静电纺制备PVDF纳米纤维膜的应用
静电纺制备PVDF纳米纤维膜的应用

静电纺制备PVDF纳米纤维膜的应用
随着材料科学和制造技术的发展,聚偏氟乙烯(PVDF)纳米纤维膜已在众多领域中得
到广泛应用。
目前,PVDF纳米纤维膜大多是通过静电纺丝法制备的。
静电纺丝技术是一种以液体或固体颗粒为纺丝材料,利用电场的拉力作用,形成纳米纤维的方法。
与其他制备PVDF纳米纤维的方法相比,静画纺制备PVDF纳米纤维的优点在于可以获得长度分布宽的
纳米纤维和良好的形貌。
PVDF纳米纤维膜的应用可以分为无机和有机应用。
无机应用包括气体分离,电池支撑膜和抗静电屏蔽膜等。
PVDF纳米纤维具有良好的导电性,可以有效地阻止电磁波的传播,从而可以制备出阻射能力高的抗静电屏蔽膜。
PVDF纳米纤维膜还可以用作电池支撑膜,能够有效地改进电池的表面结构,提高电池的电子传输性能。
另外,它还可以用于气体分离,因为它具有独特的结构,能够有效地净化和分离各种气体。
有机应用包括用于滤镜,膜模和传感器等。
PVDF纳米纤维膜由于具有优越的机械性能和化学稳定性,可以应用于滤膜,用于过滤小分子量的有机分子,而不会阻塞滤膜。
它还
可以用于制备膜印模,具有良好的光折射性和透明度,可以有效地对光线进行分束。
此外,PVDF纳米纤维膜具有优良的生物相容性,可以用作植入体中的生物传感器。
总之,静电纺丝制备PVDF纳米纤维膜已经在众多领域中取得广泛应用,有广泛的应
用前景。
这些应用是基于PVDF纳米纤维膜具有良好的机械性能,化学稳定性,电子导电性,共挤流变性以及抗菌性等固态特性以及独特的结构它们的优势。
PVDF纳米纤维膜的未来发展将趋于更加先进的领域,以及更加多样的工业应用。
静电纺制备PVDF纳米纤维膜的应用

静电纺制备PVDF纳米纤维膜的应用近年来,静电纺制备纳米纤维膜逐渐成为一种研究热点,其中PVDF纳米纤维膜因其较好的分离性能和生物相容性而备受关注。
本文将介绍静电纺制备PVDF纳米纤维膜的原理及其在环境、能源和生物等领域中的应用。
静电纺是一种由电场引导聚合物溶液或熔融聚合物物质在空气中快速凝聚成纳米纤维膜的方法。
在静电纺制备PVDF纳米纤维膜中,首先需要将PVDF聚合物在有机溶剂中溶解或熔融,并加入适量的表面活性剂来改善溶液的稳定性和凝聚性。
然后,将制备好的聚合物溶液或熔融聚合物通过高压喷液器将其喷出形成一个均匀的细液柱。
在液柱喷出时,加上一个高电压(通常为10-30 kV)的直流电源,静电场将会使液柱表面的聚合物分子带上一个静电荷,这样,在液柱的喷出口处,电荷的相互斥力将使聚合物分子向外喷出,形成一根连续的纳米纤维,最后在收集器上以一定的布局堆积成为膜。
整个制备过程需要在恒定的湿度和温度下进行。
1. 空气过滤器:PVDF纳米纤维膜具有良好的孔隙率和较小的孔径,能够过滤掉空气中的微小颗粒、病毒和细菌等有害物质,因而被广泛应用于空气过滤器。
3. 催化剂载体:将金属催化剂固定在PVDF纳米纤维膜表面,可以提升催化剂的活性,从而被应用于废水处理等方面的催化反应中。
1. 锂离子电池隔膜:PVDF纳米纤维膜在锂离子电池中能够作为高效的隔膜,可以防止正负电极之间的直接接触,从而延长电池的寿命和安全性。
2. 太阳能电池:通过将PVDF纳米纤维膜用作太阳能电池的电极材料,可以提高太阳能电池的效率。
3. 储氢材料:将PVDF纳米纤维膜与多孔碳凝胶等材料复合使用,可以制备出一种高效的储氢材料,有望在储氢领域得到广泛应用。
1. 组织工程:利用PVDF纳米纤维膜作为生物支架材料,可以促进细胞的黏附和增殖,有助于维持和重建组织的结构和功能。
2. 血滤器:PVDF纳米纤维膜在制备血滤器时具有较高的血液相容性和血清相互作用能力,可以被用于治疗肾功能衰竭等血液疾病。
PVDF纳米纤维膜的制备及其油水分离性能

PVDF 纳米纤维膜的制备及其油水分离性能黄庆林1,2,郑涵文1,2,杜雄飞1,2,孙昱旻1,2(1.天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387;2.天津工业大学材料科学与工程学院,天津300387)摘要:针对静电纺丝纳米纤维膜孔径偏大的问题,以聚偏氟乙烯(PVDF )为成膜聚合物,N ,N-二甲基甲酰胺(DMF )/丙酮为混合溶剂制得纺丝液,采用静电纺丝技术制备PVDF 纳米纤维膜,并研究聚合物浓度对纳米纤维膜孔结构及油水分离性能的影响。
结果表明:增大纺丝液浓度会明显提高PVDF 纳米纤维直径,使得纳米纤维直径分布变窄;当PVDF 质量分数为14%时,所得PVDF 纳米纤维膜具有较好的表面形貌和拉伸强度;油水分离结果表明,重油体系(二氯甲烷+水)通量最大达2900.86L/(m 2·h ),分离效率高达99.5%,高粘附油体系(玉米油+水)通量最小为32.98L/(m 2·h ),分离效率仅有91.7%。
在进一步的油包水乳液分离过程中,PVDF 纳米纤维膜(M-3)具有的油水分离通量为7.9L/(m 2·h ),分离效率高达97.6%。
关键词:静电纺丝;聚偏氟乙烯;纳米纤维膜;油水分离;乳液分离中图分类号:TQ028.8文献标志码:A 文章编号:员远苑员原园圆源载(圆园23)园6原园园10原07收稿日期:2022-09-15基金项目:天津市科技计划项目(18PTSYJC00170)通信作者:黄庆林(1985—),男,教授,博士生导师,主要研究方向为高分子膜材料。
E-mail :*************************.cn Preparation and oil-water separation performance of PVDF nanofiber membraneHUANG Qinglin 1,2,ZHENG Hanwen 1,2,DU Xiongfei 1,2,SUN Yumin 1,2(1.State Key Laboratory of Separation Membranes and Membrane Processes ,Tiangong University ,Tianjin 300387,China ;2.School of Material Science and Engineering ,Tiangong University ,Tianjin 300387,China )Abstract :Aiming at the problem of large pore size of electrospun nanofiber membrane袁polyvinylidene fluoride 渊PVDF冤nanofiber membranes were fabricated by electrospinning technique袁with PVDF as membrane material袁andDMF/acetone as mixed solvent.The effects of PVDF concentration on the nanofiber membranes忆pore structure and oil-water separation performance were investigated.The results showed that the increase of PVDF concen鄄tration effectively elevated the diameter of nanofiber and narrow the distribution袁and also improved the porosity and mechanical strength.When the concentration mass fraction of PVDF was 14%袁the obtained PVDF nanofiber membrane had better surface morphology and tensile strength.It was found that the maximum flux of heavy oilsystem 渊dichloromethane/water冤was 2900.86L/(m 2·h )袁and the separation efficiency was 99.5%.The mini鄄mum flux of high adhesion oil system渊corn oil/water冤was 32.98L/(m 2·h )袁and the separation efficiency was only 91.7%.In the subsequent separation process of water-in-oil emulsion袁the oil-water separation flux of M-3was7.9L/(m 2·h )袁and the separation efficiency reached up to 97.6%.Key words :electrospinning曰polyvinylidene fluoride曰nanofiber membrane曰oil/water separation曰emulsion separation水资源短缺及废水污染已经成为亟待解决的世界性问题。
静电纺丝技术制备纳米纤维的基本原理与应用

静电纺丝技术制备纳米纤维的基本原理与应用静电纺丝技术是近年来较为成熟的纳米纤维制备技术之一,具有高效、简便、易操作等特点。
本文将介绍静电纺丝技术的基本原理,探讨其应用领域,并简单举例说明。
一、静电纺丝技术的基本原理静电纺丝技术是指将高分子溶液通过高压电场作用,形成纳米级的纤维。
其工作原理基于三个主要因素:高分子的表面张力、电荷密度和电场强度。
在电场的作用下,载有电荷的高分子溶液会形成电荷分布,随后在电场的作用下,溶液中的高分子链状分子朝向电极移动而形成了纳米级的纤维。
这些纳米纤维以径向跟随电场分布,并且由于高分子链间的极性相互作用力、表面张力等因素的固化作用下逐渐形成完整的纳米纤维膜。
二、静电纺丝技术的应用领域(一) 高分子工业静电纺丝技术在高分子工业上有着广泛的应用。
由于其纳米纤维的特殊性质,可以增强高分子材料的机械性能、光学性能、电学性能等特征。
高分子纳米纤维的应用范围涉及到纺织品、防辐射针织品、过滤器、滤清器、气凝胶、船用材料等。
(二) 食品科学静电纺丝技术在食品科学中也有着广泛的应用。
利用静电纺丝技术制备的纳米纤维对于食品中的油脂、营养成分、气味等具有吸附、封存、保护的效果。
同时,纳米纤维膜具有较高的透气性能和大表面积,可以被应用于保鲜、包装、防霉、防菌等方面。
(三) 医药领域静电纺丝技术在医药领域中的应用较为广泛。
制备高分子纳米纤维材料用于医疗设备的制造,例如口罩、医用手套、敷料等。
此外,静电纺丝在药物传输、生物识别、细胞培养、组织修复等方面也有着广泛的应用。
三、例子详解——静电纺丝技术制备抗菌口罩随着新型冠状病毒的传播,口罩成为了人们必备的生存物品。
传统的口罩材料往往有着较为严重的缺陷,无法对抗空气中的病原体产生作用,再加上长时间佩戴,出现细菌和真菌的滋生。
基于静电纺丝技术的口罩材料则可以有效地解决上述问题。
利用静电纺丝技术,制备的口罩材料具有高度的表面积,并且具有极佳的抗菌和透气性能。
静电纺丝技术制备聚合物纳米纤维膜的研究

静电纺丝技术制备聚合物纳米纤维膜的研究聚合物纳米纤维膜是一种新型的材料,由于其具有优异的物理和化学性质而受到越来越多的关注。
目前,研究人员开展了大量的工作,以开发制备这种材料的新方法。
静电纺丝技术是一种被广泛应用于聚合物纳米纤维膜制备的方法。
该方法以高压静电场为驱动力,通过将聚合物分子从液态转变为固态,从而制备具有纳米级尺度的聚合物纤维。
本文将介绍静电纺丝技术制备聚合物纳米纤维膜的原理、优点以及应用。
一、静电纺丝技术的原理静电纺丝技术是指将含有聚合物溶液的“滴”,通过高压静电场的作用,使溶液从液态转变为纳米级尺度的聚合物纤维的过程。
该技术涉及两个相反的过程:传输和荷电。
在传输过程中,溶液从喷嘴中被喷出,形成溶液“滴”,然后通过高压静电场的作用,这些滴获得了荷电,移动到地面或由电极吸附。
在荷电过程中,因为这些荷电粒子被静电力所吸引,所以它们沿着高压电极向下运动。
当这些荷电粒子接近到一定距离,它们之间的静电引力就足以克服表面张力,形成纳米级尺度的聚合物纤维。
二、静电纺丝技术的优点制备聚合物纳米纤维膜的传统方法包括溶液浸渍、熔融拉伸等技术,但这些方法都存在着一些局限性,如工艺复杂、成本高等。
相比之下,静电纺丝技术具有如下优点:1.高效性:该技术可在较短时间内制备大量的纳米级聚合物纤维,并可实现连续性生产。
2.灵活性:静电纺丝技术可以制备出不同形态、大小和形状的聚合物纳米纤维。
3.高质量:该技术制备的聚合物纳米纤维具有高度纯度、尺寸一致性好和结构紧密等特点,使其应用广泛。
三、聚合物纳米纤维膜的应用聚合物纳米纤维膜由于其纳米级尺度的尺寸和优良的物理化学性质,在多个领域中都有着广泛的应用。
下面简要介绍其主要应用领域。
1.过滤和分离领域:聚合物纳米纤维膜由于其纤维间距非常小,同样尺寸的纳米级颗粒、蛋白质等大分子物质可以被过滤掉,这使其在液体过滤和气体过滤领域有广泛的应用。
2.生物医学领域:在不同细胞之间建造三维聚合物纳米纤维膜支架,使得细胞能够依附并形成新的组织,有利于修复受损的组织和器官。
基于静电纺丝法制备PVA复合纤维膜的方法及应用实例

一种羟基磷灰石/PVA
王华林;张鹏;李
CN2012103
Ca(NO3)250 份,NH4H2PO4?0.8-1 份,
纤维材料及其制备方
亚楠;马行空;翟
30831.6
蒸馏水 350-400 份,将其配成均匀透明的纺
法
林峰
丝液,在电压 10-20KV、极距 10-20cm 和
室温下静电纺丝,制备羟基磷灰石/PVA 纤
PVA/MWNTs-OH 导
93191.8
聂华丽 的纳米纤维毡;将上述不透明的纳米纤维毡
电复合膜的制备方法
于水溶液中,溶胀吸水 5-30s,真空干燥,
即得。本发明的操作简便、反应条件温和,
所使用的原材料廉价易得,无毒无污染,对
环境和实验人员友好;所得到的透明薄膜, 表面平整光滑,形态规整,电导率可控等优
距 8-12cm 和室温下下纺丝,制备所述
PVA/SPI/氧化锆有机无机杂化纤维。
一种静电纺荧光 PVA CN2014107
纳米纤维膜及其制备 02118.9
方法
赵兵
本发明公开了一种静电纺荧光 PVA 纳米纤 维膜及其制备方法,采用高温热分解法合成 六方相的上转换发光纳米颗粒 UCNPs,然
后使用四氟硼酸亚硝鎓 NOBF4 处理 UCNPs,取代其表面的油酸分子,最后与亲 水性超支化聚合物反应,得到水溶性上转换 纳米颗粒。随后将水溶性上转换纳米颗粒添 加到聚乙烯醇 PVA 纺丝原液中,超声混合 均匀,通过静电纺丝法制备得到静电纺荧光 PVA 纳米纤维膜。本发明采用的水溶性上转 换纳米颗粒具有优异的荧光性能,水溶性 好,与 PVA 水溶液相容性好,在荧光防伪
搅拌反应,透析、冷冻干燥,得到 PEI-T; (2)将 PVA 水溶液和上述 PEI-T,混合,得 聚乙烯醇 PVA/PEI-T 溶液,静电纺丝,戊二
纳米纤维的制备方法及应用

纳米纤维的制备方法及应用纳米纤维是一种纤细程度在纳米级别的纤维材料,具有独特的结构和性能,广泛应用于纺织、电子、医药等领域。
本文将介绍纳米纤维的制备方法以及其在各个领域的应用。
纳米纤维的制备方法有很多种,下面将介绍其中几种常见的方法。
首先是静电纺丝法。
这种方法是最常见也是最直接的一种方法。
通过将高分子溶液或胶体材料注入到高压电极中,当电极电压升高时,材料的表面张力会被克服,形成细丝状的纳米纤维。
静电纺丝法的优点是制备纳米纤维的过程简单,成本低廉,但纤维的纯度较低。
其次是模板法。
这种方法利用孔洞结构的模板,将高分子溶液填充进孔洞,经过干燥或者其他处理后得到纳米纤维。
模板法制备的纳米纤维具有良好的结构和分散性,能够控制纤维的尺寸和形状,但是对模板的要求较高。
还有液晶法。
这种方法利用液晶相态的高分子材料,在特定的条件下经过自组装形成纳米纤维。
液晶法制备的纳米纤维具有优异的力学性能和热稳定性,适用于制备高品质的纳米纤维。
然而,液晶法的制备过程相对较复杂。
纳米纤维在各个领域有着广泛的应用,下面将介绍几个典型的应用案例。
首先是纺织领域。
纳米纤维具有出色的透气性、柔软度和耐用性,可以用来制备高性能的纺织品。
例如,运动服、户外服装和内衣等产品都可以采用纳米纤维材料,提高服装的舒适性和功能性。
此外,纳米纤维还可以用于制备阻燃纺织品和抗菌纺织品,具有广阔的市场应用前景。
其次是电子领域。
纳米纤维材料具有良好的导电性和光学性能,可用于制备具有高导电性的电子器件。
例如,利用纳米纤维可以制备高性能的柔性电子器件,如柔性显示屏、柔性电池等。
此外,纳米纤维也可以用作光学传感器、光催化剂等方面的材料,在提升电子器件性能和功能方面具有广泛应用前景。
还有医药领域。
纳米纤维具有较大的比表面积和良好的生物相容性,可以用于制备各种功能性纳米纤维材料,如药物缓释材料、组织工程材料等。
例如,纳米纤维可以用于制备各种纳米纤维薄膜,用于药物缓释系统,可以实现药物的定向和持续释放。
静电纺丝技术制备纳米纤维膜研究

静电纺丝技术制备纳米纤维膜研究纳米材料在科技领域有着广泛应用,其中纳米纤维膜是一种重要的纳米材料。
静电纺丝技术是制备纳米纤维膜的一种常见方法,下面将详细介绍静电纺丝技术制备纳米纤维膜的原理、优势和应用。
一、静电纺丝技术的原理静电纺丝技术又称为电纺法、纺织电晕法等,是一种制备高分子材料纳米纤维膜的方法。
该技术使用高压电场使稀溶液产生强烈的电荷,经过过度拉伸后会产生电极化、沉积和电晕等现象,最终将溶液转变为具有纳米级直径的纤维。
静电纺丝技术的制备过程主要分为三个步骤:①将高分子溶解于有机溶剂中,制备出高分子稀溶液;②通过静电势场,将稀溶液产生电极化和增加表面能;③将带电的液滴通过冷凝作用凝聚成为纳米纤维膜。
二、静电纺丝技术的优势(1)高纳米纤维膜产量:静电纺丝技术可以同时制备多个纳米纤维膜,可大幅提高产量。
(2)低成本、高效率:静电纺丝技术制备的纳米纤维膜采用的有机溶剂可以再生利用,不仅成本低,而且制备速度非常快。
(3)纳米纤维膜直径可调:可以通过调节静电场、流量、距离和喷嘴的直径等参数,控制纳米纤维膜的大小,进一步优化纳米纤维膜的性质。
三、静电纺丝技术的应用(1)纳米滤膜:静电纺丝技术可以制备出高效纳米滤膜,例如空气过滤器和水处理过滤器等。
(2)纳米材料:纳米纤维膜可以用于制备纳米材料,例如非常完美的是一簇具有纤维维度的SiO2微晶。
(3)医用纱线:静电纺丝技术可以制备含有药物的医用纱线,用于缓释药物,使药物更加高效和准确。
总之,静电纺丝技术作为制备纳米纤维膜的一种常见方法,具有优越性能,并有着广泛的应用前景。
在未来的生产和科研中,这种技术将大大促进纳米材料的发展和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电纺制备PVDF纳米纤维膜的应用
随着人们对环境保护和工业发展的追求,静电纺制备PVDF纳米纤维膜已经成为一种非常受欢迎的方法。
它具有许多优点,例如优异的机械强度、化学稳定性、生物相容性和导电性等。
PVDF纳米纤维膜广泛应用于许多领域,如生物医药、能源存储、环境保护、纳米传感器和电子器件等。
本文将就PVDF纳米纤维膜的制备方法、性质和应用进行综述。
制备方法
静电纺制备PVDF纳米纤维膜是一种简单、有效的方法,该方法通过静电力使高分子溶液喷雾成纳米级的液滴,形成纤维膜。
PVDF是一种具有极性和非极性区域的高分子,静电纺制备PVDF纳米纤维膜在制备时需要使用低描能溶剂,如N,N-二甲基甲酰胺(DMF)和二甲基亚硫脲(DMSO),以保证纤维膜的形成。
1. PVDF高分子溶解。
将PVDF高分子加入低描能溶剂(如DMF或DMSO)中混合,并超声混合,以使其溶解。
2. 高分子溶液准备。
将被溶解的PVDF高分子溶液过滤以消除杂质并消除空气泡。
3. 静电纺制备PVDF纳米纤维膜。
将高分子溶液装入静电纺丝机中,通过调节静电场强度、注射速率和静电图形来获得所需的纤维。
4. 收集纤维膜。
将纤维膜收集,并用乙醇和水溶液或DMSO来除去残留的溶剂,然后通过真空干燥或空气干燥进行干燥。
性质
PVDF纳米纤维膜具有许多优良的性质,如机械强度高、柔韧性好、化学稳定性好、抗紫外线和生物相容性高等。
由于其极性和非极性区域分布均匀、空气穿透性低、化学稳定性好,因此具有很强的过滤、分离、吸附和电化学催化性能。
同时,其导电性使其在电子器件和能源存储中具有优异的应用前景。
应用
PVDF纳米纤维膜已经在许多领域得到了广泛的应用,如生物医药、能源存储、环境保护、纳米传感器和电子器件等。
在环境保护领域,PVDF纳米纤维膜可用于制备空气净化器和水处理器等方面,其优异的过滤效果和良好的耐蚀性能为其提供了广泛的应用前景。
在纳米传感器和电子器件领域,PVDF纳米纤维膜的导电性使其成为一种非常理想的应用材料,例如制备燃料电池和超级电容器等方面。
总之,静电纺制备PVDF纳米纤维膜具有许多优点,其多样化应用领域和广泛的应用前景预示着其成为未来材料研究的重要领域之一。