激光锁模条件

合集下载

激光被动锁模技术的原理及应用

激光被动锁模技术的原理及应用

激光被动锁模技术的原理及应用简介激光锁模技术是一种通过调整光源和谐振腔的特性来实现锁定光波的模式的技术。

激光被动锁模技术是在被动元件的作用下实现激光锁模的一种技术。

本文将介绍激光被动锁模技术的原理及其在激光器、光通信和光谱分析等领域的应用。

激光被动锁模技术的原理激光被动锁模技术的原理基于被动元件对激光光波的调制和过滤作用。

主要包括以下几个方面:1.调制:激光光源产生的光波经过被动元件的调制,改变其频率、相位等特性。

常用的被动元件包括光纤、薄膜滤波器等。

2.过滤:被动元件对激光光波进行频率选择性过滤,将其锁定在特定的模式上。

通过选择合适的滤波器参数,可以实现特定波长的锁模。

3.反馈:被动元件对锁定的光波提供反馈,使其保持稳定的模式。

这种反馈机制可以通过调整被动元件的参数来实现。

激光被动锁模技术的应用1. 激光器激光被动锁模技术可以应用于激光器的波长选择和模式控制上。

•波长选择:利用被动元件的频率选择性过滤作用,可以实现激光器在特定波长范围内的选择性发射。

这对于光通信、光谱分析等领域具有重要意义。

•模式控制:被动元件可以锁定激光器的输出模式,使其保持稳定的单模态输出。

这在一些精密测量、光学仪器等领域中非常有用。

2. 光通信激光被动锁模技术在光通信中的应用也非常广泛。

•波长分割多路复用:通过锁定激光器的特定波长模式,可以实现波分复用技术,将多个信号同时传输在同一光纤上,提高光纤的利用率。

•光路限制:激光器在特定波长模式下传输光信号,可以减少光子的传输丢失,提高光信号的传输距离和质量。

3. 光谱分析激光被动锁模技术在光谱分析领域也有重要应用。

•高分辨率谱分析:被动元件可以锁定光源的单模态输出,使得光谱分析具有高分辨率和高稳定性,提高分析的准确性。

•光子计数:通过锁定光波的模式,可以实现对光子的精确计数,为光谱分析提供精确的数据。

总结激光被动锁模技术通过被动元件的调制、过滤和反馈作用,实现对激光光波的锁定和稳定输出。

激光器锁模技术

激光器锁模技术

脉冲的半功率点的时间间隔近似地等于 , 因而可认为脉冲宽度近似等于

为锁模激光的带宽,它显然不可能超过工作 物质的增益带宽,这就给锁模激光脉冲带来一 定的限制
实现锁模的方法
下面我就以损耗调制为例,说明振幅调制锁模的原理:
利用声光或电光调制均可实现振幅调制锁模
调制激光工作物质的增益或腔内损耗,均可使激光振幅得到调
锁模脉冲光强曲线 N=3,即 (2N+1)=7

(t ) 2 m 时,光强最大
最大光强为:
1 sin (2 N 1)( t ) 2 2 2 2 I m E0 lim (2 N 1) E0 ( t ) 2m 2 1 sin ( t ) 2
可见,相位调制与振幅调制光波类似,调制后,也存在一系 列边带,锁模机理类似
Eq (t) E0e
结果:
i[(0 q)t 0 q ]
激光器输出的总光场是(2N+1)个纵模相干叠加的
E (t)
1 sin (2 N 1)( t ) 2 E0 cos(0 t) 1 sin ( t ) 2
q N
Ee
q
N
i[(0 q ) t 0 q ]
[E0T0 T0E0cos(m t)]cos(0 t 0 )
A0[1 m cos(m t)] cos(0 t 0 )
1 1 A0 cos(0 t 0 ) mA0 cos[(0 m ) t 0 ] mA0 cos[(0 m ) t 0 ] 2 2
当调制器介质折射率按外加调制信号而周期 性改变时,光波在不同时刻通过介质,便有 不同的相位延迟
假设未调制的光场:E(t) E0 cos(0 t 0 ) 相位调制函数为: (t) cos t 则经过调制后的光场就变为: E(t) E0 cos(0 t 0 cos t) 角频率的变化量为:

第六讲激光的调Q与锁模

第六讲激光的调Q与锁模

该式说明了我们观察到的平均光强是各个 纵模光强之和。
11
如果我们能设法使这些各自独立振荡的 纵模在时间上同步,就需要把它们的相位相 互关联起来,使之有一确定的关系。一般说, 能使q+1 - q等于常数,我们就说该激光器各 模的相位q是按照q+1 - q=常数的关系被锁 定。
12
二、多模激光器模式锁定特性
8
激光的频 谱是由等间隔 (C/2L)的分离 谱线所组成, 每条谱线对应 一个纵模,各 纵模间彼此独 立,相位是在 -到之间随 机分布。在时 间域内,其强 度分布有噪声 特性。
振幅

0
v
振幅强度
t
9
当用接收器件来探测非锁模激光器输出 的光功率时,接收到的光强是所有满足阈值 条件的纵模光强的叠加。此时,某一瞬时的 输出光强为:
第六讲 激光的锁模 技术
1
6.1 锁模技术
前面讲过的调Q激光器可以获得巨脉冲, 但是最小脉冲宽度约秒量级。其原因是形成 激光脉冲需要一个建立时间。如果用腔倒空 技术,可以将脉宽压缩到1~2ns,并且由腔 长决定。 锁模技术可以实现更窄的脉宽和更高的 输出峰值功率。
2
锁模技术是从1964年发展起来的,由于 它能使激光脉冲的持续时间达到10-12秒,甚 至更窄(10-15秒)。所以也称为超短脉冲技 术。由于激光输出脉宽很窄,所以峰值功率 可以很高。这种窄脉冲高峰值功率的激光应 用甚广,在受控核聚变、等离子体物理学、 遥测技术、化学及物理动力学、生物学、高 速摄影、光通讯、光雷达、光谱学、全息学 及非线性光学等许多领域都有着重要的应用, 对于研究超高速现象及探索微观世界的规律 性具有极大的意义。
q 2 q 2 C C 2L L
n 0 n 第n个纵模频率为: 0为中心频率,为纵模间隔 设第n个纵模的振幅为An(t), i ( ) t 0 n An (t ) A0e n 其中,A0为振幅, n为初相位。

第六讲激光锁模技术

第六讲激光锁模技术

11 2N1 q
可见增益线宽愈宽,愈可能得到窄的
锁模脉宽。( t=to=0时,A(t)有极大值,而上式分子(1/2) (2N+1) △ wt1=时,
A(t)=0,令 △t=t1-t0 并近似为半峰值宽,则有…)
(3)输出脉冲的峰值功率正比于 E02 (2N 1)2,因此,由于锁模,峰值
功率增大了2N+1倍。
本节将讨论超短脉冲激光器的原理、特点、实现的方法,几种典 型的锁模激光器及有关的超短脉冲技术。
6.2 锁模的基本理论
激光器的模式分为纵模和横模。锁模也分为锁纵模、锁横 模、锁纵横模三种。本节介绍纵模锁定。
一、多模激光器的输出特性
为了更好地理解锁模的原理,先讨论未经锁摸的多纵模自由运转
激光器的输出特性。腔长为L的激光器,其纵模的频率间隔为:
Δω ,假定第q个振荡模为
E t E cos t E cos qt q
q
0
q
q
0
0
式中,q为腔内振荡纵模的序数。
激光输出频谱
ω-5
ω-1ω0ω1 ω
ω5
N=5, 2N+1=11
激光器输出总光场是2N+1个纵模相干的结果:
N
N
E(t) Eq (t) E0 cos(0 q)t qa
出现了极大值( I = E2 = 9E02 )。当然, 对于谐振腔内存在多个纵模 的情况,同样有类似的结果。
E(t)
E0
1
0
2
-E0
3
I(t)
v3 9E02
v3=3v1,
v2
v1
v2=2v1, 初位相相同(0)
9E02
0
E(t)

激光锁模技术原理

激光锁模技术原理

激光锁模技术原理咱先来说说激光是啥。

激光呀,就像是一群超级听话的小光精灵,它们都朝着同一个方向,有着相同的频率,能量可集中了。

普通的光就像一群调皮捣蛋的小毛孩,到处乱跑,方向乱七八糟的。

但是激光就不一样啦,它特别有纪律性。

那激光锁模又是怎么回事呢?想象一下,激光就像一个合唱团。

在没有锁模的时候呢,合唱团里的每个成员都按照自己的节奏唱歌,虽然都是在唱同一首歌,但是听起来就有点乱糟糟的。

锁模就像是给这个合唱团请了一个超级厉害的指挥。

这个指挥一出现,所有的歌手就开始按照统一的节拍唱歌啦。

从技术的角度来讲呢,激光是由很多不同频率的光波组成的。

在没有锁模的时候,这些光波之间的相位关系是乱七八糟的,就像一群各自为政的小团体。

但是当我们采用锁模技术的时候,就像是给它们制定了一个统一的规则。

我们通过一些特殊的方法,让这些不同频率的光波的相位都变得整齐有序。

比如说,有一种主动锁模的方法。

这就像是在激光的产生过程中,有一个小闹钟一样的东西。

这个小闹钟按照固定的时间间隔,去调整激光光波的状态。

就像小闹钟每隔一段时间就敲一下,告诉那些光波:“该整齐一点啦!”然后那些光波就听话地调整自己的相位,变得整整齐齐的。

还有一种被动锁模的方法呢。

这有点像在激光的传播路径上设置了一些小关卡。

那些不符合整齐规则的光波,在经过这些小关卡的时候就会被削弱,而那些符合规则的光波就能够顺利通过。

慢慢地,剩下的就都是那些听话的、相位整齐的光波啦。

当激光实现锁模之后,那可就不得了啦。

它的能量变得超级集中,就像所有的小光精灵都手拉手,齐心协力地发挥力量。

这时候的激光在很多领域都能大显身手呢。

在医疗领域,它就像一把超级精准的小手术刀,可以精确地切割病变组织,对周围健康的组织伤害特别小。

在通信领域,它就像一个超级快递员,能够快速地传输大量的数据信息。

激光锁模技术就像是给激光这个神奇的工具注入了更强大的魔力。

它把那些原本有点散漫的光波变得团结起来,让激光能够发挥出更惊人的效果。

4.7激光锁模技术

4.7激光锁模技术

钕玻璃
7.5×1012
1.33×10-13
4×10-13
若丹明 6G
5×1012~3×1013
GaAlAs (0.85m)
1013
InGaAsP (1.55m)
1012~1013
2×10-13~3×10-14 10-13
10-12~10-13
3×10-14 0.5~30×10-12 4~50×10-12
]
ei0t
2
输出光强
I (t)
E02
sin2 (2N sin2
1)
t 2
t 2
振幅随时 间而变化
光强随时 间而变化
E(t)
N
E0 (
N
eiqt )ei0t
E0
s
in[1 (2N 1)t 2 sin 1 (t)
]
e
i0t
A(t )ei0t
2
下图为(2N+1)=7时I(t)随时间变化的示意图。
假设在激光工作物质的净
增益线宽内包含有N个纵模,
每个纵模输出的电场分量可用
下式表示:
Eq
(t)
E ei(qtq q
)
那么激光器输出的光波电场 是N个纵模电场的和,即
E (t)
E ei(qtq ) q
q
Eq
(t)
E ei(qtq q
)
E (t)
E ei(qtq ) q
q
Eq、ωq、φq为第q个模式的振幅、角频率及初位相。各个模式的振幅Eq、
设光信号在t1时刻通过调制器,并且δ(t1)=0,则在(t1+T0)时刻此信号将再次无 损地通过调制器。对于t2时刻通过调制器的光信号而言,若δ(t2)≠0,则每次经过 调制器时都要损失一部分能量。这就意味着只有在损耗为零的时刻通过调制 器的那部分光信号能形成振荡,而光信号的其余部分因损耗大而被抑制,因此 形成周期为2L/c的窄脉冲输出。

激光原理 锁模原理_主动锁模技术

激光原理 锁模原理_主动锁模技术

这些都是当时的国际最高指标。
目前正进入as 1018 s


6
二、超短脉冲特性
28.1 概述
高时间分辨率:超短脉冲的脉宽在ps、fs甚至更短,能够作 为测量固体物理、化学、生物材料等领域超快物理过程 的测量工具。 高空间分辨率:超短光脉冲空间长度是脉冲宽度与光速的乘
积,随着光脉宽的缩短,其空间长度也不断缩短,已经达 到微米量级,这在显微成象方面有很大用途。




2N 1 sin q t 2 A t E0 1 sin q t 2




15
28.3 锁模原理
E t E0 cos 0 qq t 0 A t cos(0 t 0 ) q N
总光场为 : E t
q N

N
Eq
E0 cos 0 qq t 0 q N

N






2N 1 sin q t 2 cos t A t cos t E0 0 0 0 0 1 sin q t 2
3、外界温度变化, 机械振动和光腔标准具效应等随机条件引起 光学频率起伏与“跳模”等。 d t d q 1 t const . 4、各纵模非相干叠加: dt dt
10
28.2自由运转多纵模激光器
以上各点互相关联,由于色散造成的 q m 和各纵模初始 相位随机分布造成了 t 的随机分布, 最终造成输出的光场
N

N


令0 0, 0 0,则有:

第28讲 锁模原理&主动锁模技术

第28讲 锁模原理&主动锁模技术

, 为常量
q q
则意味着激光器各纵模之间实现了同步输出,即锁模, 锁模技术就是要实现各纵模之间的同步。
这种时域上的“干涉”效应,将导致以线宽为倒数的超短激 光脉冲输出,即时域上的“干涉”
13
28.3 锁模原理
一、锁模条件
1、2 N 1 3
g q
1 3

N
N


令0 0, 0 0,则有:
E0 cos 0 qq t 0 A t cos(0 t 0) q N N cos 0 t 0 代表载波 A t E0 cos qq t q N A t 为调制包络
3、外界温度变化, 机械振动和光腔标准具效应等随机条件引起 光学频率起伏与“跳模”等。 d t d const . 4、各纵模非相干叠加: q 1 t dt dt
10
28.2自由运转多纵模激光器
以上各点互相关联,由于色散造成的 q m 和各纵模初始 相位随机分布造成了 t 的随机分布, 最终造成输出的光场 在时域随时间做无规则起伏,属于非相干叠加,没有干涉项,
E t
q N
Hale Waihona Puke NEq cos q t q

E
N q N
q
cos t
9
28.2自由运转多纵模激光器
多纵模激光器有如下输出特性:
1、线性极化有关的色散效应,使得激光器出现纵模间距不严 格相等的“频率牵引”效应: c c c 1 1 q q q q q m q 1 2 Lq 2 L0 nq 2 L0 nq 1 nq 2、非同步的受激辐射导致的各纵模之间没有确定的相位关系 各纵模初始相位随机分布: q 1 q const .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光锁模条件
激光锁模条件是指在激光器中,使得激光器输出的光束能够在空间上保持良好的模式结构。

激光锁模条件的实现对于激光器的性能至关重要,可以提高激光器的功率稳定性、光束质量和频率稳定性。

激光锁模条件的核心是控制激光谐振腔中的模式竞争。

激光谐振腔是激光器中用于增强光的谐振腔,通常由两个反射镜构成。

当激光器工作时,谐振腔中会存在多种模式,这些模式在谐振腔内来回传播并相互干涉,最终形成激光器输出的光束。

当激光器的增益介质处于饱和状态时,会产生光强的非线性效应。

这种非线性效应会导致谐振腔中的模式竞争,即不同的模式之间会相互影响,最终只有一个或少数几个模式能够占据优势地位。

而其他模式则会受到压制,无法得到增益,从而形成激光锁模条件。

为了实现激光锁模条件,可以采取多种方法。

一种常用的方法是在激光器谐振腔中引入光学元件,例如模式选择器、光纤或光栅。

这些光学元件可以通过选择性地增强或抑制特定的模式,从而实现激光锁模条件。

另一种方法是通过调整激光器的工作参数,例如激光器的泵浦功率、谐振腔的长度或曲率等,来控制模式竞争,从而实现激光锁模条件。

激光锁模条件的实现对于激光器的性能有着重要的影响。

首先,激
光锁模条件可以提高激光器的功率稳定性。

当激光器满足锁模条件时,输出的光束的功率会比较稳定,不会因为模式竞争的影响而波动。

其次,激光锁模条件可以提高光束的质量。

锁模条件下的激光器输出光束的模式结构比较好,光束的光斑通常比较圆形,光束质量较高。

最后,激光锁模条件还可以提高激光器的频率稳定性。

锁模条件下的激光器输出的光束频率比较稳定,并且与激光谐振腔的长度和光学元件的特性有关。

激光锁模条件是激光器中实现模式竞争控制的重要条件。

通过控制激光谐振腔中的模式竞争,可以实现激光器输出光束的稳定性、光束质量和频率稳定性的提高。

激光锁模条件的实现对于激光器的应用具有重要意义,可以广泛应用于激光雷达、光通信、激光加工等领域。

相关文档
最新文档