用过久,性能有所下降。
(2)反应时间不够长。
(3)色谱分析不够准确。