脂质体转染mrna细胞原理

合集下载

脂质体转染实验原理与操作步骤总(精)

脂质体转染实验原理与操作步骤总(精)

脂质体转染的实验原理与操作步骤大全日期:2012-06-25 来源:互联网作者:青岚点击:3644次摘要:细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等, 理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等, 本文主要介绍细胞转染常用的方法 -脂质体转染的原理和操作步骤等。

找产品,上生物帮 >> >>细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等, 理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法 -脂质体转染的原理和操作步骤等。

脂质体 (lipofectin regeant, LR 试剂是阳离子脂质体 N-[1-2, 3-Dioleyoxy , Propyl]-n, n , n-Trimethylammonium Chloride(DOTMA和 Dioleoyl photidye-thanolamine(DOPE的混合物 [1:1(w/w]。

它适用于把 DNA 转染入悬浮或贴壁培养细胞中 ,是目前条件下最方便的转染方法之一。

转染率高,优于磷酸钙法,比它高5~100倍,能把 DNA 和 RNA 转染到各种细胞。

用 LR 进行转染时, 首先需优化转染条件, 应找出该批 LR 对转染某一特定细胞适合的用量、作用时间等,对每批 LR 都要做:第一,先要固定一个 DNA 的量和DNA/LR混合物与细胞相互作用的时间, DNA 可从1~5μg和孵育时间 6小时开始,按这两个参数绘出相应 LR 需用量的曲线,再选用 LR 和 DNA 两者最佳的剂量,确定出转染时间 (2~24小时。

因 LR 对细胞有一定的毒性,转染时间以不超过 24小时为宜。

细胞种类:COS-7、 BHK 、 NIH3T3、 Hela 和 Jurkat 等任何一种细胞均可作为受体细胞。

脂质纳米粒包裹mrna原理

脂质纳米粒包裹mrna原理

脂质纳米粒包裹mrna原理
一、脂质体的形成
脂质体是一种由脂质分子构成的微小囊泡,具有与细胞膜相似的结构。

在制备脂质纳米粒的过程中,通常使用特定的方法将脂质分子聚集在一起,形成脂质体。

这些方法包括超声波处理、高压脉冲、溶剂蒸发等。

这些方法可以确保脂质体具有适当的粒径和稳定性,以适应不同的应用需求。

二、纳米颗粒的特性
脂质纳米粒是一种由脂质体包裹的纳米级颗粒。

这些颗粒具有许多独特的特性,使其成为传递mRNA分子的理想载体。

首先,脂质纳米粒具有较高的稳定性,可以保护mRNA分子免受外界环境的破坏。

其次,脂质纳米粒具有较好的生物相容性,能够避免引起免疫反应,使mRNA分子顺利进入细胞内。

最后,脂质纳米粒具有较强的穿透能力,可以克服生理屏障,使mRNA分子能够到达目标组织或细胞。

三、包裹效率
脂质纳米粒的包裹效率是指将mRNA分子包裹在脂质体中的效率。

为了提高包裹效率,通常需要优化制备方法和条件。

例如,可以通过控制脂质体的组成、粒径和浓度等因素来提高包裹效率。

此外,还可以使用特定的转录修饰剂或保护剂来提高mRNA分子的稳定性和包裹效率。

四、释放机制
脂质纳米粒进入细胞后,通过与细胞膜融合将mRNA分子释放到细胞内。

这一过程通常需要特定的触发机制。

例如,某些脂质纳米粒可以在细胞内被特定的酶分解或通过内吞作用被细胞摄取。

一旦进入细胞内,脂质纳米粒中的mRNA分子就可以被释放并发挥其作用。

mrna 阳离子 脂质体

mrna 阳离子 脂质体

mrna 阳离子脂质体mRNA阳离子脂质体是一种重要的基因递送系统,被广泛应用于基因治疗和疫苗开发领域。

本文将介绍mRNA阳离子脂质体的定义、结构、工作原理以及在基因治疗和疫苗开发中的应用。

一、定义mRNA阳离子脂质体是一种由阳离子脂质包裹的mRNA分子的纳米粒子。

阳离子脂质由正电荷的脂质组成,能够与负电荷的mRNA结合形成稳定的复合物。

二、结构mRNA阳离子脂质体通常由四个组分构成:mRNA负载部分、阳离子脂质、PEG修饰剂和靶向配体。

1. mRNA负载部分:mRNA负载部分是mRNA阳离子脂质体的核心组成部分,负责携带目标基因信息。

mRNA负载部分由独特的序列决定,可以编码特定的蛋白质。

2. 阳离子脂质:阳离子脂质是mRNA阳离子脂质体的外层包裹物,由正电荷的脂质分子构成。

阳离子脂质能够与mRNA负载部分中的负电荷相互作用,形成稳定的纳米粒子。

3. PEG修饰剂:PEG修饰剂是一种带有聚乙二醇基团的化合物,用于提高mRNA阳离子脂质体的稳定性和生物相容性。

PEG修饰剂可以降低mRNA阳离子脂质体与免疫系统的相互作用,延长其在体内的循4. 靶向配体:靶向配体是一种结合在mRNA阳离子脂质体表面的分子,能够与特定的细胞受体结合,实现靶向递送。

靶向配体可以提高mRNA阳离子脂质体对特定细胞的选择性。

三、工作原理mRNA阳离子脂质体通过一系列的步骤实现基因递送。

首先,阳离子脂质与mRNA负载部分相互作用,形成稳定的复合物。

然后,mRNA 阳离子脂质体通过靶向配体与特定的细胞受体结合,实现靶向递送。

一旦进入细胞内,mRNA负载部分被释放,并被细胞的核糖体翻译为蛋白质。

四、应用mRNA阳离子脂质体在基因治疗和疫苗开发中具有广泛的应用前景。

1. 基因治疗:mRNA阳离子脂质体可以用于治疗遗传性疾病和癌症等疾病。

通过携带特定的修饰mRNA,mRNA阳离子脂质体能够在细胞内编码所需的蛋白质,实现疾病的基因矫正。

转染试剂的作用原理

转染试剂的作用原理

转染试剂的作用原理一、转染试剂的基本概念转染试剂是一种用于将外源基因或其他生物分子转移到目标细胞中的化学物质。

转染试剂可以通过物理或化学方法改变细胞的通透性,使外源物质能够进入细胞内,并达到转染的目的。

转染试剂在基因治疗、基因表达研究和细胞工程等领域广泛应用。

二、转染试剂的分类转染试剂按照机理和性质的不同可分为多种类型,常见的转染试剂包括:1.脂质体(Liposome):脂质体是由磷脂双分子层构成的微小囊泡,可与细胞膜融合,将目标物质转移到细胞中。

2.内源蛋白介导的转染:通过利用特定的蛋白质,如病毒衣壳蛋白或细胞内运输蛋白,将目标物质转移到目标细胞中。

3.阳离子聚合物:阳离子聚合物具有正电荷,能够与负电荷的DNA或RNA结合形成复合物,进而转染入细胞。

4.高分子基质:高分子材料如凝胶、纤维或微球等可用于载体,将目标物质与细胞接触,实现转染。

5.电穿孔:利用电场或离子流导致细胞膜破裂,使目标物质通过细胞膜进入细胞质。

三、脂质体转染试剂的作用原理脂质体是一种常用的转染试剂,其作用原理主要包括以下几个步骤:1.与DNA结合:脂质体通过与目标DNA相互作用,形成脂质体-DNA复合物。

脂质体由于其亲油性能与DNA中的疏水部分相互作用,同时脂质体表面带有正电荷,可以与DNA的负电荷相吸引。

2.细胞摄取:脂质体-DNA复合物与细胞膜结合后,脂质体会在细胞膜上形成微囊泡。

随后,微囊泡与细胞膜融合,释放出脂质体-DNA复合物进入细胞质。

3.脱脂质体:脂质体在细胞质中逐渐失去其亲油性,释放出DNA。

由于脂质体-DNA复合物在细胞膜上的微囊泡中形成的电位差,使得DNA被吸引到细胞核附近。

4.核入:DNA由细胞质进入细胞核,最终与染色体结合或进入细胞核内的胞浆,实现转基因。

四、脂质体转染试剂的优缺点脂质体转染试剂具有一些优点和缺点,需要根据实际应用情况选择使用:优点:1.安全性:脂质体转染试剂大多采用合成非病毒载体,通常比病毒载体更安全,不会引起病毒感染及遗传毒性。

脂质体转染原理及操作步骤

脂质体转染原理及操作步骤

脂质体转染原理及操作步骤
脂质体转染是一种常用的基因传递方法,通过将目标基因以及负载该基因的脂质体添加到细胞培养物中,使其与细胞膜融合,并将基因导入到细胞内。

脂质体转染的操作步骤如下:
1. 提取脂质体:首先,从脱脂牛奶或其它来源中提取脂质体。

可以通过超声处理、离心等方法将脂质体分离出来。

2. 混合目标基因与脂质体:将目标基因与脂质体混合,目标基因可以是质粒DNA、RNA等。

将基因加入脂质体溶液中,进
行充分混合。

3. 孵育:将脂质体-基因混合物在室温下孵育一段时间,通常
为15-30分钟。

这一步主要是让脂质体与基因充分结合。

4. 加入细胞:将孵育好的脂质体-基因混合物加入需要转染的
细胞培养物中。

细胞种类可以是哺乳动物细胞、脊椎动物细胞、细菌等。

5. 孵育细胞:将细胞培养物保持在适宜的培养条件下,孵育一定时间,让细胞充分吸收脂质体-基因复合物。

6. 收获转染细胞:经过一定时间的孵育后,可从培养物中收获转染细胞。

可以根据实验需要进行后续分析。

需要注意的是,脂质体转染的效率与脂质体组分、浓度、孵育时间、细胞类型等因素密切相关,需要进行参数优化才能达到较高的转染效果。

成都lipo rnaimax转染试剂的原理

成都lipo rnaimax转染试剂的原理

成都lipo rnaimax转染试剂的原理
成都Lipo RNAiMax转染试剂是一种基于脂质体的转染试剂。

其原理是将RNAiMax试剂与RNA干扰分子(siRNA或miRNA)混合,在细胞培养液中形成脂质体复合物。

这些复合物能够与细胞膜互相吸附,膜上的脂质体与细胞膜融合,使得RNA干扰分子能够进入细胞内部。

在细胞内部,RNAiMax复合物会通过内吞作用被吞噬并转移到细胞内的内质网(ER)或溶酶体,随后RNAiMax离子和RNA干扰分子会解离。

RNA干扰分子会与RNA诱导靶向减退(RISC)复合物结合,形成功能性RNA-RISC复合物。

该复合物将干扰分子与核糖核酸(mRNA)互相匹配,靶向RNA打破完整的mRNA分子,并降解目标基因的mRNA分子。

这样,Lipo RNAiMax转染试剂能够达到基因沉默、抑制、启动和修饰等作用。

质体介导转染法原理及其研究进展

质体介导转染法原理及其研究进展

质体介导转染法原理及其研究进展脂质体也称人工细胞膜,是由脂质双分子层组成的,磷脂分子在水中可自动生成闭合的双层膜,从而形成一种囊状物被称为脂质小体,最初人们只是运用脂质体模拟膜的构造及其功能,从而发现了膜的融合及内吞作用。

最早证明脂质体能把DNA十分有效地引入动物细胞的实验是从鼠/人杂种细胞系(HGPRTˉ)中分离出的中期染色体包裹到脂质体中,并用以转染HGPRTˉ的细胞,结果转化率比裸露染色体高十多倍,而且转化子能稳定地表达HGPRTˉ的活性。

脂质体法具有很多优点,操作简便,转化效率比较高,可以用于瞬时转染,也可以用在永久表达系的建立,对细胞类型的运用面广,对转染的核酸类型和分子量有很高的包容性,细胞毒性小,也可以用于体内的基因转染。

因此脂质体转染法得到了越来越广泛的应用。

1 脂质体的组成和制备1.1 脂质体的组成磷脂是一种双亲(亲水亲脂)脂分子,在水环境中可自发地形成双层膜,Bangham首次鉴定了呈微球形的脂类双分子层。

制备脂质体的主要材料是天然磷脂和类固醇,因而是生物可降解的、无毒的和不致免疫的。

脂质体的种类很多,概括起来有多层脂质体和单层脂质体,通常使用“囊泡”一词来描述不同类型的脂质体,例如有多层大囊泡(ML V)、单层巨型囊泡(GUV)、单层大囊泡(LUV)、单层小囊泡(SUV)。

不同组成的脂质体其表面电性会不同,表面电荷为阳性、阴性和中性的脂质体对细胞的转染频率也会有差别。

现存的商业化脂质体均为阳离子脂类与中性脂类的复合体,如Lipofect、AMINE、Lipofectin等,中性脂类多为二油酰磷脂乙醇胺(DOPE),其中阳离子脂类起主要作用,通过静电作用与DNA形成DNA-脂复合体,并引导DNA进入细胞,DOPE起辅助作用,去稳定脂质和胞内促DNA释放,称为辅助脂类。

阳离子脂质体主要分为三类:(1)人工合成的阳离子去垢剂与DOPE组成,它有两条疏水碳氢链和一个季铵离子极性头部。

脂质体转染

脂质体转染

外源基因进入细胞主要有四种方法:电击法、磷酸钙法和脂质体介导法和病毒介导法。

电击法是在细胞上短时间暂时性的穿孔让外源质粒进入;磷酸钙法和脂质体法是利用不同的载体物质携带质粒通过直接穿膜或者膜融合的方法使得外源基因进入细胞;病毒法是利用包装了外源基因的病毒感染细胞的方法使得其进入细胞。

但是由于电击法和磷酸钙法的实验条件控制较严、难度较大;病毒法的前期准备较复杂、而且可能对于细胞有较大影响;所以现在对于很多普通细胞系,一般的瞬时转染方法多采用脂质体法。

利用脂质体转染法最重要的就是防止其毒性,因此脂质体与质粒的比例,细胞密度以及转染的时间长短和培养基中血清的含量都是影响转染效率的重要问题,通过实验摸索的合适转染条件对于效率的提高有巨大的作用。

一、实验材料1、宿主细胞CHO(贴壁细胞)2、脂质体LIPOFECTAMINE 2000(invitrogen公司)3、6孔细胞培养版4、无血清培养基OPTI-MEM(GIBICO)5、转染级质粒二、实验步骤invitrogen的LIPOFECTAMINE 2000说明书上列举了24孔、12孔、6孔......板的实验体系,因为需要转染的细胞量大,所以一直采用的是6孔版做的转染。

以下是以6孔板为例说明一下我的体系和方法吧!1、转染前一天,以合适的细胞密度接种到6孔培养板上。

(我的接种密度是3~4*105/ml.)转染时,细胞要达到90~95%的融合。

2、溶液1:240ul 无血清培养基+ 10 ul lipofectamine 2000 per well (总体积250 ul)(温育5min)3、溶液2:X ul 无血清培养基+ 4 ug 质粒per well(总体积250 ul)4、将溶液1与溶液2混合,室温下置20min。

5、与此同时,将6孔板中的细胞用无血清培养基冲洗细胞两遍后,加入2ml 无血清培养基。

6、将溶液1与溶液2的混合液逐滴加入孔中,摇动培养板,轻轻混匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脂质体转染mrna细胞原理
脂质体转染mRNA细胞的原理是利用脂质体作为载体,将目的mRNA包裹在其内部,然后通过与细胞膜融合让mRNA进入细胞质,最终达到将目的mRNA表达出来的目的。

脂质体是由磷脂和胆固醇等组成的微小囊泡结构,与细胞膜结构相似。

其内部的疏水层可以容纳水溶性的物质,包括mRNA分子。

脂质体转染mRNA的步骤如下:
1. 准备目的mRNA:目的mRNA是指需要转染到细胞内进行表达的mRNA,可以是外源的mRNA,也可以是经过In vitro 转录合成的人工合成mRNA。

这些mRNA一般会在实验室中事先准备好。

2. 制备脂质体:将脂质体粉末或液体悬浮液溶解在适当的缓冲液中,形成脂质体溶液。

脂质体通过磷脂的双层结构来包裹mRNA,形成稳定的脂质体-mRNA复合物。

3. 混合脂质体与mRNA:将目的mRNA与脂质体溶液混合,并进行充分的混合和搅拌。

这样就可以使mRNA和脂质体发生相互作用,形成脂质体-mRNA复合物。

4. 转染细胞:将脂质体-mRNA复合物加入到需要转染的细胞培养液中,使其与细胞接触。

脂质体复合物会与细胞膜融合,从而使脂质体内的mRNA进入细胞质。

5. mRAN转录和表达:在细胞质中,脂质体释放的mRNA会
被细胞的核糖体识别,进而进行mRNA转录和翻译,最终使
该mRNA编码的蛋白质在细胞内得到表达。

脂质体作为转染载体具有一定的优势,如制备简单、生物相容性好等。

但是,脂质体转染也存在一些问题,如转染效率较低、引起细胞毒性等。

因此,在实际应用中需对转染条件进行优化,以提高转染效率和减少毒性。

相关文档
最新文档