高中数学必修三:概率与统计
高中数学必修三 第三章 概率 第1节 事件与概率

练习:一个盒子中装有 4 个完全相同的球,分别标有号码 1,2,3,5,从中任取两 球,然后不放回. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出“取出的两球上的数字之和是 6”这一事件所包含的基本事件.
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然 发生某种结果的现象.
不可能现 在一定条件下 不可能发生某种结果的现象.
象
在相同的条件下多次观察同一现象,每次观察到
随机现象 的结果 不一定 相同,事先很难预料哪一种
结果会出现的现象.
2.试验 把观察随机现象或为了某种目的而进行的实验统称为试验,把
典型例题:
例 1:判断下列现象是必然现象还是随机现象: (1)掷一枚质地均匀的骰子出现的点数; (2)行人在十字路口看到的交通信号灯的颜色; (3)在 10 个同类产品中,有 8 个正品、2 个次品,从中任意抽出 2 个检验的结果.
[精解详析] (1)掷一枚质地均匀的骰子其点数有可能出现 1~6 点,不能确定, 因此是随机现象. (2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有 可能是绿色,故是随机现象. (3)抽出的 2 个产品中有可能全部是正品,也有可能是一个正品一个次品,还有 可能是两个次品,故此现象为随机现象.
件是( )
A.4 个都是正品
B.至少有 1 个是次品
C.4 个都是次品
D.至少有 2 个是正品
解析:A、B 为随机事件,C 为不可能事件,只有 D 为必然事件.答案:D
高中数学人教A版必修3《概率与统计》中的高考热点问题

上一页
图2
返回首页
下一页
高三一轮总复习
(1)求频率分布直方图中 a 的值; (2)估计该企业的职工对该部门评分不低于 80 的概率; (3)从评分在[40,60)的受访职工中,随机抽取 2 人,求此 2 人的评分都在[40,50) 的概率. [规范解答] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以 a =0.006.3 分 (2)由所给频率分布直方图知,50 名受访职工评分不低于 80 的频率为(0.022 +0.018)×10=0.4,所以该企业职工对该部门评分不低于 80 的概率的估计值为 0.4.6 分
上一页
返回首页
下一页
高三一轮总复习
[规律方法] 1.本题(1)中,指针连续地变化,是几何概型,第(2)问是顾客获 得优惠券的各种可能,是有限的可以一一列举的离散问题,满足古典概型.
2.题目以“市场销售手段”为背景,认真审题,实现知识迁移,恰当选择 概型是解题的关键.
上一页
返回首页
下一页
高三一轮总复习
下一页
高三一轮总复习
[温馨提示] 1.本题的易失分点: (1)不能利用频率分布直方图的频率求出 a 值. (2)求错评分落在[50,60),[40,50)间的人数. (3)没有指出基本事件总数与事件 M 包含的基本事件个数,或者只指出事件 个数,没有一一列举出 10 个基本事件及事件 M 包含的基本事件,导致扣 3 分或 2 分.
18
30
总计
36
24
60
2分
在患“三高”疾病人群中抽 9 人,则抽取比例为396=14,
所以女性应该抽取 12×14=3(人).5 分
上一页
高中必修三数学统计教案

高中必修三数学统计教案
主题:统计学概述
目标:学生能够了解统计学的基本概念和应用,并掌握一些基本的统计方法。
一、引入
通过实例引入统计学的概念,让学生了解统计学在日常生活中的重要性。
二、概念介绍
1.统计学的定义和作用:统计学是研究数据收集、整理、分析和解释的一门学科,是现代科学和社会科学中不可或缺的工具。
2.统计学的基本概念:总体、样本、抽样、数据等。
三、常用统计方法
1.描述统计方法:平均数、中位数、众数等。
2.概率统计方法:频率分布、概率分布、期望值等。
3.推断统计方法:参数估计、假设检验等。
四、练习
1.实例分析:通过实例让学生掌握如何应用统计方法进行数据分析。
2.练习题:让学生做一些实践练习,巩固所学的统计方法。
五、总结
总结本节课的内容,强调统计学的重要性,并展望后续学习内容。
六、作业
布置相关作业,让学生进一步巩固所学知识。
七、扩展
介绍一些统计学在现代科学研究和社会应用中的具体案例,激发学生对统计学的兴趣和好奇心。
注:此为一份简单的高中必修三数学统计教案范本,具体教学内容和方法可根据教学需求进行调整和改进。
高中数学选择性必修三 概率统计

概率统计通过上节课的学习,我们已经知道分布列实际是一种函数,确切的说是一种离散型的函数,所谓的分布列的表格就是列表法表示函数.比如我们可以类似于连续函数做出离散型函数的函数图象.如上一讲中的例6,我们知道它的分布列为:X0 1 2 3 4 5P136 112 19 13 19 13于是,我们可以根据分布列画出函数的图象.考点1:二点分布1.如果随机变量X 的分布列为X 1 0P p 1p -其中01p <<,则称离散型随机变量X 服从参数为p 的二点分布.二点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.【举例】两点分布的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等,都可以用二点分布来研究.老师可以以下边的例子讲 解两点分布,让学生从直观上理解二点分布.屋子里关着一只鸟,这只鸟要从窗户飞出去,屋子里有三扇窗户,只有一个是开着的,剩下两个有玻璃,不过这只鸟的眼神不是特别好,看不清哪个是开着的.于是,他会随机的挑选一个撞过去,那么成功率就是13.随机变量X 为这只鸟从窗户飞出去的结果,成功定义为1,失败定义为0,则X 的分布列满足二点分布.X 1 0P1323知识点睛543210PX2.二点分布的期望与方差:若随机变量X 服从参数为p 的二点分布,则()()101E X p p p =⨯+⨯-=;()()()()()221011D X p p p p p p =-⋅+-⋅-=-【教师备案】二点分布严格定义是01-分布,不过实际上二点分布的模型可以应用于自然界所有“只有两种情况”的情况.比如:我们高考考北大,我们可以把考上定义为1,没考上定义为0,这样就可以写出一个二点分布的分布列.我们可以以这个分布列来估计考上北大的可能性,进而决定我们如何报考.这里会有一个比较有意思的问题:在什么情况下我们会比较纠结呢?直观的看,假设我们考上的概率是40%,考不上的概率是60%,我们就会侧重于不报考;如果考上的概率60%,考不上的概率是40%的话,我们就会考虑报考.但是如果我们发现考上的概率是50%的话,就彻底纠结了.这个时候其实我们最靠谱的办法是掷硬币……从数学的角度分析,这件事非常简单,我们知道二点分布的方差是()1p p -,由均值不等式很容易得出当12p =的时候,方差最大,也就是结果的波动性最大.此时我们是最没有办法估计结果的.【例1】 二点分布从装有6只白球和4只红球的口袋中任取1只球,用X 表示“取到的白球个数”,求随机变量X 的分布列及期望与方差.【解析】 由题意知()420645P X ===+,()631645P X ===+,故随机变量X 的分布列为()205P X ==,()315P X ==,概率分布表如下:X 0 1 P2535()35E X =,()2365525D X =⨯=.考点2:超几何分布1.超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn N P X m --==(01m l =,,,,l 为n 和M 中较小的一个 ).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.2.超几何分布的期望与方差:若离散型随机变量X 服从参数为N M n ,,的超几何分布, 则()nME X N=;()11nM M N n D X N N N -⎛⎫=- ⎪-⎝⎭. 【举例】可以继续延续之前那个鸟的例子,假设现在屋子里有100扇窗户,其中有10扇窗户是打开的,现在鸟不傻知识点睛经典精讲了,不过眼神依然不好.他现在决定尝试20次(否则可能撞的次数太多给撞死了),并且撞过的窗户不再去撞了,记录结果,统计一下有多少次能出去.这就是超几何分布,从模型角度讲,超几何分布就是“无放回”的抽取.超几何分布的典型例子就是生物学上的标记重捕法.先标记种群内的一部分个体,放回后再次捕捉,统计含有标记的数量,来估计总数,这实际是利用了超几何分布的期望的直观意义.【教师备案】老师在讲完超几何分布后,就可以让学生做例2,例2主要是让学生写超几何分布的分布列,关键是让学生从题目上就可以看出是超几何分布,然后根据超几何分布的概率公式就可以很快写出分布列;然后老师就可以继续讲超几何分布的期望与方差,对于超几何的期望和方差,老师可以只介绍期望公式,方差的公式太麻烦了,所以不建议给学生讲解,而且期望的公式推导过程也不要求,只需让学生记住就行了.讲完期望公式后,就可以让学生做例3,例3主要是套公式,学生会发现,对于超几何分布求期望用公式也非常快.【例2】 求超几何分布的分布列一个口袋内有4个不同的红球,6个不同的白球,从中任取4个球, ⑴ 求其中红球个数的分布列 ⑵ 求其中白球个数的分布列.【追问】从红球的分布列和白球的分布列你能看出X 和Y 的取值之间有什么关系?【解析】 ⑴ 记X 表示“取出4个球中红球的个数”,则X 服从参数为1044,,的超几何分布.∴0446410C C 1(0)C 14P X ⋅===,1346410C C 8(1)C 21P X ⋅===,2246410C C 3(2)C 7P X ⋅===, 3146410C C 4(3)C 35P X ⋅===,4046410C C 1(4)C 210P X ⋅===. ∴X 的分布列为:X0 1 2 3 4 P114821 37 435 1210⑵ 记Y 表示“取出4个球中白球的个数”,则Y 服从参数为1064,,的超几何分布.∴4046410C C 1(0)C 210P Y ⋅===,3146410C C 4(1)C 35P Y ⋅===, 2246410C C 3(2)C 7P Y ⋅===,1346410C C 8(3)C 21P Y ⋅===,0446410C C 1(4)C 14P Y ⋅===, ∴Y 的分布列为: Y0 1 2 3 4 P1210435 37 821 114【追问】4X Y +=,故(0)(4)(1)(3)P X P Y P X P Y ======,,.提高班学案1【铺1】 某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的6题,规定每次考试经典精讲都从备选题中随机抽出5题进行测试,求他答对题数的期望.【解析】 设答对的试题数为ξ,则ξ服从参数为1065,,的超几何分布,因此由公式知他答对题数的期望为()56310E ξ⨯==.【例3】 求超几何分布的期望一个袋中装有大小相同的球,其中红球5个、黑球3个,现在从中随机摸出3个球. ⑴求摸到红球个数ξ的概率分布列和数学期望; ⑵求摸到黑球个数η的概率分布列和数学期望.【解析】 ⑴ 摸到红球的个数ξ为离散型随机变量,且ξ服从8N =,5M =,3n =的超几何分布,ξ可能取值为0123,,,.于是有()35338C C C m mP m ξ-==. ()035338C C 10C 56P ξ===,()125338C C 151C 56P ξ===, ()215338C C 152C 28P ξ===,()305338C C 53C 28P ξ===. 所以摸到红球个数的分布列为ξ 0 1 23 P156 **** **** 528 ∴()88E ξ==.⑵ 摸到黑球的个数η为离散型随机变量,且η服从8N =,3M =,3n =的超几何分布,η可能取值为0123,,,.于是有()33538C C C m m P m η-==. ()033538C C 50C 28P η===,()123538C C 151C 28P η===, ()213538C C 152C 56P η===,()303538C C 13C 56P η===. η 0 1 23 P528 1528 1556 156 ∴()88E η==.【点评】 解题的关键是能够判断所给问题属于超几何分布模型.尖子班学案1【拓2】 盒中有5个球,其中3个白球,2个黑球,从中任取两个球,求取出白球个数的期望和方差. 【解析】 设取出白球个数为ξ,则ξ服从参数为532,,的超几何分布,ξ的可能取值为012,,.因此,()32 1.25E ξ⨯==,()()()()2221330 1.21 1.22 1.20.3610510D ξ=-⨯+-⨯+-⨯=.目标班学案1【拓3】 某人可从一个内有2张100元,3张50元的袋子里任取2张,求他获得钱数的期望值. 【解析】 方法一:设他取得100元的张数为X ,则X 服从参数为522,,的超几何分布.021120232323222555C C C C C C 361(0)(1)(2)C 10C 10C 10P X P X P X =========,,. 012X =,,时他所获得的钱数分别为100150200,,.因此他获得钱数的期望值为:100(0)150(1)200(2)140P X P X P X ⨯=+⨯=+⨯==元.方法二:设他取得100元的张数为X ,则X 服从参数为522,,的超几何分布.由公式知()22455E X ⨯==.因此他获得钱数的期望值为:4410050214055⎛⎫⨯+⨯-= ⎪⎝⎭元.考点3:二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率p 相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q-==,其中0,1,2,,k n =.于是得到X 的分布列X 01… k… nP00C nn p q111C n n p q- …C k k n kn p q- …C n n n p q称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .3.二项分布的期望与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D X npq =(1)q p =-.【教师备案】学生没学过二项式定理,所以期望和方差的推导了解即可. 【教师备案】设离散型随机变量X 服从参数为n 和p 的二项分布,由X 的分布列()C k k n kn P X k p q-==,0k =,1,2,…,n 和数学期望的定义式得到 00111222()0C 1C 2C C C n n n k k n kn n n n n n n E X p q p q p qk p qn p q ---=⨯+⨯+⨯++⨯++⨯00111211(1)(1)1101111(C C C C )n n k k n k n n n n n n np p q p q p q pq -------------=⋅+++⋅++ 1()n np p q np -=+=,所以()E X np =. ∴()()220202C(1)C C (1)C nnnnii n ii in ii in ii i n i nnnn i i i i E Xi p qi i p qi p qi i p q E X ----======-+=-+∑∑∑∑()222(2)(2)22(1)Cni i n i n i n n pp qE X ------==-+∑()22(2)2(1)Cn j j n j n j n n pp q E X ----==-+∑()()2222(1)()(1)(1)n n n p p q E X n n p E X n n p np -=-++=-+=-+,知识点睛∴()()()22222()(1)()D X E X E X n n p np np np np npq =-=-+-=-=. 故()D X npq =.【举例】老师可以以二点分布知识点睛中的【举例】继续引申,从而让学生更直观的理解二项分布.现在假设这只鸟比较傻,每次都记不住上次的结果,那么这只鸟就可能需要不停的重复进行撞玻璃的操作,每次的成功率都是13.这种独立重复试验就可以用二项分布的模型来研究.从直观意义上来讲,二项分布可以看做是多个二点分布重复出现的结果.从模型角度讲,二项分布实际是“有放回”抽取的模型.对于二项分布的期望和方差,我们一样可以有直观意义.二项分布的期望指的是平均成功次数,而方差是随着次数的增多而增加,相比于二点分布,在同样的试验次数下,二项分布也是在12p =时方差最大,也就是结果最不稳定.【教师备案】老师在讲完二项分布后,就可以让学生做例4,例4主要是让学生写二项分布的分布列,关键是让学生从题目上就可以看出是二项分布,然后根据二项分布的概率公式就可以很快写出二项分布列;然后老师就可以继续讲二项分布的期望与方差,讲完期望与方差公式后,就可以让学生做例5,例5主要是套公式,学生会发现,对于二项分布求期望和方差用公式非常快,这时就不需要用上一讲讲的期望和方差最原始的公式了.提高班学案2【铺1】 某一学校心理咨询中心服务电话接通率为34,某班3名同学商定明天分别就同一问题询问 该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列. 【解析】 3个人各做一次试验,看成三次独立重复实验,拨通这一电话的人数即为事件的发生次数ξ,故符合二项分布.由题意可知:3~34B ξ⎛⎫ ⎪⎝⎭,,所以3331()C 44kkk P k ξ-⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭,0k =,1,2,3.ξ的分布列为ξ 0 1 2 3 P16496427642764【例4】 求二项分布的分布列一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.设ξ为这名学生在途中遇到的红灯次数,求ξ的分布列.【解析】 将遇到每个交通岗看做一次试验,遇到红灯的概率都是13,且每次试验结果相互独立,故1~63B ξ⎛⎫ ⎪⎝⎭,.所以ξ的分布为6612()C (0126)33k kk P k k ξ-⎛⎫⎛⎫==⋅⋅= ⎪ ⎪⎝⎭⎝⎭,,,,. ξ0 1 2 3 4 5 6 P64729 64243 80243 160729 20243 4243 1729提高班学案3经典精讲【铺1】 设()~B n p ξ,且() 2.4E ξ=,() 1.44D ξ=,试求n p ,的值. 【解析】 因为()~B n p ξ,,所以()E np ξ=,()()1D npq np p ξ==-由题意可得方程组 ()2.41 1.44np np p =⎧⎪⎨-=⎪⎩,解得0.46.p n =⎧⎨=⎩,【例5】求二项分布的期望某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. ⑴ 任选1名下岗人员,求该人参加过培训的概率;⑵ 任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.【解析】 ⑴ 任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. 任选1名下岗人员,该人没有参加过培训的概率是: 1()()()0.40.250.1P P A B P A P B =⋅=⋅=⨯=.所以该人参加过培训的概率是21110.10.9P P =-=-=.⑵ 因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,.33()C 0.90.1k k k P k ξ-==⨯⨯,0123k =,,,.3(0)0.10.001P ξ===;2(1)30.90.10.027P ξ==⨯⨯=; 2(2)30.90.10.243P ξ==⨯⨯=;3(3)0.90.729P ξ===;ξ 012 3 P0.001 0.0270.243 0.729∴ξ的期望是30.9 2.7E ξ=⨯=.尖子班学案2【拓2】 某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,计算:⑴ 抽出的10件产品中平均有多少件正品;⑵ 计算抽出的10件产品中正品数的方差和标准差.【解析】 用X 表示抽得的正品数,由于是有放回地随机抽样,所以X 服从二项分布()100.98B ,. ⑴ 利用二项分布的期望公式得到()100.989.8E X =⨯=.平均有9.8件正品; ⑵ X 的方差()100.980.020.196D X =⨯⨯=,标准差()0.196D X σ.目标班学案2【拓3】 一份数学模拟试卷由25个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每题选得正确答案得4分,不做选择或选错不得分,满分100分.张强选对任一题的概率为0.8,求他在这次数学测验中的成绩的期望. 【解析】 张强在数学测验中选择了正确答案的选择题的个数服从二项分布()~250.8X B ,,其数学期望有简便算法.设张强做对选择题的个数为X ,则()~250.8X B ,, 所以()250.820E X np ==⨯=.因为答对每题得4分,所以张强在这次数学测验中的成绩为4X ,其成绩的期望值为()()4442080E X E X ==⨯=.【点评】 本题中,利用二项分布的均值公式()E X np =快速地求出所求的期望值,当n 的值越大时,这一公式更加显得威力无比,因此我们要熟练掌握这一公式,并能灵活地运用它,在运用时,需要注意的是,只有随机变量X 服从二项分布时,才能运用该公式来求均值.考点4:综合运用【教师备案】老师在讲完上一讲的离散型随机变量和本讲前边的典型分布以后,学生对离散型随机变量都有了很明确的认识,所以这时候就可以让学生做一下下边的综合题,让学生再巩固一下离散型随机变量的分布列、期望和方差.【例6】 综合运用甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23. ⑴ 记甲击中目标的次数为ξ,求ξ的概率分布及数学期望()E ξ与方差()D ξ; ⑵ 求乙至多击中目标2次的概率;⑶ 求甲恰好比乙多击中目标2次的概率.【解析】 ⑴ ()303110C 28P ξ⎛⎫=== ⎪⎝⎭;()313131C 28P ξ⎛⎫=== ⎪⎝⎭;()323132C 28P ξ⎛⎫=== ⎪⎝⎭;()333113C 28P ξ⎛⎫=== ⎪⎝⎭.ξ的概率分布如下表:ξ 0 1 23 P18 38 38 18 ()13310123 1.58888E ξ=⨯+⨯+⨯+⨯=(或()13 1.52E ξ=⨯=)()1133224D ξ=⨯⨯=;⑵ 乙至多击中目标2次的概率为3332191C 327⎛⎫-= ⎪⎝⎭.⑶ 设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件1B ,甲恰击中目标3次且乙恰击中目标1次为事件2B ,则12A B B =+,1B 、2B 为互斥事件.()()()12311218278924P A P B P B =+=⋅+⋅=.所以甲恰好比乙多击中目标2次的概率为124.尖子班学案3【拓2】 在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求: ⑴ 甲、乙两单位的演出序号至少有一个为奇数的概率; ⑵ 甲、乙两单位之间的演出单位个数ξ的分布列与期望. 【解析】 只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数.⑴ 设A 表示“甲、乙的演出序号至少有一个为奇数”,则A 表示“甲、乙的演出序号均为偶数”,由古典概经典精讲型的概率计算公式得()2326C 14()111C 55P A P A =-=-=-=.⑵ ξ的所有可能值为0,1,2,3,4,且()26510C 3P ξ===,()26441C 15P ξ===,()26312C 5P ξ===,()26223C 15P ξ===,()26114C 15P ξ===从而知ξ有分布列 ξ 0 12 3 4 P13 415 15215 115所以,()14121401234315515153E ξ=⨯+⨯+⨯+⨯+⨯=.目标班学案3【拓3】 甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s ,若他们独立的射击两次,设甲、乙命中10环的次数分别为X 、Y ,则4()3E Y =.ξ为甲与乙命中10环的差的绝对值.求ξ的期望.【解析】 由已知可得~(20.5)~(2)X B Y B s ,,,,故4()23E Y s ==,所以23s =.||X Y ξ=-,ξ的取值可以是012,,.(0)()(0)(1)(2)P P X Y P X Y P X Y P X Y ξ======+==+==甲、乙两人命中10环的次数都是0次的概率是22111(0)2336P X Y ⎛⎫⎛⎫===⨯= ⎪ ⎪⎝⎭⎝⎭,甲、乙两人命中10环的次数都是1次的概率是112211122(1)C C 22339P X Y ⎛⎫⎛⎫===⋅⋅⋅⋅= ⎪⎪⎝⎭⎝⎭, 甲、乙两人命中10环的次数都是2次的概率是222222121(2)C C 239P X Y ⎛⎫⎛⎫===⋅⋅= ⎪ ⎪⎝⎭⎝⎭; 所以12113(0)369936P ξ==++=; (2)(||2)(02)(20)(0)(2)(2)(0)P P X Y P X Y P X Y P X P Y P X P Y ξ==-====+=====+==,,甲命中10环的次数是2且乙命中10环的次数是0次的概率是:222022111(2)(0)C C 2336P X P Y ⎛⎫⎛⎫===⋅=⎪ ⎪⎝⎭⎝⎭, 甲命中10环的次数是0且乙命中10环的次数是2次的概率是:220222121(0)(2)C C 239P X P Y ⎛⎫⎛⎫===⋅= ⎪ ⎪⎝⎭⎝⎭;所以115(2)36936P ξ==+=,因此1(1)1(0)(2)2P P P ξξξ==-=-==ξ的期望是157()22369E ξ=+⋅=.【例7】 综合运用袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等. ⑴ 求取出的3个小球上的数字互不相同的概率;⑵ 用X 表示取出的3个小球上所标的最大数字,求随机变量X 的分布列和期望.【追问】用Y 表示取出的3个小球上所标的最小数字,Y 的分布列与期望是否可以直接看出来?【解析】 ⑴ “一次取出的3个小球上的数字互不相同”的事件记为A ,则31114333312C C C C 27()C 55P A ⋅⋅⋅==. ⑵ 由题意X 所有可能的取值为1,2,3,4.31211(1)C 220P X ===;1221333333312C C C C C 19(2)C 220P X ⋅+⋅+===; 2112363633312C C C C C 6416(3)C 22055P X ⋅+⋅+====; 2112393933312C C C C C 13634(4)C 22055P X ⋅+⋅+====. 所以随机变量X 的分布列为X1 2 3 4P1220 19220 1655 3455随机变量X 的期望为()11916341551234220220555544E X =⨯+⨯+⨯+⨯=. 【追问】(4)(1)(3)(2)(2)(3)(1)(4)P Y P X P Y P X P Y P X P Y P X ============,,,故Y 的概率分布与上述X 的分布正好有关系,如直接由X 的分布列得到:X 1 2 3 4P3455 1655 19220 1220且()()5E X E Y +=.从而15565()54444E Y =-=.设篮球队A 与B 进行比赛,每场比赛均有一胜队,若有一队胜4场,则比赛宣告结束,假定A 、B 在每场比赛中获胜的概率都是12,需要比赛场数的期望是__________.【解析】 5.8125 【思路】随机变量ξ表示比赛场数,根据题意:“有一队胜4场比赛才宣告结束”,故ξ的取值应是4,5,6,7,把一次比赛看作一次试验,故n 场(4567)n =,,,比赛视为n 次独立重复试验.4ξ=表示甲胜4场或乙胜4场,且两两互斥.所以44411(4)2C 28P ξ⎛⎫=== ⎪⎝⎭.5ξ=表示甲队第5场胜且前4场中胜3场,或乙队第5场胜且前4场中胜3场.所以44334411111(5)C C 22224P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.类似地,55335511115(6)C C 222216P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,66336611115(7)C C 222216P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.11比赛场数ξ的分布列为:ξ4 5 6 7 P18 14 516 516所以()11557593456713 5.812584161641616E ξ=⨯+⨯+⨯+⨯=+⨯==.这就是说,在比赛双方实力相当的情况下,平均进行6场比赛才能决出胜负.【错因分析】本题若审题不严,对比赛规则搞不清楚,弄不清随机变量的取值,则会出错.【演练1】从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,则随机变量ξ的方差为( )A .65B .1825C .625D .18125【解析】 B ;2~35B ξ⎛⎫ ⎪⎝⎭,,∴()231835525D ξ=⨯⨯=.【演练2】设有产品12件,其中有次品3件,正品9件,现从中随机抽取3件,求抽得次品件数ξ的分布列. 【解析】 从12件产品中随机抽取3件,抽得次品件数ξ是一个离散型的随机变量,它的取值可能是0、1、2、3.依题意,随机变量ξ(次品件数)服从超几何分布,所以,从12件产品中抽取3件,其中有k 件次品的概率为339312C C ()(0123)C k kP k k ξ-⋅===,,,. ∴0339312C C 21(0)C 55P ξ⋅===,1239312C C 27(1)C 55P ξ⋅===, ∴2139312C C 27(2)C 220P ξ⋅===,3039312C C 1(3)C 220P ξ⋅===, ∴ξ的分布列为ξ0 1 2 3 P2155 2755 27220 1220【演练3】设在15个同类型的零件中有两个是次品,每次任取1个,共取3次,并且每次取出不再放回,若以ξ表示取出次品的个数,求ξ的期望()E ξ和方差()D ξ.【解析】 ()313315C 220C 35P ξ===,()12213315C C 121C 35P ξ===,()21213315C C 12C 35P ξ===.故ξ的分布列是:ξ 01 2 P22351235 135实战演练12()2212120123535355E ξ=⨯+⨯+⨯=,(ξ满足参数为1523,,的超几何分布,故232()155E ξ⨯==)()2222222122152012535535535175D ξ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【演练4】有一批数量很大的商品次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求()E ξ,()D ξ.【解析】 因为商品数量相当大,抽200件商品可以看做200次独立重复试验,所以()~2001%B ξ,,因为()E np ξ=,()D npq ξ=,这里200n =,1%p =,99%q =,所以,()2001%2E ξ=⨯=,()2001%99% 1.98D ξ=⨯⨯=.【演练5】甲、乙、丙3人投篮,投进的概率分别是13,25,12.⑴ 现3人各投篮1次,求3人都没有投进的概率;⑵ 用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望()E ξ. 【解析】 ⑴ 设A 表示事件“3人各投篮1次,3人都没有投进”,1B 表示“甲投进”,2B 表示事件“乙投进”,3B 表示事件“丙投进”,则()()()()12312111113525P A P B P B P B ⎛⎫⎛⎫⎛⎫=⋅⋅=--⋅-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.⑵ ξ的可能取值为0123,,,,则()332705125P ξ⎛⎫=== ⎪⎝⎭,()121323541C 55125P ξ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭; ()212323362C 55125P ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()333283C 5125P ξ⎛⎫==⋅= ⎪⎝⎭. ξ分布列为ξ的数学期望为()0123 1.2125125125125E ξ=⨯+⨯+⨯+⨯=.(或26()355E ξ=⨯=)大千世界:排球单循环赛,南方球队比北方球队多9支,南方球队总得分是北方球队的9倍. 求证:冠军是一支南方球队.(注:每场比赛获胜队得1分,负队得0分) 【解析】 设北方球队共有x 支,则南方球队有9x +支,所有球队总得分为229(29)(28)C (29)(4)2x x x x x +++==++.由题意,南方球队总得分为9(29)(4)10x x ++,北方球队总得分为1(29)(4)10x x ++,南方球队内部比赛总得分29C x +,北方球队内部比赛总得分为2(1)C 2xx x -=, 由于北方球队总得分不少于北方球队内部比赛总得分,故 (29)(4)(1)02x x x x ++--≥.111693x +<=.13因为1(29)(4)10x x ++为整数,所以6x =或8x =. ①当6x =时,所有球队总得分为229C (29)(4)210x x x +=++=.南方球队内部比赛总得分9(29)(4)18910x x ++=,北方球队总得分为21018921-=.南方球队内部比赛总得分29C 105x +=,北方球队内部比赛总得分为26C 15=. 北方胜南方得分21156-=,北方球队最高得分5611+=,因为1115165189⨯=<,所以南方球队中至少有一支得分超过11分.故冠军在南方球队中.②当8x =时,所有球队总得分为229C (29)(4)300x x x +=++=,南方球队总得分为9(29)(4)27010x x ++=,北方球队总得分为30027030-=.南方球队内部比赛总得分29C 136x +=,北方球队内部比赛总得分28C 28=.北方胜南方得分30282-=,北方球队最高得分729+=,因为917153270⨯=<,所以南方球队中至少有一支得分超过9分,故冠军在南方球队中. 综上所述,冠军是一支南方球队.。
高中数学必修三第12章-概率初步-知识点

小初高个性化辅导,助你提升学习力! 1 高中数学必修3-第12章:概率初步-知识点
1、①概率:事件发生的 可能性大小 ;②随机现象:具有 不确定性 的现象;③随机试验:可随意重复 的实验。
2、样本空间:一个随机实验中所有可能出现的结果 所组成的集合 ,用Ω 表示。
其中的元素称为 基本事件 或者 样本点 ,事件是样本空间的 子集 。
3、常见的三种事件:①必然发生的 必然 事件,②必然不发生的不可能 事件,③可能发生也可能不发生的 不确定 事件,也叫 随机 事件。
4、古典概率模型:①包含 有限个 基本事件,②每一个事件的发生都 等可能 。
古典概率中,随机事件A 发生的概率P (A )= 总个数样本空间中基本事件的中的基本事件个数
事件A 。
5、事件的相互关系:若事件A 发生,事件B 必发生,则A 是B 的子集 ,表示为
6
7
8
9
10
11
件是否相互独立。
12。
统计与概率的关系

统计与概率的关系统计与概率是数学中两个重要的概念,它们有着紧密的关系。
统计是通过对已有的数据进行收集、整理和分析,从中得出结论或推断的一门学科。
而概率则是用来描述事件发生的可能性的一种数学工具。
在实际生活和科学研究中,统计与概率常常相互依存,相互补充,共同帮助我们理解和解决问题。
统计与概率之间的关系体现在统计学中的概率论部分。
概率论是研究随机现象的数学理论,它是统计学的理论基础之一。
通过概率论,我们可以计算事件发生的可能性,从而对未知的事物进行预测和推断。
例如,我们可以通过概率论来计算掷骰子时每个点数出现的概率,或者计算在一批产品中出现次品的概率。
这些概率计算是统计学中常用的方法,可以帮助我们做出合理的决策。
统计与概率之间的关系还体现在统计推断中。
统计推断是通过对样本数据进行分析和推断,来对总体特征进行估计的方法。
在进行统计推断时,我们需要根据样本数据的分布情况,结合概率论的知识,对总体参数进行估计。
例如,在进行调查时,我们可以通过对一部分人的调查结果进行统计推断,来估计整个人群的特征。
这其中就涉及到了概率论中的概率分布和抽样分布等知识。
统计与概率的关系还可以从实际问题的解决中得到体现。
在现实生活中,我们经常需要通过统计和概率来解决问题。
例如,在医学研究中,我们可以通过统计方法来分析一种药物的疗效,或者预测某种疾病的发生概率。
在金融领域,我们可以通过统计方法来分析股票的涨跌概率,或者估计某种投资产品的风险。
在工程领域,我们可以通过统计方法来分析产品的可靠性,或者预测设备的寿命。
这些实际问题的解决都离不开统计与概率的知识和方法。
统计与概率是数学中两个紧密相关的学科,它们相互依存,相互补充,共同帮助我们理解和解决问题。
统计通过对已有数据的收集和分析,可以得出结论和推断;概率则是描述事件发生可能性的数学工具。
统计与概率在统计学中的概率论部分以及统计推断中起着重要的作用,并在实际问题的解决中得到广泛应用。
人教A版高中数学必修三随机事件的概率概率统计文字素材

概率统计1.必然事件 P(A)=1,不可能事件 P(A)=0,随机事件的定义 0<P(A)<1。
2.等可能事件的概率:(古典概率)P(A)=nm 理解这里m 、n的意义。
互斥事件(A 、B 互斥,即事件A 、B 不可能同时发生,这时P(A •B)=0)P(A+B)=P (A )+ P(B) 对立事件(A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生。
这时P(A •B)=0)P (A )+ P(B)=1独立事件:(事件A 、B 的发生相互独立,互不影响)P(A •B)=P(A) • P(B)独立重复事件(贝努里概型)P n (K)=C n k p k (1-p)k 表示事件A 在n 次独立重复试验中恰好发生了.....k .次.的概率。
P 为在一次独立重复试验中事件A 发生的概率。
特殊:令k=0 得:在n 次独立重复试验中,事件A 没有发生的概率为........P n(0)=C n 0p 0(1-p)n=(1-p)n令k=n 得:在n 次独立重复试验中,事件A 全部发生的概率为........P n (n)=C n n p n (1-p)0 =p n3.统计总体、个体、样本、,样本个体、样本容量的定义;抽样方法:1简单随机抽样:包括随机数表法,标签法;2系统抽样 3分层抽样。
样本平均数:∑==+⋯+++=ni i n x n x x x x n x 13211)(1 样本方差:S 2 =n1[(x 1-x )2+(x 2-x )2+ (x 3-x )2+…+(x n -x )2] 样本标准差:s=2S 作用:估计总体的稳定程度理解频率直方图的意义,会用样本估计总体的期望值和方差,用样本频率估计总体分布。
人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修三:概率与统计1.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ).A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,322.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A.300克 B.360千克C.36千克D.30千克3.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A.2,5B.5,5C.5,8D.8,84.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x和y的数据的平均值都分别相等,且值分别为s与t,那么下列说法正确的是( ).A .直线l1和l2一定有公共点(s ,t)B .直线l1和l2相交,但交点不一定是(s ,t)C .必有直线l1∥l2D .直线l1和l2必定重合5..设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是( ).A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 6.对于两个变量之间的相关系数,下列说法中正确的是( ) A .r 越大,相关程度越大 B .()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大 C .1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小 D .以上说法都不对7、.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则( )(A) A x >B x ,sA >sB(B) A x <B x ,sA >sB (C) A x >B x ,sA <sB(D) A x <B x ,sA <sB8.山东采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )19某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为( )(A )7 (B )15 (C )25 (D )3510..样本(12,,,n x x x L )的平均数为x ,样本(12,,m y y y L )的平均数为()y x y ≠,若样本(12,,,n x x x L ,12,,m y y y L )的平均数(1)z ax a y =+-,其中102α<<,则n ,m 的大小关系为( )A .n m < B .n m > C .n m = D .不能确定 11.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法12 .总体有编号为01,02,…,19,20的20个个体组成。
利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A .08B .07C .02D .0113.假设学生在初一和初二数学成绩是线性相关的.若10个学生初一数学分数(x)和初二数学分数(y)如下:初一和初二数学分数间的回归方程为___________.14.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A.31B.41C.21 D. 3215.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( )A. 1 B.21C.31 D.32 16一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出 一球,则取出的两个球同色的概率是( )A.21 B.31 C.41 D.5217现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放 一个球,则K 或S 在盒中的概率是( )A.101 B.53 C.103 D.109 18、甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A318B 418C 518D 61819、从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( )(A )45(B)35(C )25(D)1520 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小..于.该正方形边长的概率为 ( )A.15 B.25 C.35 D.4521.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎨⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18 B.14C.34D.78 22.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C )6π(D )44π- 23..如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π- B .112π- C .2πD .1π24. 在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为( ) A .16B .13C .23D .4525从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )A .x x <甲乙,m 甲>m 乙B .x x <甲乙,m 甲<m 乙C .x x >甲乙,m 甲>m 乙D .x x >甲乙,m 甲<m 乙26. 右图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( ) A .1000N P =B .41000N P =C .1000M P =D .41000M P = 27 .节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A .14B .12C .34D .7828.利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________29.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 30.在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.31 某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是___________24. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______________35.在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是______________。
38.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 39.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有_______条鱼.40、三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 。
41、某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .42、加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ .43、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 。
若要从身高在[ 120 , 130),[130 ,140) ,[140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。
44、 设平顶向量m a = ( m , 1), n b = ( 2 , n ),其中 m , n ∈{1,2,3,4}.(I )请列出有序数组( m ,n )的所有可能结果;(II )记“使得ma ⊥(m a -nb )成立的( m ,n )”为事件A ,求事件A 发生的概率。