高中数学【Word版题库】53平面向量的数量积.pdf

合集下载

平面向量的数量积(带答案)

平面向量的数量积(带答案)

专题二 平面向量的数量积1.向量的夹角(1)定义:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角.(2)范围:设θ是向量a 与b 的夹角,则0°≤θ≤180°.(3)共线与垂直:若θ=0°,则a 与b 同向;若θ=180°,则a 与b 反向;若θ=90°,则a 与b 垂直.2.平面向量的数量积(1)定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.投影向量:向量a 在向量b 上的投影向量为|a |cos θb |b |=(a ·b )b |b |2. (2)坐标表示:若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.3.平面向量数量积的运算律(1)a ·b =b ·a (交换律);(2)λa ·b =λ(a ·b )=a ·(λb )(结合律);(3)(a +b )·c =a ·c +b ·c (分配律).4.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2.(2)(a +b )2=a 2+2a ·b +b 2.(3)(a -b )2=a 2-2a ·b +b 2.考点一 求平面向量数量积【方法总结】平面向量数量积的两种求法(1)若已知向量的模和夹角时,则利用定义法求解,即a ·b =|a ||b |cos<a ,b >.若未知向量的模和夹角时,则可通过向量加法(减法)的三角形法则转化为已知模和夹角的向量的数量积进行求解;(2)若已知向量的坐标时,则利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.若未知向量的坐标时,如已知图形为矩形、正方形、直角梯形、等边三角形、等腰三角形或直角三角形时,则可建立平面直角坐标系求出未知向量的坐标进行求解.【例题选讲】[例1](1)(2018·全国Ⅱ)已知向量a ,b 满足|a|=1,a·b =-1,则a ·(2a -b )=( )A .4B .3C .2D .0答案 B 解析 a·(2a -b )=2|a|2-a·b =2×1-(-1)=3.(2)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( )A .0B .4C .-92D .-172答案 D 解析 由题意得2k -1-4k =0,解得k =-12,即m =⎝⎛⎭⎫-2,-12,所以m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (3)如图,已知非零向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且|AB →-AC →|=23,|AB →+AC →|=26,点D 是△ABC 中边BC 的中点,则AB →·BD →=________.答案 -3 解析 由(AB →|AB →|+AC →|AC →|)·BC →=0得BC →与∠A 的平分线所在的向量垂直,所以AB =AC ,BC →⊥AD →.又|AB →-AC →|=23,所以|CB →|=23,所以|BD →|=3,AB →·BD →=|AB →||BD →|cos(π-B )=AD 2+BD 2·3·(-cos B )=33×(-33)=-3. (4)(2016·天津)如图,已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58B .18C .14D .118答案 B 解析 由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·(12AB →+34AC →)=34AC →2-14AB →·AC →-12AB →2.因为△ABC 是边长为1的等边三角形,所以|AC →|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18. (5)(2018·天津)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为( )A .-15B .-9C .-6D .0答案 C 解析 连接OA .在△ABC 中,BC →=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON→-OM →),∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6.(6)在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC →等于( )A .16B .12C .8D .-4答案 A 解析 以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3).设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,∴t =83,即E ⎝⎛⎭⎫0,83,AE →·BC →=⎝⎛⎭⎫-4,83·(0,6)=16. (7)已知在直角三角形ABC 中,∠ACB =90°,AC =BC =2,点P 是斜边AB 上的中点,则CP →·CB →+CP →·CA→=________.答案 4 解析 由题意可建立如图所示的坐标系.可得A (2,0),B (0,2),P (1,1),C (0,0),则CP →·CB→+CP →·CA →=(1,1)·(0,2)+(1,1)·(2,0)=2+2=4.(8)如图,△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,P 为线段OC 的中点,则AP →·OP→=( )A .1B .116C .14D .-12答案 B 解析 法一:因为△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,所以OC →=12OA →+12OB →,所以OP →=12OC →=14(OA →+OB →),则AP →=OP →-OA →=14OB →-34OA →,所以AP →·OP →=14(OB →-3 OA →)·14(OA →+OB →)=116(OB →2-3OA →2)=116. 法二:以O 为坐标原点,OB →的方向为x 轴正方向,OA →的方向为y 轴正方向建立平面直角坐标系(如图),则A (0,1),B (2,0),C ⎝⎛⎭⎫1,12,P ⎝⎛⎭⎫12,14,所以OP →=⎝⎛⎭⎫12,14,AP →=⎝⎛⎭⎫12,-34,故AP →·OP →=12×12-34×14=116.(9)如图,平行四边形ABCD 中,AB =2,AD =1,A =60°,点M 在AB 边上,且AM =13AB ,则DM →·DB →=________.答案 1 解析 因为DM →=DA →+AM →=DA →+13AB →,DB →=DA →+AB →,所以DM →·DB →=(DA →+13AB →)·(DA →+AB →)=|DA →|2+13|AB →|2+43DA →·AB →=1+43-43AD →·AB →=73-43|AD →|·|AB →|·cos 60°=73-43×1×2×12=1. (10)如图所示,在平面四边形ABCD 中,若AC =3,BD =2,则(AB +DC )·(AC +BD )=________.答案 5 解析 由于AB →=AC →+CB →,DC →=DB →+BC →,所以AB →+DC →=AC →+CB →+DB →+BC →=AC →-BD →.(AB→+DC →)·(AC →+BD →)=(AC →-BD →)·(AC →+BD →)=|AC →|2-|BD →|2=9-4=5.(11)在平面四边形ABCD 中,已知AB =3,DC =2,点E ,F 分别在边AD ,BC 上,且AD →=3AE →,BC →=3BF →,若向量AB →与DC →的夹角为60°,则AB →·EF →的值为________.答案 7 解析 EF →=EA →+AB →+BF → ①,EF →=ED →+DC →+CF → ②,由AD →=3AE →,BC →=3BF →,有2EA →+ED →=0,,2BF →+CF →=0,,①×2+②得2AB →+DC →=3EF →,所以EF →=23AB →+13DC →,则AB →·EF →=AB →·(23AB →+13DC →)=23AB →2+13AB →·DC →=23×32+13×3×2cos 60°=7. (12)如图,在四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,设AD →·BC →=m ,AC →·BD →=n .若AB =2,EF =1,CD =3,则( )A .2m -n =1B .2m -2n =1C .m -2n =1D .2n -2m =1答案 D 解析 AC →·BD →=(AB →+BC →)·(-AB →+AD →)=-AB →2+AB →·AD →-AB →·BC →+AD →·BC →=-AB →2+AB →·(AD →-BC →)+m =-AB →2+AB →·(AB →+BC →+CD →-BC →)+m =AB →·CD →+m .又EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →,两式相加,再根据点E ,F 分别是边AD ,BC 的中点,化简得2EF →=AB →+DC →,两边同时平方得4=2+3+2AB →·DC →,所以AB →·DC →=-12,则AB →·CD →=12,所以n =12+m ,即2n -2m =1,故选D . (13)(2017·浙江)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3答案 C 解析 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角,根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →||CA →|·cos ∠AOB <0,∴I 1<I 2,同理I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,∴OB <BG=GD <OD ,而OA <AF =FC <OC ,∴|OA →||OB →|<|OC →||OD →|,而cos ∠AOB =cos ∠COD <0,∴OA →·OB →>OC →·OD →,即I 1>I 3.∴I 3<I 1<I 2.(14)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( ) A .3 B .4 C .-3 D .-4答案 C 解析 如图,连接CO ,∵点C 是弧AB 的中点,∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝⎛⎭⎫-12-12×4=-3.【对点训练】1.已知|a |=|b |=1,向量a 与b 的夹角为45°,则(a +2b )·a =________.2.已知向量a ,b 的夹角为3π4,|a |=2,|b |=2,则a·(a -2b )=________. 3.已知|a |=6,|b |=3,向量a 在b 方向上的投影是4,则a ·b 为( )A .12B .8C .-8D .24.设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( )A .-6B .10C .5D .105.(2014·全国Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( )A .1B .2C .3D .56.在边长为1的等边三角形ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( )A .-32B .0C .32D .3 7.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B 3C 3上有10个不同的点P 1,P 2,…,P 10,记m i =AB 2→·AP i → (i =1,2,…,10),则m 1+m 2+…+m 10的值为( )A .180B .603C .45D .1538.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于( )A .-32B .-23C .23D .329.在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC →=________.10.已知P 是边长为2的正三角形ABC 的边BC 上的动点,则AP →·(AB →+AC →)=________.11.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( )A .89B .109C .259D .26912.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于( )A .32B .3C .3D .23 13.如图,在△ABC 中,AD ⊥AB ,BC →=3BD →,|AD →|=1,则AC →·AD →的值为( )A .23B .32C .33D .3 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.15.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=( )A .10B .9C .8D .616.在△ABC 中,已知AB →·AC →=92,|AC →|=3,|AB →|=3,M ,N 分别是BC 边上的三等分点,则AM →·AN →的值是 ( )A .112B .132C .6D .7 17.在△ABC 中,AB =2AC =6,BA →·BC →=BA →2,点P 是△ABC 所在平面内一点,则当P A →2+PB →2+PC →2取得最小值时,AP →·BC →=________.18.已知在△ABC 所在平面内有两点P ,Q ,满足P A →+PC →=0,QA →+QB →+QC →=BC →,若|AB →|=4,|AC →|=2,S △APQ =23,则AB →·AC →的值为______. 19.(2013·全国Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD =________.20.已知平行四边形ABCD 中,AB =1,AD =2,∠DAB =60°,则AC →·AB →=( )A .1B .3C .2D .2321.在平行四边形ABCD 中,|AB →|=8,|AD →|=6,N 为DC 的中点,BM →=2MC →,则AM →·NM →=( )A .48B .36C .24D .1222.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20B .15C .9D .623.在四边形ABCD 中,AB →=DC →,P 为CD 上一点,已知|AB →|=8,|AD →|=5,AB →与AD →的夹角为θ,且cos θ=1120,CP →=3PD →,则AP →·BP →=________. 25.在平面四边形ABCD 中,|AC |=3,|BD |=4,则(AB →+DC →)·(BC →+AD →)=________.26.如图,在四边形ABCD 中,AB =6,AD =2,DC →=13AB →,AC 与BD 相交于点O ,E 是BD 的中点,若AO →·AE → =8,则AC →·BD →=( )A .-9B .-293C .-10D .-32327.设△ABC 的外接圆的圆心为P ,半径为3,若P A →+PB →=CP →,则P A →·PB →=( )A .-92B .-32C .3D .9 28.如图,B ,D 是以AC 为直径的圆上的两点,其中AB =t +1,AD =t +2,则AC →·BD →=( )A .1B .2C .tD .2t考点二 已知平面向量数量积,求参数的值或判断多边形的形状【例题选讲】[例1](1)在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP =λAB ,AQ =(1-λ)AC ,λ∈R .若BQ ·CP =-2,则λ等于( )A .13B .23C .43D .2 答案 B 解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB→2=4(λ-1)-λ=3λ-4=-2,即λ=23. (2)已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP =λAB ,AQ =(1-λ) AC ,λ∈R ,若BQ ·CP =-32,则λ=( ) A .12 B .1±22 C .1±102 D .-3±222答案 A 解析 ∵BQ =AQ -AB =(1-λ) AC -AB ,CP =AP -AC =λAB -AC ,又BQ ·CP =-32,|AB |=|AC |=2,A =60°,AB ·AC =|AB |·|AC |cos 60°=2,∴[(1-λ) AC -AB ]·(λAB -AC )=-32,即λ|AB |2+(λ2-λ-1) AB ·AC +(1-λ)| AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. (3)已知菱形ABCD 的边长为6,∠ABD =30°,点E ,F 分别在边BC ,DC 上,BC =2BE ,CD =λCF .若AE →·BF →=-9,则λ的值为( )A .2B .3C .4D .5答案 B 解析 依题意得AE →=AB →+BE →=12BC →-BA →,BF →=BC →+1λBA →,因此AE →·BF →=(12BC →-BA →)(BC →+1λBA →)=12BC →2-1λBA →2+⎝⎛⎭⎫12λ-1BC →·BA →,于是有⎝⎛⎭⎫12-1λ×62+⎝⎛⎭⎫12λ-1×62×cos 60°=-9.由此解得λ=3,故选B . (4)已知菱形ABCD 边长为2,∠B =π3,点P 满足AP →=λAB →,λ∈R ,若BD →·CP →=-3,则λ的值为( ) A .12 B .-12 C .13 D .-13答案 A 解析 法一:由题意可得BA →·BC →=2×2cos π3=2,BD →·CP →=(BA →+BC →) ·(BP →-BC →)=(BA →+BC →)·[(AP →-AB →)-BC →]=(BA →+BC →)·[(λ-1)·AB →-BC →]=(1-λ)BA →2-BA →·BC →+(1-λ)BA →·BC →-BC →2=(1-λ)·4-2+2(1-λ)-4=-6λ=-3,∴λ=12,故选A .法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,3),D (-1,3).令P (x ,0),由BD →·CP →=(-3,3)·(x -1,-3)=-3x +3-3=-3x =-3得x =1.∵AP →=λAB →,∴λ=12.故选A . (5)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案 C 解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C .(6)若△ABC 的三个内角A ,B ,C 的度数成等差数列,且(AB →+AC →)·BC →=0,则△ABC 一定是( )A .等腰直角三角形B .非等腰直角三角形C .等边三角形D .钝角三角形答案 C 解析 因为(AB →+AC →)·BC →=0,所以(AB →+AC →)·(AC →-AB →)=0,所以AC →2-AB →2=0,即|AC →|=|AB→|,又A ,B ,C 度数成等差数列,故2B =A +C ,A +B +C =3B =π,所以B =π3,故△ABC 是等边三角形. (7)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( )A .矩形B .正方形C .菱形D .梯形答案 C 解析 因为AB →+CD →=0,所以AB →=-CD →=DC →,所以四边形ABCD 是平行四边形.又(AB →-AD →)·AC →=DB →·AC →=0,所以四边形对角线互相垂直,所以四边形ABCD 是菱形.(8)已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( ) A .23 B .-23 C .56 D .-56答案 B 解析 由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23. 考点三 平面向量数量积的最值(范围)问题【方法总结】数量积的最值或范围问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将数量积表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)若a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最大值为________.答案 1+2 解析 依题意可设a =(1,0),b =(0,1),c =(cos θ,sin θ),则(a -c )·(b -c )=1-(sin θ+cos θ)=1-2sin ⎝⎛⎭⎫θ+π4,所以(a -c )·(b -c )的最大值为1+2. (2)(2016·浙江)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.答案 12解析 由已知可得6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e |,由于上式对任意单位向量e 都成立.∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b .即6≥5+2a ·b ,∴a ·b ≤12.∴a ·b 的最大值为12. (3)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1 答案 B 解析 方法一 (解析法) 建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),图①则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32.当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B . 方法二 (几何法) 如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又当点P 在线段AD 上时,|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B . (4)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=A B →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( )A .13B .15C .19D .21答案 A 解析 建立如图所示的平面直角坐标系,则B ⎝⎛⎭⎫1t ,0,C (0,t ),AB →=⎝⎛⎭⎫1t ,0,AC →=(0,t ),A P →=A B →|AB →|+4AC →|AC →|=t ⎝⎛⎭⎫1t ,0+4t (0,t )=(1,4),∴P (1,4),PB →·PC →=⎝⎛⎭⎫1t -1,-4·(-1,t -4)=17-⎝⎛⎭⎫1t +4t ≤17-21t ·4t =13,当且仅当t =12时等号成立.∴PB →·PC →的最大值等于13.(5)如图,已知P 是半径为2,圆心角为π3的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为_____.答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),设P (2cos θ,2sin θ)⎝⎛⎭⎫π3≤θ≤2π3,则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ),其中0<tan φ=36<33,所以0<φ<π6,当θ=π2-φ时,PC →·P A →取得最小值,为5-213. 另解:设圆心为O ,AB 的中点为D ,由题得AB =2×2×sin π6=2,∴AC =3.取AC 的中点M ,由题得⎩⎪⎨⎪⎧P A →+PC →=2PM →,PC →-P A →=AC →,两方程平方相减并化简得PC →·P A →=PM →2-14AC →2=PM →2-94,要使PC →·P A →取最小值,则需PM最小,当圆弧AB ︵的圆心与点P ,M 共线时,PM 最小.易知DM =12,∴OM =⎝⎛⎭⎫122+(3)2=132,所以PM 有最小值为2-132,代入求得PC →·P A →的最小值为5-213. (6)(2020·天津)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.答案 16 132 解析 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6,所以AD →=16BC →,即λ=16.在四边形ABCD 中,作AO⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a ,0),不妨设点N 在点M 右侧,则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN→=a 2-a +274=⎝⎛⎭⎫a -122+132.所以当a =12时,DM →·DN →取得最小值132. (7) (2020·新高考Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)答案 A 解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).另解 AB →的模为2,根据正六边形的特征,可以得到AP →在AB →方向上的投影的取值范围是(-1,3),结合向量数量积的定义式,可知AP →·AB →等于AB →的模与AP →在AB →方向上的投影的乘积,所以AP →·AB →的取值范围是(-2,6),故选A .(8)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92 解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,∵|PO→|+|PC →|=3≥2|PO →|·|PC →|,∴|PO →|·|PC →|≤94,即(P A →+PB →)·PC →=2PO →·PC →=-2|PO →|·|PC →|≥-92,当且仅当|PO →|=|PC→|=32时,等号成立,故最小值为-92. 【对点训练】1.在△ABC 中,∠C =90°,AB =6,点P 满足CP =2,则P A →·PB →的最大值为( ) A .9 B .16 C .18 D .252.在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且 满足|MN →|=2,则BM →·BN →的取值范围为( )A .⎣⎡⎦⎤32,2B .⎝⎛⎭⎫32,2C .⎣⎡⎭⎫32,2D .⎣⎡⎭⎫32,+∞ 3.在等腰三角形ABC 中,AB =AC =1,∠BAC =90°,点E 为斜边BC 的中点,点M 在线段AB 上运动,则ME →·MC →的取值范围是( )A .⎣⎡⎦⎤716,12B .⎣⎡⎦⎤716,1C .⎣⎡⎦⎤12,1 D .[0,1] 4.在△ABC 中,满足AB →⊥AC →,M 是BC 的中点,若O 是线段AM 上任意一点,且|AB →|=|AC →|=2,则OA →·(OB →+OC →)的最小值为________.5.已知在△ABC 中,AB =4,AC =2,AC ⊥BC ,D 为AB 的中点,点P 满足AP →=1a AC →+a -1a AD →,则P A →·(PB →+PC →)的最小值为( )A .-2B .-289C .-258D .-726.如图,线段AB 的长度为2,点A ,B 分别在x 轴的正半轴和y 轴的正半轴上滑动,以线段AB 为一边, 在第一象限内作等边三角形ABC ,O 为坐标原点,则OC →·OB →的取值范围是________.7.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ·CB 的值为________;DE ·DC 的最大 值为________.8.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC ·EM 的取值范围是( ) A .⎣⎡⎦⎤12,2 B .⎣⎡⎦⎤0,32 C .⎣⎡⎦⎤12,32 D .[]0,1 9.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA , AB ,BC 运动到点C ,在此过程中DE →·CD →的取值范围为________.10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ·AN 的最大值为________.11.在平行四边形ABCD 中,若AB =2,AD =1,AB →·AD →=-1,点M 在边CD 上,则MA →·MB →的最大值为________.12.如图,在直角梯形ABCD 中,DA =AB =1,BC =2,点P 在阴影区域(含边界)中运动,则P A →·BD →的取值范围是( )A .⎣⎡⎦⎤-12,1B .⎣⎡⎦⎤-1,12 C .[-1,1] D .[-1,0]13.如图,在等腰梯形ABCD 中,已知DC ∥AB ,∠ADC =120°,AB =4,CD =2,动点E 和F 分别在线段BC 和DC 上,且BE →=12λBC →,DF →=λDC →,则AE →·BF →的最小值是( )A .46+13B .46-13C .46+132D .46-13214.(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则AE →·BE →的最小值为________.15.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( )A .1+2B .1-2C .2-1D .116.已知平面向量a ,b ,e 满足|e |=1,a ·e =1,b ·e =-2,|a +b |=2,则a ·b 的最大值为________.。

2019版文科数学大5.3 平面向量的数量积 含答案

2019版文科数学大5.3 平面向量的数量积 含答案

§5。

3平面向量的数量积最新考纲考情考向分析1。

理解平面向量数量积的含义及其物理意义.2。

了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

主要考查利用数量积的定义解决数量积的运算、投影、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以选择题、填空题的形式考查,偶尔会在解答题中出现,属于中档题。

1.向量的夹角已知两个非零向量a和b,作错误!=a,错误!=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是[0,π].2.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则数量|a|3。

平面向量数量积的性质设a,b都是非零向量,e是单位向量,θ为a与b(或e)的夹角.则(1)e·a=a·e=|a|cos θ。

(2)a⊥b⇔a·b=0。

(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地,a·a=|a|2或|a|=错误!.(4)cos θ=错误!.(5)|a·b|≤|a||b|.4.平面向量数量积满足的运算律(1)a·b=b·a;(2)(λa)·b=λ(a·b)=a·(λb)(λ为实数);(3)(a+b)·c=a·c+b·c。

5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,由此得到(1)若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.(2)设A(x1,y1),B(x2,y2),则A,B两点间的距离|AB|=|错误! |=错误!。

(3)设两个非零向量a,b,a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.(4)若a,b都是非零向量,θ是a与b的夹角,则cos θ=错误!=错误!。

原创1:5.3 平面向量的数量积

原创1:5.3 平面向量的数量积
= 2,故选 A. (3)设 P 点坐标为(x,0),则A→P=(x-2,-2),B→P=(x-4,-1). A→P·B→P=(x-2)(x-4)+(-2)×(-1) =x2-6x+10=(x-3)2+1. 当 x=3 时,A→P·B→P有最小值 1 平面向量的夹角与模(高频考点)
A.|a|= a·a
B.|a·b|=|a|·|b|
C.λ(a·b)=λa·b
D.|a·b|≤|a|·|b|
解析:|a·b|=|a||b||cos θ|,只有 a 与 b 共线时,才有|a·b|
=|a||b|,可知选项 B 是错误的.
4.(2015·湖北武汉调研)已知向量 a,b 满足|a|=3,|b|=2 3,
平面向量的夹角与模(高频考点) 向量数量积的综合应用
考点一 平面向量数量积的运算
(1)(2015·沧州模拟)已知平面向量 a=(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b=-6,则xx12+ +yy12的值为( B )
2 A.3
B.-23
C.56
D.-56
(2)(2014·高考江苏卷) 如图,在平行四边形 ABCD 中,已
[解] (1)由|a|2=( 3sin x)2+sin2x=4sin2x, |b|2=cos2x+sin2x=1, 及|a|=|b|,得 4sin2x=1. 又 x∈[0,π2 ],从而 sin x=12,所以 x=π6 .
(2)f(x)=a·b= 3sin x·cos x+sin2x
= 23sin 2x-12cos 2x+12=sin(2x-π6 )+12,
故|A→B+A→G+A→C|的最小值为83.
[规律方法] 1.利用数量积求解长度的处理方法: (1)|a|2=a2=a·a; (2)|a±b|2=a2±2a·b+b2; (3)若 a=(x,y),则|a|= x2+y2. 2.求两个非零向量的夹角时要注意: (1)向量的数量积不满足结合律; (2)数量积大于 0 说明不共线的两个向量的夹角为锐角;数 量积等于 0 说明两个向量的夹角为直角;数量积小于 0 且 两个向量不能共线时两个向量的夹角就是钝角.

高考数学复习、高中数学 平面向量的数量积及其应用附答案解析

高考数学复习、高中数学  平面向量的数量积及其应用附答案解析
第 3 节 平面向量的数量积及其应用
课标要求 1.通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平 面向量的数量积;2.通过几何直观,了解平面向量投影的概念以及投影向量的意义;3.能 用坐标表示平面向量的数量积,会表示两个平面向量的夹角;4.会用数量积判断两个平面 向量的垂直关系,能用坐标表示平面向量垂直的条件;5.会用向量方法解决简单的平面几 何问题、力学问题以及其他实际问题,体会向量在解决数学和实际问题中的作用.
3
12
D.
7
规律方法 1.当向量 a, b 是非坐标形式时,要把 a, b 用已知的不共线向量作为基底来表示且
题中应该需要有基底向量的模与夹角,然后进行运算.
2.数量积的运算 a•b=0 a b 中,是对非零向量而言的,若 a, b 中有零向量,虽然 a•b=0,但不能得到 a b .
角度 2 平面向量的模
()
( 3) 两 个 向 量 的 数 量 积 是 一 个 实 数 , 向 量 的 加 、 减 、 数 乘 运 算 的 运 算 结 果 是 向 量 . ()

4)


b=a·
c(a 0),

b=c.
()
教材衍化
2. 设 a,b 是非零向量.“a·b=|a||b|”是“a//b”的
()
A. 充分而不必要条件

(2)已知 a=(2sin13°,2sin77°),|a﹣b|=1,a 与 a﹣b 的夹角为 ,则 a•b=( )
3
A.2
B.3
C.4
D.5
考点 2 平面向量数量积的应用
角度 1 平面向量的垂直
【例 2-1】(1)(2016·山东)已知非零向量 m,n 满足 4 | m | 3 | n | , cos m, n 1 3

(整理)53平面向量的数量积.

(整理)53平面向量的数量积.

5.3 平面向量的数量积一、选择题1.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2 D .0解析:由a ∥b 及a ⊥c ,得b ⊥c , 则c ·(a +2b )=c ·a +2c ·b =0. 答案:D2.若向量a 与b 不共线,a ·b ≠0,且c =a -⎝⎛⎭⎪⎫a ·a a ·b b ,则向量a 与c 的夹角为( ) A .0 B.π6 C.π3 D.π2解析 ∵a·c =a·⎣⎢⎡⎦⎥⎤a -⎝⎛⎭⎪⎫a·a a·b b =a·a -⎝ ⎛⎭⎪⎫a 2a·b a·b =a 2-a 2=0, 又a ≠0,c ≠0,∴a⊥c ,∴〈a ,c 〉=π2,故选D.3. 设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于 ( )A 2B 12C .0 D.-1 解析22,0,12cos 0,cos 22cos 10.a b a b θθθ⊥∴⋅=∴-+=∴=-=正确的是C. 答案C4.已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( ). A .-4 B .4 C .-2 D .2 解析 设a 与b 的夹角为θ,∵a ·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,而cos θ=a ·b |a ||b |=-23,∴|a |cos θ=6×⎝ ⎛⎭⎪⎫-23=-4.答案 A5.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ).A.2-1 B .1 C. 2 D .2 解析 由已知条件,向量a ,b ,c 都是单位向量可以求出,a 2=1,b 2=1,c 2=1,由a ·b =0,及(a -c )(b -c )≤0,可以知道,(a +b )·c ≥c 2=1,因为|a +b -c |2=a 2+b 2+c2+2a ·b -2a ·c -2b ·c ,所以有|a +b -c |2=3-2(a ·c +b ·c )≤1, 故|a +b -c |≤1. 答案 B6.已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=13x 3+|a |x 2+2a·b x +1在x ∈R 上有极值,则〈a ,b 〉的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3C.⎝ ⎛⎦⎥⎤π6,π2D.⎝ ⎛⎦⎥⎤π6,π 解析 ∵f (x )=13x 3+|a |x 2+2a·b x +1在x ∈R 上有极值,∴f ′(x )=0有两不相等的实根,∵f ′(x )=x 2+2|a |x +2a·b ,∴x 2+2|a |x +2a·b =0有两个不相等的实根,∴Δ=4|a |2-8a·b >0,即a·b <12|a |2,∵cos 〈a ,b 〉=a·b|a ||b |,|a |=3|b |,∴cos 〈a ,b 〉<12|a |2|a ||b |=32,∵0≤〈a ,b 〉≤π,∴π6<〈a ,b 〉≤π. 答案 D7.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是( ).A.P 1P 2→·P 1P 3→B.P 1P 2→·P 1P 4→C.P 1P 2→·P 1P 5→D.P 1P 2→·P 1P 6→解析 由于P 1P 2→⊥P 1P 5→,故其数量积是0,可排除C ;P 1P 2→与P 1P 6→的夹角是2π3,故其数量积小于零,可排除D ;设正六边形的边长是a ,则P 1P 2→·P 1P 3→=|P 1P 2→||P 1P 3→|cos 30°=32a 2,P 1P 2→·P 1P 4→=|P 1P 2→||P 1P 4→|cos 60°=a 2.答案 A 二、填空题8.已知向量a ,b 均为单位向量,若它们的夹角是60°,则|a -3b |等于________. 解析 ∵|a -3b |2=a 2-6a ·b +9b 2=10-6×cos60°=7,∴|a -3b |=7. 答案 79.已知向量(3,2)a =-, (31,4)a m m =--,若a b ⊥,则m 的值为 .解析,3(31)(2)(4)0,1a b a b m m m⊥∴⋅=-+--=∴=答案110.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量k a-b 垂直,则k=________.解析设a与b夹角为θ,由题意知|a|=1,|b|=1,θ≠0且θ≠π.由a+b 与向量k a-b垂直,得(a+b)·(k a-b)=0,即k|a|2+(k-1)|a||b|cos θ-|b|2=0,(k-1)(1+cos θ)=0.又1+cos θ≠0,∴k-1=0,k=1.答案 111.已知e1,e2是夹角为2π3的两个单位向量,a=e1-2e2,b=k e1+e2.若a·b=0,则实数k的值为________.解析由题意知:a·b=(e1-2e2)·(k e1+e2)=0,即k e21+e1e2-2k e1e2-2e22=0,即k+cos 2π3-2k cos2π3-2=0, 化简可求得k=54.答案5 412.在等腰直角三角形ABC中,D是斜边BC的中点,如果AB的长为2,则(AB +AC)·AD的值为________.解析:|BC|2=|AB|2+|AC|2=8,|AD|=12|BC|,AB+AC=2AD,(AB+AC)·AD=2AD·AD=12|BC|2=4.答案:4三、解答题13.已知向量a=(1,2),b=(2,-2).(1)设c=4a+b,求(b·c)a;(2)若a+λb与a垂直,求λ的值;(3)求向量a在b方向上的投影.解析:(1)∵a=(1,2),b=(2,-2),∴c =4a +b =(4,8)+(2,-2)=(6,6). ∴b ·c =2×6-2×6=0,∴(b ·c ) a =0a =0. (2) a +λb =(1,2)+λ(2,-2)=(2λ+1,2-2λ), 由于a +λb 与a 垂直,∴2λ+1+2(2-2λ)=0,∴λ=52.(3)设向量a 与b 的夹角为θ, 向量a 在b 方向上的投影为|a |cos θ. ∴|a |cos θ=a ·b |b |=1×2+-22+-2=-222=-22. 14.如图所示,AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3).(1)若BC →∥DA →,求x 与y 之间的关系式;(2)在(1)条件下,若AC →⊥BD →,求x ,y 的值及四边形ABCD 的面积.解析 (1)∵AD →=AB →+BC →+CD →=(x +4,y -2),DA →=-AD →=(-x -4,2-y ). 又BC →∥DA →且BC →=(x ,y ),∴x (2-y )-y (-x -4)=0, 即x +2y =0.①(2)由于AC →=AB →+BC →=(x +6,y +1),BD →=BC →+CD →=(x -2,y -3),又AC →⊥BD →,∴AC →·BD →=0.即(x +6)(x -2)+(y +1)(y -3)=0,② 联立①②化简,得y 2-2y -3=0, ∴y =3或y =-1.故当y =3时,x =-6,此时AC →=(0,4),BD →=(-8,0),∴S ABCD =12|AC →|·|BD →|=16;当y =-1时,x =2,此时AC →=(8,0),BD →=(0,-4),∴S ABCD =12|AC →|·|BD →|=16.15.已知平面上三点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,求AB →·BC →+BC →·CA→+CA →·AB →的值.解析 由题意知△ABC 为直角三角形,AB →⊥BC →,∴AB →·BC →=0,cos ∠BAC =35,cos ∠BCA =45,∴BC →和CA →夹角的余弦值为-45,CA →和AB →夹角的余弦值为-35,∴AB →·BC →+BC →·CA →+CA →·AB →=20×⎝ ⎛⎭⎪⎫-45+15×⎝ ⎛⎭⎪⎫-35=-25.16.设两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.思路分析 转化为(2t e 1+7e 2)·(e 1+t e 2)<0 且2t e 1+7e 2≠λ(e 1+t e 2)(λ<0).解析 由已知得e 21=4,e 22=1,e 1·e 2=2×1×cos 60°=1.∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7.欲使夹角为钝角,需2t 2+15t +7<0. 得-7<t <-12.设2t e 1+7e 2=λ(e 1+t e 2)(λ<0). ∴⎩⎨⎧2t =λ,7=t λ.∴2t 2=7.∴t =-142,此时λ=-14. 即t =-142时,向量2t e 1+7e 2与e 1+t e 2的夹角为π.∴夹角为钝角时,t 的取值范围是⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12【点评】 本题较好地体现了转化与化归思想.转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.。

(完整版)平面向量数量积运算专题(附答案)

(完整版)平面向量数量积运算专题(附答案)

平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+2 C.-4+2 2D.-3+22变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B.-126C.112D.-112变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |23.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.94.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.325.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.67.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6D.0 8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.11.已知向量a =(sin x ,34),b =(cos x ,-1).当a ∥b 时,求cos 2x -sin 2x 的值;12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值.平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+2 C.-4+2 2 D.-3+22答案 (1)2 (2)D 解析 (1)如图,AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+13BC →)·(AD →+1λDC →)=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1, ∴103λ-23=1,∴λ=2. (2)方法一 设|P A →|=|PB →|=x ,∠APB =θ,则tan θ2=1x,从而cos θ=1-tan 2θ21+tan 2θ2=x 2-1x 2+1.P A →·PB →=|P A →|·|PB →|·cos θ =x 2·x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时取等号,故P A →·PB →的最小值为22-3. 方法二 设∠APB =θ,0<θ<π, 则|P A →|=|PB →|=1tan θ2.P A →·PB →=|P A →||PB →|cos θ =(1tan θ2)2cos θ =cos 2θ2sin 2θ2·(1-2sin 2θ2)=(1-sin 2θ2)(1-2sin 2θ2)sin 2θ2.令x =sin 2θ2,0<x ≤1,则P A →·PB →=(1-x )(1-2x )x=2x +1x-3≥22-3,当且仅当2x =1x ,即x =22时取等号.故P A →·PB →的最小值为22-3.方法三 以O 为坐标原点,建立平面直角坐标系xOy , 则圆O 的方程为x 2+y 2=1, 设A (x 1,y 1),B (x 1,-y 1),P (x 0,0),则P A →·PB →=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=x 21-2x 1x 0+x 20-y 21. 由OA ⊥P A ⇒OA →·P A →=(x 1,y 1)·(x 1-x 0,y 1)=0⇒x 21-x 1x 0+y 21=0, 又x 21+y 21=1,所以x 1x 0=1.从而P A →·PB →=x 21-2x 1x 0+x 20-y 21=x 21-2+x 20-(1-x 21) =2x 21+x 20-3≥22-3.故P A →·PB →的最小值为22-3.点评 (1)平面向量数量积的运算有两种形式:一是依据长度和夹角,二是利用坐标运算,具体应用哪种形式由已知条件的特征来选择.注意两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不应该漏掉其中的“·”.(2)向量的数量积运算需要注意的问题:a·b =0时得不到a =0或b =0,根据平面向量数量积的性质有|a |2=a 2,但|a·b |≤|a |·|b |.变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 答案 9解析 因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B.-126C.112D.-112答案 (1)A (2)B解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a |·|b |·cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)记向量2a -b 与a +2b 的夹角为θ, 又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即2a -b 与a +2b 的夹角的余弦值是-126.点评 求向量的夹角时要注意:(1)向量的数量积不满足结合律,(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角为钝角.变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________. 答案 90°解析 ∵AO →=12(AB →+AC →),∴点O 是△ABC 中边BC 的中点,∴BC 为直径,根据圆的几何性质得AB →与AC →的夹角为90°. 题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)因为平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°, 所以|2a +b |=(2a )2+b 2+2×|2a |×|b |cos 120° =22×12+22+2×2×1×2×⎝⎛⎭⎫-12=2. (2)方法一 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ), P A →=(2,-x ),PB →=(1,a -x ), ∴P A →+3PB →=(5,3a -4x ), |P A →+3PB →|2=25+(3a -4x )2≥25,∴|P A +3PB |的最小值为5. 方法二 设DP →=xDC →(0<x <1), ∴PC →=(1-x )DC →, P A →=DA →-DP →=DA →-xDC →, PB →=PC →+CB →=(1-x )DC →+12DA →,∴P A →+3PB →=52DA →+(3-4x )DC →,|P A →+3PB →|2=254DA →2+2×52×(3-4x )DA →·DC →+(3-4x )2·DC →2=25+(3-4x )2DC →2≥25,∴|P A →+3PB →|的最小值为5.点评 (1)把几何图形放在适当的坐标系中,给有关向量赋以具体的坐标求向量的模,如向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可求解.(2)向量不放在坐标系中研究,求解此类问题的方法是利用向量的运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. 答案233解析 因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°.又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0,所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°,所以b ·e 1=|b |·|e 1|cos 30°=1. 所以|b |=233. 高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( ) A.min{|a +b |,|a -b |}≤min{|a |,|b |} B.min{|a +b |,|a -b |}≥min{|a |,|b |} C.max{|a +b |2,|a -b |2}≤|a |2+|b |2 D.max{|a +b |2,|a -b |2}≥|a |2+|b |2 答案 D解析 由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a -b |2=|a |2+|b |2,故选D.3.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.9解析 ∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.4.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.32答案 A解析 以OA ,OB 所在直线分别作为x 轴,y 轴,O 为坐标原点建立平面直角坐标系, 则A (1,0),B (0,1),C (34,14),直线l 的方程为y -14=x -34,即x -y -12=0.设P (x ,x -12),则p =(x ,x -12),而b -a =(-1,1),所以p ·(b -a )=-x +(x -12)=-12.5.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 答案 D解析 由题意,知B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心,12为半径的圆的内部.又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→, 所以点A 在以B 1B 2为直径的圆上, 当P 与O 点重合时,|OA →|取得最大值2,当P 在半径为12的圆周上时,|OA →|取得最小值72,故选D.6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.6答案 C解析 在△ABC 中,因为∠ACB =90°且AC =BC =4,所以AB =42,且B =A =45°.因为BM →=3MA →,所以BM →=34BA →.所以CM →·CB →=(CB →+BM →)·CB →=CB →2+BM →·CB →=CB →2+34BA →·CB →=16+34×42×4cos 135°=4.7.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6 D.0 答案 B解析 设a 与b 的夹角为θ,由于x i ,y i (i =1,2,3,4)均由2个a 和2个b 排列而成,记S = i =14(x i ·y i ),则S 有以下三种情况:①S =2a 2+2b 2;②S =4a ·b ;③S =|a |2+2a ·b +|b |2.∵|b |=2|a |,∴①中S =10|a |2,②中S =8|a |2cos θ,③中S =5|a |2+4|a |2cos θ.易知②最小,即8|a |2cos θ=4|a |2,∴cos θ=12,可求θ=π3,故选B.8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.答案 22解析 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB→-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 答案 π2解析 由e 1·e 2=32,可得cos 〈e 1,e 2〉=e 1·e 2|e 1||e 2|=32, 故〈e 1,e 2〉=π6,〈e 2,-e 1〉=π-〈e 2,e 1〉=5π6.f (e 1,e 2)=e 1cos π6-e 2sin π6=32e 1-12e 2,f (e 2,-e 1)=e 2cos5π6-(-e 1)sin 5π6=12e 1-32e 2.f (e 1,e 2)·f (e 2,-e 1)=(32e 1-12e 2)·(12e 1-32e 2)=32-e 1·e 2=0, 所以f (e 1,e 2)⊥f (e 2,-e 1).故向量f (e 1,e 2)与f (e 2,-e 1)的夹角为π2.10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.11.已知向量a =(sin x ,34),b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,sin B =63,求f (x )+4cos(2A +π6)(x ∈[0,π3])的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0.所以tan x =-34.故cos 2x -sin 2x =cos 2x -2sin x cos xsin 2x +cos 2x=1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b=2(sin x +cos x ,-14)·(cos x ,-1)=sin 2x +cos 2x +32=2sin(2x +π4)+32.由正弦定理,得a sin A =bsin B ,所以sin A =a sin Bb=3×632=22. 所以A =π4或A =3π4.因为b >a ,所以A =π4.所以f (x )+4cos(2A +π6)=2sin(2x +π4)-12.因为x ∈[0,π3],所以2x +π4∈[π4,11π12].所以32-1≤f (x )+4cos(2A +π6)≤2-12. 所以f (x )+4cos(2A +π6)的取值范围为[32-1,2-12].12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值. 解 (1)由AD →=511DB →,且A ,B ,D 三点共线,可知|AD →|=511|DB →|.又AD =5,所以DB =11.在Rt △ADC 中,CD 2=AC 2-AD 2=75, 在Rt △BDC 中,BC 2=DB 2+CD 2=196, 所以BC =14.所以|AB →-AC →|=|CB →|=14.(2)由(1),知|AB →|=16,|AC →|=10,|BC →|=14. 由余弦定理,得cos A =102+162-1422×10×16=12.由x =AB →+tAC →,y =tAB →+AC →, 知k =x ·y=(AB →+tAC →)·(tAB →+AC →) =t |AB →|2+(t 2+1)AC →·AB →+t |AC →|2=256t +(t 2+1)×16×10×12+100t=80t 2+356t +80.由二次函数的图象,可知该函数在[1,+∞)上单调递增, 所以当t =1时,k 取得最小值516.。

平面向量的数量积


平面向量的数量积可以用于判 断两条直线是否平行或垂直
平面向量的数量积可以用于计 算平面上点的坐标和轨迹
04
平面向量的数量积 与向量的模的关系
数量积与向量模的关系
数量积的定义:两个向量的模的乘积与两个向量夹角的余弦值的乘积之和 的平方根
数量积的性质:两个向量的数量积等于它们的模的乘积与它们夹角的余弦 值的乘积

投影:向量a 在向量b上的 投影长度等于 向量a的数量 积除以向量b
的长度
方向:向量a 与向量b的数 量积的正负号 表示两向量的 夹角是锐角还
是钝角
数量积的性质
非零向量的数量积为实数
向量的数量积满足交换律和分配律
向量的数量积为0的充分必要条件是两个向量垂直 向量的数量积与向量的模长和夹角有关,可以用来描述两个向量的 相似程度
05
平面向量的数量积 的运算技巧
代数法计算数量积
定义:两个向量的数量积定义为它们的对应坐标的乘积之和 性质:数量积满足交换律和分配律 坐标法:利用向量的坐标进行计算,公式为:a·b=x1x2+y1y2 几何意义:数量积表示两个向量在垂直方向上的投影长度之积
几何法计算数量积
定义:两个非零向量的夹角余弦值乘以两个向量模的乘积
数量积的运算方法
定义:两个向量的数量积定义为 它们的模长和夹角的余弦值的乘 积
几何意义:表示两个向量在垂直 方向上的投影长度
添加标题
添加标题
添加标题
添加标题
性质:数量积满足交换律和分配 律
计算公式:a · b = |a||b|cosθ, 其中θ为两向量的夹角
03
平面向量的数量积 的应用
在三角形中的应用
平面向量的数量积

高中数学平面向量的数量积练习题及答案

高中数学平面向量的数量积练习题及答案1.2021·泰州质检在ABC中,若AB=1,AC=,|+|=||,则=________.[解析] 由平行四边形法则,|+|=||=||,故A,B,C构成直角三角形的三个顶点,且A为直角,从而四边形ABDC是矩形.由||=2,ABC=60°,==.[答案]2.2021·湖南高考改编已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的最大值为________.[解析] a,b是单位向量,|a|=|b|=1.又a·b=0,a⊥b,|a+b|=.|c-a-b|2=c2-2c·a+b+2a·b+a2+b2=1.c2-2c·a+b+1=0.2c·a+b=c2+1.c2+1=2|c||a+b|cos θθ是c与a+b的夹角.c2+1=2|c|cos θ≤2|c|.c2-2|c|+1≤0.-1≤|c|≤+1.|c|的最大值为+1.[答案] +13.设两向量e1,e2满足|e1|=2,|e2|=1,e1,e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为钝角,求实数t的取值范围.[解] 由已知得e=4,e=1,e1·e2=2×1×cos 60°=1.2te1+7e2·e1+te2=2te+2t2+7e1·e2+7te=2t2+15t+7.欲使夹角为钝角,需2t2+15t+7<0,得-7设2te1+7e2=λe1+te2λ<0,∴2t2=7.t=-,此时λ=-.即t=-时,向量2te1+7e2与e1+te2的夹角为π.当两向量夹角为钝角时,t的取值范围是.一、填空题1.2021·课标全国卷已知正方形ABCD的边长为2,E为CD的中点,则·=________.[解析] 如图,以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y轴,建立平面直角坐标系,则A0,0,B2,0,D0,2,E1,2,∴=1,2,=-2,2,·=1×-2+2×2=2.[答案] 22.已知向量=3,-4,=6,-3,=m,m+1,若,则实数m的值为________.[解析] 依题意得,=3,1,由,得3m+1-m=0,m=-.[答案] -3.2021·徐州调研已知a=1,2,2a-b=3,1,则a·b=________.[解析] a=1,2,2a-b=3,1,b=2a-3,1=21,2-3,1=-1,3.a·b=1,2·-1,3=-1+2×3=5.[答案] 54.2021·常州市高三教学期末调研测试在平面直角坐标系xOy中,圆C:x2+y2=4分别交x轴正半轴及y轴正半轴于M,N两点,点P为圆C上任意一点,则·的最大值为________.[解析] 根据题意得:M2,0,N0,2.设P2cos θ,2sin θ,则=2-2cos θ,-2sin θ,=-2cos θ,2-2sin θ,所以·=-4cos θ+4cos2θ-4sin θ+4sin2θ=4-4sin θ+cos θ=4-4sin,因为-1≤sin≤1,所以4-4≤·≤4+4,所以·的最大值为4+4.[答案] 4+45.2021·宿迁调研已知点A-2,0,B0,0,动点Px,y满足·=x2,则点P的轨迹方程是________.[解析] =-2-x,-y,=-x,-y,则·=-2-x-x+-y2=x2,y2=-2x.[答案] y2=-2x6.2021·常州质检已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|-|,其中O 为原点,则正实数a的值为________.[解析] 由|+|=|-|,知,|AB|=2,则得点O到AB的距离d=,=,解得a=2a>0.[答案] 27.2021·南京、盐城二模已知||=1,||=2,AOB=,=+,则与的夹角大小为________.[解析] 令=,=,因为||=1,||=2,所以||=||,由=+=+,得四边形OA1CB1为菱形.因为菱形对角线平分所对角,因此AOC=60°.[答案] 60°8.如图4­4­3,在ABC中,AB=AC,BC=2,=,=.若·=-,则·=________.图4­4­3[解析] 建立如图所示的直角坐标系,则·=·1,-a=-=-,解得a=2,所以=,=-1,-2,所以·=-.[答案] -二、解答题9.2021·苏北四市质检已知向量a=cos θ,sin θ,b=2,-1.1若a⊥b,求的值;2若|a-b|=2,θ,求sin的值.[解] 1由a⊥b可知,a·b=2cos θ-sin θ=0,所以sin θ=2cos θ,所以==.2由a-b=cos θ-2,sin θ+1,可得|a-b|===2,即1-2cos θ+sin θ=0,又cos2θ+sin2θ=1,且θ,由可解得所以sin=sin θ+cos θ==.10.已知向量a=cos x,sin x,b=sin 2x,1-cos 2x,c=0,1,x0,π.1向量a,b是否共线?并说明理由;2求函数fx=|b|-a+b·c的最大值.[解] 1b=sin 2x,1-cos 2x=2sin xcos x,2sin2 x=2sin xcos x,sin x=2sin x·a,且|a|=1,即a≠0.a与b共线.2fx=|b|-a+b·c=2sin x-cos x+sin 2x,1-cos 2x+sin x·0,1=2sin x-1+cos 2x-sin x=sin x-1+1-2sin2x=-2sin2x+sin x=-22+.当sin x=时,fx有最大值.感谢您的阅读,祝您生活愉快。

高中数学必修四第二章平面向量课后习题Word版(2021年整理)

(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。

【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。

2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。

4.3平面向量的数量积


已知点 F(1,0), P 在 y 轴上运动, M 在 x 轴上运动. 点 点 设 → → → → P(0,b),M(a,0)且PM·PF=0,动点 N 满足 2PN+NM=0. (1)求点 N 的轨迹 C 的方程; (2)F′为曲线 C 的准线与 x 轴的交点,过点 F′的直线 l 交曲线 C 于不同的两点 A、B,若 D 为 AB 中点,在 x 轴上存 → → → → 在一点 E,使AB·(AE-AD)=0,求|OE|的取值范围(O 为坐标 原点).
k2≠0, 2 2 2 2 k x +2(k -2)x+k =0,由 Δ>0
⇒0<k <1,
2
设 A(x1,y1),B(x2,y2),D(x0,y0), 2-k2 2 则 x0= k2 ,y0= k ,
→ → → ⇒→ → ∵AB·(AE-AD)=0⇒AB⊥DE, 2 1 2-k 2 故直线 DE 方程为 y- =- (x- 2 ), k k k 2 令 y=0,得 xE=1+ 2(0<k2<1) k → ∴x >3,即|OE|的取值范围是(3,+∞).
2
【例5】已知:a=(cosα,sinα),b=(cosβ,sinβ) 0<α < β < π (1)求证:a+b与a-b互相垂直; (2)若|ka+b|=|ka-b|,求α-β(其中k ∈ R且k≠ 0) - ( (3)|ka+b|= 3 |a-kb|,其中k>0. ①用k表示a·b; ②求a·b最小时,a与b的夹角.
【解】 (1)P(0,b),M(a,0),设 N(x,y), 2 → → 由PM·PF=0⇒a+b =0,① 由
→+NM=0⇒2x+a-x=0, → 2PN ⇒ 2(y-b)-y=0
a=-x, ⇒ 1 b=2y.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档