高一数学平面向量练习题

合集下载

2023-2024学年高一下数学《平面向量及立体几何初步》测试卷及答案解析

2023-2024学年高一下数学《平面向量及立体几何初步》测试卷及答案解析

2023-2024学年高一数学《平面向量及立体几何初步》一.选择题(共12小题)
1.(2022春•鼓楼区校级期中)已知向量,,若∥,则实数m =()
A.1B.﹣1C .D
.﹣
2.(2022春•鼓楼区校级期中)已知向量,是单位向量,若|2﹣|=,

与的夹角为()
A .
B .
C .
D .
3.(2022春•鼓楼区校级期中)P是△ABC
所在平面内一点,若,则S△ABP:S
△ABC
=()
A.1:4B.1:3C.2:3D.2:1 4.(2022•福州模拟)已知向量,为单位向量,且⊥,则•(4﹣3)=()A.﹣3B.3C.﹣5D.5 5.(2022春•马尾区校级月考)已知△ABC的内角A,B,C对边分别为a,b,c,若2c sin C =(a+b)(sin B﹣sin A),则当角C取得最大值时,B=()
A .
B .
C .
D .
6.(2022春•福州期中)在四边形ABCD
中,若=,且|﹣|=|
+|,则该四边
形一定是()
A.正方形B.菱形C.矩形D.等腰梯形7.(2022•鼓楼区校级三模)已知AB,CD分别是圆柱上、下底面圆的直径,且AB⊥CD.O1,O分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A﹣BCD的体积为18,则该圆柱的侧面积为()
A.9πB.12πC.16πD.18π8.(2022•福州模拟)在底面半径为1的圆柱OO1中,过旋转轴OO1作圆柱的轴截面ABCD,其中母线AB=2,E是BC的中点,F是AB的中点,则()
A.AE=CF,AC与EF是共面直线
第1页(共25页)。

(word完整版)高一数学数学必修4平面向量复习题

(word完整版)高一数学数学必修4平面向量复习题

1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为(D )2A.1B.2C. 2A. 2B. 2 2C. 1D.12r r rr r r r r r uu r r r 2解析Q a,b,c 是单位向量a c ?bc ago (a b)gs crr r _ r r r1 |ab|gc| 1 <2cos ab,c 1.2.2.已知向量a 2,1 ,ab 10,|ab| 5J2,则 |b|(C )A. .5B. .10C.5D. 25r r 宀 r 宀 r r r 宀“ r2 2 2 2解析 Q50 |a b| |a | 2a gD |b| 5 20 | b ||b| 5 故选 C.3.平面向量a 与b 的夹角为600, a (2,0) , b 1则a 2b ( B )A.、3B. 2 3C. 4D.2解析 由已知 |a|= 2,|a + 2b|2= a 2 + 4a b + 4b 2= 4+ 4X2X1 Xcos60° + 4= 12A a 2b2^3LUIUuiuuuu uiPC) = 2AP PM=2 AP PM cosO 2 -5.已知a 3,2 , b1,0,向量a b 与a2b 垂直,则实数的值为()1 A.—1 B.-1 C.—D.17766uuruur uuu UUJ uujruuu6.设 D 、E 、 F 分别是△ ABC 的三边 BC 、CA 、AB 上的点,且DC2BD,CE2EA, AF 2FB,UJLT 则ADUUU uuu uuu BE CF 与 BC(A)A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直(A )4444A.B.c.D.9339uu 由APUuu UJ uuuu 解析 2PM 知,p 为 ABC 的重心,根据向量的加法 ,PB P C2PM则 uur 4.在 ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足学PALunn uur uuu uuu2PM ,则 PA (PB PC)等于uuruuu uiuuu uuu AP (PB1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为( D )27.已知a , b 是平面内两个互相垂直的单位向量,右向量 c 满足(ac) (b c)0,则 c 的最大值是(C )3 4uuu uuu uuur8.已知O 是厶ABC 所在平面内一点,D 为BC 边中点,且2OA OB OC 0,那么( A )则—的取值范围是mA .、3B . 2.3C .6 D . 2、616.在平行四边形 ABCD 中, uuu AE 1 uuu unr-AB, AF1 UULT一AD , CE 与BF 相交于G 点.的最小值为(B ) A. uuir unr AO ODunr uuir B. AO 2ODuuir uuirC. AO 3ODuur unr D. 2AO OD 9•设a5 ^2(4,3) , a 在b 上的投影为 ,b 在x 轴上的投影为2,且 | b |< 14,则 b 为(B ) (2,4)2,C .D . (2,) 10.设a, b 是非零向量,若函数f(x)(xa b) (a xb )的图象是一条直线, 则必有( A )11.设两个向量a ( 2,a//2cos C . |a|)和b|b|D . |a| |b|mm,—2 sin ,其中,m, 为实数.若a 2b ,A . [-6, 1]B. [4,]C. (-6, 1] D . [-1 , 6]12.已知向量a(1, n),(1, n ),若2a b 与b 垂直,则|a(C13•如图,已知正六边形 RP 2P 3P 4P 5P 6 ,F 列向量的数量积中最大的是(A. RP2 ,R F 3B. P 1P 2, P 1P4C. P 1P 2 , P 1 P 5D.P 1P 2 ,P 1P614.已知向量a 尢,|e |= 1,对任意t € R , 恒有|a - t e | 冷一e |,贝y ( B )A. a 丄 eB. e 丄(a - e )C.a 丄(a - e )D.(a + e )丄(a - e )15.已知向量 unr unr n uurOA , OB 的夹角为一,|OA| 4 ,3luu r|OB| 1,若点 M 在直线 OB 上,贝U |&A OM |uuu r uur r uuur AB a, AD b,则AG342 r 1 r 2 rA. a bB. a7 7 7 17.设向量a与b的夹角为A」10 B. 3b 73.10 10C.(2,1),C.1 r r 4 rb D. a7 72b (4,5),则cosD.18.已知向量a , b的夹角为3,且|a||b| 1 ,19.20.21.22.23.24.中,25.7等于D 则向量a与向量a 2b的夹角等于(5A .6已知向量A. [0, .2]已知单位向量A . 2.3在厶ABC 已知向量已知向量中,arOib-r-|b|其中b均为非零向量, 则| p |的取值范围是(B )B.[0,1]C.(0,2]D.[0,2]a,b的夹角为一,那么a2bAR 2RB,CP 2PR,若AP mAB nAC,贝U mC.a和b的夹角为120 ,B. 7|a| 2,且(2aOAA. [0,4]b) a,则|b |(0,2),OB (2,0),BCB .[冷C 2 cos ,2 sinC. [4,3T]),贝UOA与OC夹角的取值范围是(上海)直角坐标系xOy中,i, j分别是与x, y轴正方向同向的单位向量. 在直角三角形ABC若AB 2i A. 1 j, AC 3i k j,则k的可能值个数是(B. 2若四边形ABCD满足AB CDc.「uuu0 , (AB3uiur uuirAD) ACD. 4则该四边形一定是BA.直角梯形B.菱形C.矩形D.正方形ir r ir 26.已知向量m,n的夹角为一,且|m |6uuir D为BC边的中点,贝U | AD |(乜,订| 2 ,在△ABC中,uuuABir r uuur ir r2m 2n,AC 2m 6n,112427. A . 2 uuu|OA|已知A.3 B . uuu,|OB| .3 ,OA?O B =0 , AOCD . 8uuur 30o ,设OC uuu uuu mOA nOB (m, nR),则D. 28.如图, 其中45°直角三角板的斜边与 所对的直角边重合.若 x , y 等于B x 3, y 1B. 345°直角三角板和 30°直角三角板拼在一起, 直角三角板的 30°角 uuur y DA , uu u DB 30° uuu r DC 则A. C. x 2, y . 3 二、填空题 1. 若向量 a , b 满足 2. 3. 4. 5. 6. 7.8. 答案 .7 设向量 答案 1 3,y 3 3,y 1 3 1,b 2且a 与b 的夹角为—, 3 a (1,2), (2,3),若向量 a b 与向量c (4, 7)共线,则已知向量a 与b 的夹角为120°,且a b 4,那么 b (2a b)的值为答案 0 已知平面向量a (2,4) , b ( 1,2).答案 8,2b 的夹角为120 ,答案设向量 答案若向量 答案若向量 答案uuuAB60若 c a (a 则5a bb)b , 则|C|uu ur 2, ACuuu uur3, AB AC | J 19,则r r aba 与b 的夹角为60 , 1,则 a? a bCABa,b 满足2,(a b) a ,则向量a 与b 的夹角等于uuu UULT LUU LUT UJU9. O 为平面上定点,A, B, C 是平面上不共线的三若 (OB OC ) •OB OC 2OA)=0,贝U ABC 的形状是 __________________________ .等腰三角形答案 -2510.不共线的向量m^ , m 2的模都为2,若a3m i2m 2 , b 2mi 3m 2 ,则两向量a b 与a b 的夹角为 _________________ 90 ° 11 •定义一种运算 S a b ,在框图所表达的算法中揭示了这种运算“”的含义•那么,按照运算 “”的含义,计算 tan 15o tan300 tan300 tan 15o _________ 1 ___r r12、 已知向量 a (cos15o ,sin150), b ( sin 150, cos1S),贝y a b 的值为 ________ . 答案113、 已知 Rt △ ABC 的斜边BC=5 ,则 AB BC BC CA CA AB 的值等于y 轴平行的单位向量,若直角三角形ABC 中,uur r AB ir uuur r rj , AC 2i mj ,则实数 m=答案 —2或0三、解答题rr r r r r1、已知ia 4,|b| 3,(2a — 3b) (2a b) 61 ,r rr r(1 )求 a b 的值;求a 与b 的夹(3)求b 的值;r r r r 心解:(1)由(2a —3b) (2a b) 61 得4a r r 「2「2又由 k 4,|b| 3得 a 16, 9代入上式得64 4a b 2761 a br rr3b14.在直角坐标系xOy 中,i[j 分别是与x 轴,艸(13|fr!=4・得卜2・{妨=』_虛讪一&r5 52’uuuruur uur(2, 4),在向量OC 上是否存在点P ,使得PA PB ,若存在,求出点P 的坐标,若不存在,请说明理由。

高一数学平面向量专项练习题

高一数学平面向量专项练习题

高一数学平面向量专项练习题1.已知平面向量a ,b 的夹角为23π,2a =,1b =,则a b ⋅=( )A .1B .1-CD .2.在Rt △ABC 中,∠C =90°,AC =4,则AB AC ⋅uu u r uu u r等于( )A .-16B .-8C .8D .16 3.已知,a b 是不共线的向量,且5,28,3()AB a b BC a b CD a b =+=-+=-,则( ). A .A ,B ,D 三点共线B .A ,B ,C 三点共线 C .B ,C ,D 三点共线 D .A ,C ,D 三点共线4.已知圆心为O ,半径为1的圆上有不同的三个点,,A B C ,其中0OA OB ⋅=,存在实数,λμ满足0OC OA uOB λ++=,则实数,λμ的关系为A .221λμ+=B .111λμ+= C .1λμ= D .1λμ+=5.已知向量(1,2),(1,3)a b =-=,则||a b -=( )A B .2 C D 6.若1a b ==r r ,(2)a b a +⊥,则向量a 与b 的夹角为( )A .30B .60C .120D .1507.在△ABC 中,若AB 2BC -2=AB AC ⋅,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形8.在ABC ∆中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM AB AC λμ=+,则λμ+等于( )A .12B .23C .16D .139.若()2,4,a b a b a ==+⊥,则a 与b 的夹角为( )A .23πB .3πC .43πD .π10.已知非零向量a ,b 的夹角是60°,a b =,a ⊥(λa -b ),则λ=A .12B .1C .32D .211.如图,在ABC 中,AD AB ⊥,3BC BD =,||1AD =,则AC AD ⋅=( )A .B .2C .3D 12.已知12,e e 是两个单位向量,且夹角为3π,则12e te +与12te e +数量积的最小值为( )A .32-B .6-C .12D .313.已知向量a,b r r 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .014.在ABC 中,点D 是线段BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+uuu r uu u r uuu r ,则λμ+=A .2B .2-C .12D .12- 15.在边长为2的正ABC ∆中,设2BC BD =,3CA CE =,则AD BE ⋅=( ) A .-2 B .-1 C .23- D .83- 16.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( )A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦17.两个非零向量,a b 满足||||2||a b a b a +=-=,则向量b 与a b -夹角为( ) A .56π B .6π C .23π D .3π 18.AB 是半径为1的圆O 的直径,P 是圆O 上一点,Q 为平面内一点,且1233BQ BP AB =-,1AQ AB ⋅=,则BQ BP ⋅的值为( ) A .12 B .1 CD .5219.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心)A .重心外心垂心B .重心外心内心C .外心重心垂心D .外心重心内心20.已知1e ,2e 是不平行的向量,设12a e ke =+,12b ke e =+,则a 与b 共线的充要条件是实数k 等于________.21.已知平面向量a ,b 的夹角为3π,且1a =,12b ⎛= ⎝⎭r ,则(2)a b b +⋅=________. 22.已知正方形ABCD 的边长为4,2AE AB =,则AC DE ⋅=__________. 23.已知平面向量,a b 满足3a =,2b =,3a b ⋅=-,则2a b += . 24.已知||1a =,()a b a +⊥,则⋅=a b _________.25.在等腰梯形ABCD 中,2DC AB =,E 为BC 的中点,F 为DE 的中点,记DA a =,DC b =,若用,a b 表示DF ,则DF =________.26.在ABC ∆中,4AC =,3BC =,30ACB ∠=︒,点E 为边AC 的中点,2133AD AB AC =+u u u r u u u r u u u r ,则CA CB ⋅=______;CD BE ⋅=______.27.在ABC ∆中,D 为AB 的中点,点O 满足2CO OD =,OA OB ⊥,若10AB =,则AC BC ⋅=___________。

高一数学平面向量的概念试题答案及解析

高一数学平面向量的概念试题答案及解析

高一数学平面向量的概念试题答案及解析1.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()A.向东南航行km B.向东南航行2kmC.向东北航行km D.向东北航行2km【答案】A【解析】根据题意由于向量表示“向东航行1km”,向量表示“向南航行1km”,那么可知向量表示向东南航行km ,故选A.【考点】向量的物理意义点评:主要是考查了向量的物理意义的运用,属于基础题。

2.在平行四边形ABCD中, + +等于()A.B.C.D.【答案】A【解析】结合图形,+ += + += ,故选A。

【考点】本题主要考查平面向量的线性运算。

点评:简单题,在平行四边形中,由平行四边形法则。

注意相等向量及相反向量。

3.已知点,向量,且,则点的坐标为。

【答案】【解析】设点的坐标为(x,y),则由得,(x-2,y-4)=2(3,4),所以x-2=6,y-4=8,所以x=8,y=12,即点的坐标为。

【考点】本题主要考查平面向量的概念及其坐标运算。

点评:简单题,注意若A(a,b),B(c,d),则。

4.作用于原点的两个力F1 ="(1,1)" ,F2 ="(2,3)" ,为使得它们平衡,需加力F3=【答案】(-3,-4)【解析】F3=-(F1+F2)=-(3,4)=(-3,-4).5.下列判断正确的是 ( )A.若向量与是共线向量,则A,B,C,D四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。

【答案】D【解析】解:因为A.若向量与是共线向量,则A,B,C,D四点共线;可能构成四边形。

B.单位向量都相等;方向不一样。

C.共线的向量,若起点不同,则终点一定不同;不一定。

D.模为0的向量的方向是不确定的,成立6.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若和都是单位向量,则.D.两个相等向量的模相等.【答案】D【解析】根据向量相等的定义易知两个相等向量的模相等,故选D相等向量只需要模相同,方向相同,所以(1)错;模相等的平行向量有可能方向相反,所以(2)错;都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;相等向量是模相同,方向相同的向量,所以(4)对.解:对于(1),相等向量只需要模相同,方向相同,所以(1)错;对于(2)模相等的平行向量有可能方向相反,所以(2)错;对于(3),都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;对于(4),相等向量是模相同,方向相同的向量,所以(4)对.故选C7.给出下列命题:①向量与是共线向量,则A、B、C、D四点必在一直线上;②两个单位向量是相等向量;③若, ,则;④若一个向量的模为0,则该向量的方向不确定;⑤若,则。

高一数学《平面向量》期末练习题有答案

高一数学《平面向量》期末练习题有答案

高一数学《平面向量》期末练习题有答案 - 副本平面向量一、选择题:本大题共10小题,每小题5分,共50分。

1、下列向量组中能作为表示它们所在平面内所有向量的基底的是()....2、若ABCD是正方形,E是CD的中点,且,,则BE= ( )A.2a B.2a C.2b D.2b、若向量a与b不共线,,且,则向量a与c的夹角是()A.π2 B.π6 C.π3 D.04、设i,j是互相垂直的单位向量,向量,,则实数m为()A.-2 B.2 C.2 D.不存在5、在四边形ABCD中,,,,则四形ABCD的形状是()A.长方形 B.平行四边形C.菱形D.梯形6、下列说法正确的个数为()(1);(2);(3)(4);(5)设a,b,c为同一平面内三个向量,且c为非零向量,a,b不共线,则与c垂直。

A.2 B. 3 C. 4 D. 5,,7、在边长为1的等边三角形ABC中,设,则的值为()A.32B.32C.0 D.38、向量a=(-1,1),且a与a+2b方向相同,则的范围是()A.(1,+∞) B.(-1,1)C.(-1,+∞)D.(-∞,1) 9、在△OAB中,OA=(2cosα,2sinα),OB=(5cosβ,5sinβ),若-5,则S△OAB= () A.3 B.32C.53 D.53210、若非零向量a、则() b满足,A.二、填空题:本大题共4小题,每小题5分,共20分。

11、若向量,则与a平行的单位向量为________________ ,与a垂直的单位向量为______________________。

12、已知,,则在上的投影等于___________ 。

BC13、已知三点, E,F为线段的三等分点,则=_____.14.设向量a与b的夹角为θ,定义a与b的“向量积”:是一个向量,它的模若3),则三、解答题:本大题共6小题,共80分。

15.(本小题满分12分)OB=设向量OA=(3,1),(-1,2),向量,BC∥OA,又OD+OA=OC,求OD。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.正六边形中,()A.B.C.D.【答案】D【解析】故选D2.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略3.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.4.(本小题满分10分)已知向量,,且,(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.【答案】(1),;(2)【解析】(1)首先根据向量积的坐标表示,然后再根据两角和的余弦公式进行化简,求向量的模,根据公式,展开公式,然后按照向量数量积的坐标表示和二倍角公式进行化简;(2),第一步先按二倍角公式展开,转化为关于的二次函数求最值,第二步,进行换元,配方,所以讨论,,三种情况,得到最小值,确定参数的取值.试题解析:(1),(2分)|,因为所以.(2)令因为,.∴原函数可化为①当,,即(不合题意,舍去).②当时,,即或(不合题意,舍去).③当时,矛盾.综上所述.【考点】1.向量数量积的坐标表示;2.三角函数的化简;3.二次函数求最值.5.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.6.已知屏幕上三点满足,则的形状是()A.等腰三角形B.对边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】设的中点为,则,为等腰三角形.故选A.【考点】(1)三角形的形状判断;(2)平面向量数量积的运算.7.在中,设,若点满足,则A.B.C.D.【答案】A【解析】由得,,答案选A.【考点】向量的线性运算8.已知,,若与垂直,则等于()A.1B.C.2D.4【答案】C【解析】,因为与垂直,则,【考点】(1)平面向量的数量积(2)向量的模9.如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.【答案】(1);(2);【解析】(1)根据中点坐标公式求出B点坐标,再利用向量数量积坐标式表示出即可;(2)结合已知图形,求出B点坐标,再求出C点坐标,然后写出OC所在直线方程,最后根据点到直线距离公式即可求出点A到OC的距离.试题解析:(1)点在轴正半轴上,,又点是线段的中点,,,;(2),,由点是线段的中点,,直线的方程为,即,点到直线的距离.【考点】1.中点坐标公式;2.向量数量积的坐标式;3.点到直线距离;10.(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值;(Ⅱ)若向量与的夹角为锐角,求的取值范围【答案】(1)(2)且【解析】(1)本题考察的是两向量的平行,可以先根据条件写出两个向量与的坐标,利用平行向量的条件,即可求出的值.(2)因为向量与的夹角为锐角,则向量的数量积大于0且不共线,根据条件代入公式即可求出的取值范围.试题解析:(Ⅰ)依题意得-------2分∵向量与平行∴,解得(Ⅱ)由(2)得∵向量与的夹角为锐角∴,且∴且【考点】平面向量的综合题11.若,则向量的夹角为()A.B.C.D.【答案】C【解析】因为,设与的夹角为,,则,故选C.【考点】数量积表示两个向量的夹角12.已知向量,,若,则代数式的值是()A.B.C.D.【答案】C【解析】因为向量,,,所以,解得,而=,故选择C【考点】1.共线向量的坐标表示;2.同角函数基本关系式13.如图,在正方形中,,点为的中点,点在边上.若,则.【答案】【解析】以A为坐标原点,AB为x轴,AD为y轴建立直角坐标系,则,可得,即,所以【考点】向量坐线性运算14.已知向量,,若⊥,则实数的值为()A.B.C.-D.2【答案】A【解析】两向量垂直,所以数量积为0,代入公式,解得,故选A.【考点】向量数量积的坐标表示15.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.【答案】(1)2 (2)【解析】(1)由两向量垂直得到数量积为零,代入向量的坐标可得到关于的关系式,将其整理可得到的值;(2)将转化为用角的三角函数表示,求向量的模的最大值转化为求函数最大值问题,求解时要注意正余弦值的范围试题解析:(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),又a与b-2c垂直,∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,∴4sin(α+β)-8cos(α+β)=0,得tan(α+β)=2.(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),∴|b+c|=当sin2β=-1时,|b+c|==4.max【考点】1.向量的坐标运算;2.向量的模;3.三角函数化简16.设为所在平面内一点,,则()A.B.C.D.【答案】A【解析】,.故A正确.【考点】平面向量的加减法.17.已知向量,且∥,则的最小值等于A.B.C.D.【答案】B【解析】由知,即,则.【考点】平面向量的坐标运算及用基本不等式求最值.18.已知的夹角为,则【答案】【解析】.【考点】1.向量的模;2.向量的内积.19.平面向量与的夹角为60°,=(2,0),=1,则|+2|等于()A.B.C.4D.12【答案】B【解析】【考点】向量的模与向量运算20.(本小题满分12分)已知平面向量,.(1)若,求的值;(2)若,求|-|.【答案】(1)(2)【解析】(1)由得到坐标关系式,代入相应坐标即可得到的值;(2)由直线平行得到坐标满足的的关系式,求得x值后,将向量用坐标表示,利用坐标求向量的模试题解析:(1)即(2)即当时,当时,【考点】1.向量平行垂直的判定;2.向量的模21.(本题满分15分)已知,,是同一平面上不共线的三点,且.(1)求证:;(2)若,求,两点之间的距离.【答案】(1)详见解析;(2).【解析】(1)将条件当中的式子变形,利用向量数量积的定义证明是等腰三角形即可;(2)根据(1)中所证再结合等腰三角形的性质,可将转化为与有关的方程,从而求解.试题解析:(1)由得,设为的中点,则,从而有,即,由于为的中点,且,因此由“三线合一”性质可知;(2)由(1)可知,,故,即,两点之间的距离为.【考点】1.等腰三角形的性质;2.平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.22.已知为非零向量,且,,则下列说法正确的个数为()(1)若,则;(2)若,则;(3)若,则;(4)若,则.A.1B.2C.3D.4【答案】D【解析】(1)因为,,,均为非零向量,且,所以,必不共线,则,表示以是,为邻边的平行四边形的两条对角线,且该平行四边形为菱形,所以,,故(1)正确;(2),所以,故(2)正确;(3)若,则必不共线,所以以为邻边的平行四边形是矩形,所以,故(3)正确;(4)若非零向量满足,即,则以为邻边的平行四边形是矩形,所以,故(4)正确.【考点】向量加法、减法的几何意义,数量积的运算性质和向量垂直的条件.23.(2015秋•大兴安岭校级期末)已知向量=(1,2),=(2,2).(1)求(2﹣)•(2+);(2)设=(﹣3,λ),若与夹角为钝角,求λ的值.【答案】(1)12;(2)λ>﹣,且λ≠6.【解析】(1)向量的坐标运算和向量的数量积的坐标运算计算即可,(2)若与夹角为钝角,则则•<0,问题得以解决.解:(1)∵=(1,2),=(2,2),∴2﹣=(2﹣2,4﹣2)=(0,2),2+=(2+2,4+2)=(4,6),∴(2﹣)•(2+)=0×4+2×6=12;(2)若与夹角为钝角,则•<0,•=(﹣3,λ)•(1,﹣2)=﹣3﹣2λ<0,即λ>﹣,且与不能方向,即﹣3×(﹣2)﹣λ≠0,解得λ≠6,故λ的范围为λ>﹣,且λ≠6.【考点】平面向量数量积的运算;平面向量的坐标运算.24.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.25.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-B.C.D.【答案】C【解析】,所以设与的夹角为.,,.故C正确.【考点】1向量的数量积;2向量的模长.【易错点睛】本题主要考查向量的数量积和模长问题,难度一般.先由向量的数量积公式求得夹角的余弦值,由余弦值可求得角的大小.但应注意两向量的夹角范围为,若忽略角的范围容易出错.26. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.27.已知,,,且与垂直,则实数λ的值为()A.B.C.D.1【答案】C【解析】由,所以,然后根据与垂直,展开后由其数量积等于0可求解λ的值.解:因为,所以,又,,且与垂直,所以==12λ﹣18=0,所以.故选C.【考点】数量积判断两个平面向量的垂直关系.28.(2015秋•嘉兴期末)已知向量是同一平面内的三个向量,其中.(1)若,且向量与向量反向,求的坐标;(2)若,且,求与的夹角θ.【答案】(1).(2).【解析】(1)令,根据模长关系列方程解出λ;(2)将展开求出,代入夹角公式计算.解:(1)设∵∴,∴.(2)∵||=,,∴2=5,2=.∵,∴22+3﹣22=+3=,∴.∴,∴.【考点】平面向量数量积的运算;平面向量的坐标运算.29.已知向量.(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.【答案】(1)3y﹣x≠1(2)或【解析】(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值解:(1)若点A,B,C能构成三角形,则这三点不共线,∵∴=(3,1),=(2﹣x,1﹣y),又与不共线∴3(1﹣y)≠2﹣x,∴x,y满足的条件为3y﹣x≠1(2)∵=(3,1),=(﹣x﹣1,﹣y),若∠B为直角,则AB⊥BC,∴3(﹣x﹣1)﹣y=0,又|AB|=|BC|,∴(x+1)2+y2=10,再由3(﹣x﹣1)﹣y=0,解得或.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.30.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6B.6C.3D.﹣3【答案】B【解析】根据与垂直的条件,得到数量积等于0,求变量K的值,展开运算时,用到|a|=|b|=1,a与b夹角是90°代入求解.解:∵×=(2+3)×(k﹣4)=2k+(3k﹣8)×﹣12=0,又∵×=0.∴2k﹣12=0,k=6.故选B【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.31.已知.(1)若,求的坐标;(2)设,若,求点的坐标.【答案】(1);(2).【解析】(1)由可求得的坐标,再利用向量的运算用表示出,从而求得的坐标;(2)可假设,能求的的坐标,由可得关系式,,将此关系式转化成关于的方程,求出,从而得到点的坐标.试题解析:(1)(2)设则,,解得因此,点的坐标为【考点】向量的运算.32.在中,,,,下列推导不正确的是()A.若,则为钝角三角形B.,则ΔABC为直角三角形C.,则为等腰三角形D.,则为正三角形【答案】D【解析】A中,由可知,,得为钝角三角形;B中,由可知,,得为直角三角形;C中,由知得,,,,则为等腰三角形;D中,,总是成立,不能得到为正三角形.故选D.【考点】平面向量的数量积.33.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1B.1:2C.1:3D.1:4【答案】B【解析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.【考点】向量的加法及其几何意义.34.如图,已知:,为的中点,为以为直径的圆上一动点,则的最大值是()A.B.C.D.【答案】A【解析】以直线为轴,圆心为坐标原点建立如图所示的直角坐标系,则,所以,,设,则,,其中(,),所以的最大值为.故选A.【考点】平面向量的线性运算,平面向量的数量积.【名师】本题考查平面向量的数量积,解题的关键是建立适当的直角坐标系,把向量用坐标表示出来.本题中建立如解析中所示的坐标系后,可以把表示出来了,引入圆的参数方程表示法,可以把向量用参数表示,这样就可两向量的数量积表示为的函数:,由三角函数的性质可求得最大值.35.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于 ( ) A.B.C.-D.-【答案】A【解析】,而,代入原式得到,整理为,即为,所以,故选A.【考点】向量36.设是平行四边形的对角线的交点,为平面上任意一点,则= A.B.C.D.【答案】D【解析】由已知得,,,,,而,,所以.故选D.【考点】平面向量的加法;相反向量.37.已知的三个顶点及所在平面内一点,若,若实数满足,则()A.B.3C.-1D.2【答案】B【解析】根据向量减法的运算法则可得所以,又因为,所以,故选B.【考点】平面向量的线性运算.38.在四边形中,设且,,则四边形的形状是()A.梯形B.矩形C.菱形D.正方形【答案】B【解析】,,故四边形为平行四边形,又因为,,,故平行四边形为矩形.【考点】向量加法、减法的几何意义.39.已知向量,,,若∥,则= .【答案】 5;【解析】由题:,, ,∥,则:【考点】向量的坐标运算及平行的性质.40.已知非零向量、,且,,,则一定共线的三点是()A.、B.、C.、、D.、【答案】A【解析】根据三点共线的性质,、;、、皆不可能共线,只有、,、有可能共线,假设、共线,,令,可求得,、共线成立,假设、共线,,令,无解,假设不成立,故本题的正确选项为A.【考点】三点共线的证明.【方法点睛】证明三点共线的方法有多种,有向量法,因为共线的三点中任意连接两点所成向量必共线,而由共线向量的性质可知,当两向量共线时(两向量均不为零向量),其对应坐标成比例或者满足,以此来判断三点是否共线;也可建立坐标系,由其中两点确定一条直线,再将第三点代入直线方程,看其是否在直线上;三点钟任意连接两点,可形成三个向量,通过三个向量的模长的关系也可判断三点是否共线.41.已知,点是线段上的点,,则点的坐标为()A.B.C.D.【答案】D【解析】假设,则有,所以有,可求得,故本题的正确选项为D.【考点】三点共线的性质.42.设和是两个单位向量,夹角是,试求向量和的夹角.【答案】.【解析】本题考查的知识点是数量积表示两个向量的夹角,由和是两个单位向量,夹角是,我们易得,,进而我们可以求出,,,然后代入,即可求出答案.试题解析:,,,.,,故.【考点】数量积表示两向量的夹角.43.已知点,,,,则向量在方向上的投影为【答案】【解析】,,则向量在方向上的投影为.【考点】向量数量积的几何意义.44.下列四个式子中可以化简为的是()①②③④A.①④B.①②C.②③D.③④【答案】A【解析】由向量加法三角形法则可知①正确,由向量减法的三角形法则可知④正确,故选A.【考点】向量加法、减法的三角形法则.45.已知向量满足:(1)求向量与的夹角(2)求【答案】(1)(2)【解析】(1)设向量的夹角为θ,求出,展开,代入后求得θ值;(2)利用,展开后求得答案试题解析:(1)设向量与的夹角为,,,得,(2)【考点】平面向量数量积的运算46.在菱形中,若,则等于()A.2B.-2C.D.与菱形的边长有关【答案】B【解析】由题在菱形中,若,由,【考点】向量的运算及几何意义.47.已知是两个单位向量.(1)若,试求的值;(2)若的夹角为,试求向量与的夹角【答案】(1)(2)【解析】(1)由题为单位向量,且,可利用向量乘法运算的性质;,化为向量的乘法运算,求出,进而可求得(2)由的夹角为,可利用向量乘法的性质,分别先求出的值,再利用可得.试题解析:(1),是两个单位向量,,又,,即.(2),,,夹角 .【考点】向量的乘法运算及性质.48.设向量,若,则.【答案】【解析】由题//,可得:【考点】向量平行的性质.49.已知向量=(3,x),=(﹣2,2)(1)若向量⊥,求实数x的值;(2)若向量﹣与3+2共线,求实数x的值.【答案】(1)x=3(2)x=﹣3【解析】解:(1)∵⊥,∴•=﹣6+2x=0,解得x=3.(2)﹣=(﹣5,2﹣x),3+2=(7,3x+2).∵﹣与3+2共线,∴7(2﹣x)+5(3x+2)=0,解得x=﹣3.【点评】本题考查了向量坐标运算性质、向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.50.若,且,则向量与的夹角为A.30°B.60°C.120°D.150°【答案】C【解析】由,则;,得:与的夹角为120°。

高中数学必修二 6 1 平面向量的概念(精练)(含答案)

高中数学必修二   6 1 平面向量的概念(精练)(含答案)

6.1 平面向量的概念(精练)【题组一向量与数量的区别】1.(2021·江苏·泰兴市第三高级中学高一月考)给出下列量:①角度;①温度;①海拔;①弹力;①风速;①加速度.其中是向量的有( )A.2个B.2个C.4个D.5个【答案】B【解析】根据题意,在①角度、①温度、①海拔、①弹力、①风速、①加速度中,是向量的有①弹力、①风速、①加速度,有3个,故选:B.2.(2021·浙江·高一课时练习)下列各量中是向量的是( )A.时间B.速度C.面积D.长度【答案】B【解析】既有大小,又有方向的量叫做向量;时间、面积、长度只有大小没有方向,因此不是向量.而速度既有大小,又有方向,因此速度是向量.故选:B.3.(2021·全国·高一课时练习)给出下列物理量:①密度;①路程;①速度;①质量;①功;①位移.下列说法正确的是A.①①①是数量,①①①是向量B.①①①是数量,①①①是向量C.①①是数量,①①①①是向量D.①①①①是数量,①①是向量【答案】D【解析】由物理知识可知,密度,路程,质量,功只有大小,没有方向,因此是数量而速度,位移既有大小又有方向,因此是向量.故选:D4.(2021·上海·高一课时练习)下列各量中,哪些是向量(即矢量),哪些是数量(即标量)?(1)密度(2)体积(3)电阻(4)推进力(5)长度(6)加速度向量:__________;数量:____________.(填写相应编号).【答案】(4)(6) (1)(2)(3)(5)【解析】密度、体积、电阻、长度都是只有大小没有方向的量,是数量;推进力、加速度是既有大小又有方向的量,是向量.故答案为:(4)(6);(1)(2)(3)(5).【题组二 向量的几何表示】1.(2021·全国·高一课时练习)一位模型赛车手遥控一辆赛车沿正东方向行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去.(1)按1①100比例作图说明当α=45°时,操作几次时赛车的位移为零;(2)按此法操作使赛车能回到出发点,α应满足什么条件?【答案】见解析.【解析】(1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零.按(1)的方式作图,则所作图形是内角为180α︒-的正多边形,由多边形的内角和定理可得(180)(2)180n n α︒-=-⋅︒, 解得360nα︒=,且3,*n n N ≥∈.故α应满足的条件为360nα︒=,且3,*n n N≥∈.2.(2021·全国·高一课时练习)如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B.点C为小正方形的顶点,且5AC=.(1)画出所有的向量AC;(2)求BC的最大值与最小值.【答案】(1)见解析;(2)【解析】(1)画出所有的向量AC,如图所示:(2)由(1)所画的图知,①当点C位于点C1或C2时,|BC|①当点C位于点C5或C6时,|BC|所以|BC|3(2021·全国·高一课时练习)在如图的方格纸(每个小方格的边长为1)上,已知向量a.(1)试以B为起点画一个向量b,使=b a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)根据相等向量的定义,所作向量b应与a同向,且长度相等,如下图所示.(2)由平面几何知识可作满足条件的向量c,所有这样的向量c的终点的轨迹是以点C为圆心,2为半径的圆,如下图所示.4.(2021·江苏·高一课时练习)在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为起点画一个向量b,使b a=;c=,并说出向量c的终点的轨迹是什么?(2)在图中画一个以A为起点的向量c,使5【答案】(1)作图见解析;(2)向量c的终点的轨迹是以A.【解析】(1)由题意,B为起点画一个向量b,使b a=,如图所示.c=,则向量c的终点表示以A(2)因为5【题组三向量相关概念的辨析】1.(2021·湖南·武广实验高级中学高一期末)下列四个命题正确的是( )A.两个单位向量一定相等B.若a与b不共线,则a与b都是非零向量C.共线的单位向量必相等D.两个相等的向量起点、方向、长度必须都相同【答案】B【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选:B.2.(2021·全国·高一课时练习)下列关于向量的描述正确的是A .若向量a ,b 都是单位向量,则a b =B .若向量a ,b 都是单位向量,则1a b ⋅=C .任何非零向量都有唯一的与之共线的单位向量D .平面内起点相同的所有单位向量的终点共圆【答案】D【解析】对于选项A :向量包括长度和方向,单位向量的长度相同均为1,方向不定,故向量a 和b 不一定相同,故选项A 错误;对于选项B :因为cos cos a b a b θθ⋅=⋅⋅=,由[]cos 1,1θ∈-知,1a b ⋅=不一定成立,故选项B 错误; 对于选项C :任意一个非零向量有两个与之共线的单位向量,故选项C 错误;对于选项D :因为所有单位向量的模为1,且共起点,所以所有单位向量的终点在半径为1的圆周上,故选项D 正确;故选:D.3.(2021·广西·田东中学)下列命题中,正确的个数是( ) ①单位向量都相等;①模相等的两个平行向量是相等向量;①若a →,b →满足a b →→>且a →与b →同向,则a b →→>; ①若两个向量相等,则它们的起点和终点分别重合;①若a →①,b b →→①c →,则b →①c →.A .0个B .1个C .2个D .3个 【答案】A【解析】对于①,单位向量的模长相等,但方向不一定相同,故①错误;对于①,模相等的两个平行向量是相等向量或相反向量,故①错误;对于①,向量是有方向的量,不能比较大小,故①错误;对于①,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故①错误;对于①,0b →→=时,若a b b c →→→→∥,∥,则a →与c →不一定平行.综上,以上正确的命题个数是0.故选:A.4.(2021·全国·高一课时练习)下列说法中,正确的个数是( )①时间、摩擦力、重力都是向量;①向量的模是一个正实数;①相等向量一定是平行向量;①向量a→与b→不共线,则a→与b→都是非零向量( )A.1B.2C.3D.4【答案】B【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;①零向量的模为零,故①错;①相等向量的方向相同,模相等,所以一定是平行向量,故①正确;①零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即①正确.故选:B.5.(2021·全国·高一课时练习)下列命题中正确的个数是①向量就是有向线段①零向量是没有方向的向量①零向量的方向是任意的①任何向量的模都是正实数A.0B.1C.2D.3【答案】B【解析】有向线段只是向量的一种表示形式,但不能把两者等同起来,故①错;零向量有方向,其方向是任意的,故①错,①正确;零向量的模等于0,故①错.故选:B.6.(2021·江苏·高一)下列各说法:①有向线段就是向量,向量就是有向线段;①向量的大小与方向有关;①任意两个零向量方向相同;①模相等的两个平行向量是相等向量.其中正确的有A.0个B.1个C.2个D.3个【答案】A【解析】有向线段是向量的几何表示,二者并不相同,故①错误;①向量不能比较大小,故①错误;①由零向量方向的任意性知①错误;①向量相等是向量模相等,且方向相同,故①错误.故选:A.7.(2021·全国·高一课时练习)下列说法中,正确的是( )①长度为0的向量都是零向量;①零向量的方向都是相同的;①单位向量都是同方向;①任意向量与零向量都共线.A.①①B.①①C.①①D.①①【答案】D【解析】①长度为0的向量都是零向量,正确;①零向量的方向任意,故错误;①单位向量只是模长都为1的向量,方向不一定相同,故错误;①任意向量与零向量都共线,正确;故选:D8.(2021·全国·高一课时练习)下列命题中正确的个数有( )①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;①单位向量都相等;①任一向量与它的相反向量不相等;①共线的向量,若起点不同,则终点一定不同.A.0B.1C.2D.3【答案】AAB CD,或A,B,C,D在同条直线上,故①错误;【解析】对于①,若向向量AB与CD是共线向量,则//对于①,因为单位向量的模相等,但是它们的方向不一定相同,所以单位向量不一定相等,故①错误;对于①,相等向量的定义是方向相同模相等的向量为相等向量,而零向量的相反向量是零向量,因为零向量的方向是不确定的,可以是任意方向,所以相等,故①错误;对于①,比如共线的向量AC与BC(A,B,C在一条直线上)起点不同,则终点相同,故①错误.故选:A.【题组四相等向量与平行向量】1.(2021·全国·高一课时练习)下图中与向量a相等的向量是( )A.b,c,e,f B.c,f C.f D.c【答案】D【解析】由相等向量的定义可知:两个向量的长度要相等,方向要相同,结合图形可知c满足条件,故选:D2.(2021·全国·高一课时练习)如图,点O是正六边形ABCDEF的中心,图中与CA共线的向量有( )A.1个B.2个C.3个D.4个【答案】C【解析】由图可知,根据正六边形的性质,与CA共线的有AC,DF,FD,共3个,故选:C.3.(2021·全国·高一课时练习)如图,四边形ABCD和ABDE都是边长为1的菱形,已知下列说法:①AE AB AD CD CB DE,,,,,都是单位向量;①AB①DE DE,①DC①与AB相等的向量有3个;①与AE共线的向量有3个;①与向量DC大小相等、方向相反的向量为DE CD BA,,.其中正确的是____.(填序号)【答案】①①①①【解析】①由两菱形的边长都为1,故①正确;①正确;①与AB 相等的向量是ED DC ,,故①错误;①与AE 共线的向量是EA BD DB ,,,故①正确;①正确.故答案为:①①①①4.(2021·上海·高一课时练习)如图,在长方体1111ABCD A B C D -中,3AB =,2AD =,11AA =,以长方体的八个顶点中两点为起点和终点的向量中.(1)单位向量共有______个;(2)______;(3)与AB 相等的向量有______;(4)1AA 的相反向量有______.【答案】8 1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB 11A B 、DC 、11DC 1A A 、1B B 、1C C 、1D D【解析】(1)由图可知,11111AA BB CC DD ====,所以单位向量有428⨯=个;(2)由图可知,1111A D AD BC BC ====1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;(3)由图可知,1111AB DC A B D C ===,所以与AB 相等的向量有:11A B 、DC 、11DC ;(4)由图可知,11111AA BB CC DD ====,所以1AA 的相反向量有:1A A 、1B B 、1C C 、1D D ; 故答案为:8;1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;11A B 、DC 、11DC ;1A A 、1B B 、1C C 、1D D .5.(2021·全国·高一课时练习)O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在如图所示的向量中:(1)分别找出与AO ,BO 相等的向量;(2)找出与AO 共线的向量;(3)找出与AO 模相等的向量;(4)向量AO 与CO 是否相等?【答案】(1)AO BF =,BO AE =;(2)BF ,CO ,DE ;(3)CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)不相等.【解析】因为O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形, 所以OA AE OD DE OC CF BF BO =======,AB CD BC AD ===;(1)由题中图形可得:AO BF =,BO AE =;(2)由图形可得,与AO 共线的向量有:BF ,CO ,DE ;(3)与AO 模相等的向量有:CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)向量AO 与CO 不相等,因为它们的方向不相同.6.(2021·全国·高一课时练习)如图所示,O 是正六边形ABCDEF 的中心,且OA =a ,OB =b ,OC =c .(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c .相等的向量.【答案】(1)OD ,BC ,AO ,FE .(2)EF ,BC ,OD ,FE ,CB ,DO ,AO ,DA ,AD .(3)与a 相等的向量有EF ,DO ,CB ;与b 相等的向量有DC ,EO ,FA ;与c 相等的向量有FO ,ED ,AB .【解析】(1)因为正六边形中各线段长度都相等,且方向相反的有:OD,BC,AO,FE.(2)由共线向量定理得:EF,BC,OD,FE,CB,DO,AO,DA,AD.与a共线.(3)由相等向量的定义得:与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,FA;与c 相等的向量有FO,ED,AB.。

高一数学(必修二)平面向量的概念及其应用练习题及答案

高一数学(必修二)平面向量的概念及其应用练习题及答案

高一数学(必修二)平面向量的概念及其应用练习题及答案一、单选题1.下列说法错误的是( ) A .向量CD 与向量DC 长度相等 B .单位向量都相等C .0的长度为0,且方向是任意的D .任一非零向量都可以平行移动2.设e 是单位向量,3AB e =,3CD e =-,3AD =,则四边形ABCD 是( ) A .梯形B .菱形C .矩形D .正方形3.已知向量,a b 满足2π1,2,,3a b a b ===,则()a ab ⋅+=( ) A .2-B .1-C .0D .24.已知向量a ,b 满足1a b ==,23a b +=,则向量a ,b 的夹角为( )A .30B .60C .120D .1505.如图,D 是AB 上靠近B 的四等分点,E 是AC 上靠近A 的四等分点,F 是DE 的中点,设AB a =,AC b =,则AF =( )A .344a b - B .344a b + C .388a b + D .388a b - 6.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥()a b +”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知45A =︒,2a =,2b =B 的大小为( ) A .30︒ B .60︒ C .30︒或150︒D .60︒或120︒8.已知平面四边形ABCD 满足13AD BC =,平面内点E 满足52BE CE =,CD 与AE 交于点M ,若BM x AB y AD =+,则yx等于( ) A .52B .52-C .43D .43-二、多选题9.下列说法正确的是( )A .a 与b 是非零向量,则a 与b 同向是a b =的必要不充分条件B .,,A BC 是互不重合的三点,若AB 与BC 共线,则,,A B C 三点在同一条直线上 C .a 与b 是非零向量,若a 与b 同向,则a 与b -反向D .设,λμ为实数,若a b λμ=,则a 与b 共线10.在ABC 中,已知π32A C ==,3CD DB =,则( ) A .+AB AC BC = B .2AC AD = C .13+44AD AB AC =D .AD BC ⊥11.已知向量()()()1,3,2,,a b y a b a ==+⊥,则( ) A .()2,3b =- B .向量,a b 的夹角为3π4C .172a b +=D .a 在b 方向上的投影向量是1,212.在ABC 中,内角,,A B C 的对边分别为,,a b c ,下列说法中正确的是( ) A .“ABC 为锐角三角形”是“sin cos A B >”的充分不必要条件 B .若sin 2sin 2A B =,则ABC 为等腰三角形 C .命题“若A B >,则sin sin A B >”是真命题D .若8a =,10c =,π3B =,则符合条件的ABC 有两个三、填空题13.P 在线段12PP 的反向延长线上(不包括端点),且12PP PP λ=,则实数λ的取值范围是___________.14.已知四边形ABCD 是边长为2的正方形,若3BC DE =,且F 为BC 的中点,则EA EF ⋅=______. 15.已知||1a =,()1,3b =,()b a a +⊥,则向量a 与向量b 的夹角为______.16.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b sin A =2c sin B ,cos B =14,b =3,则△ABC 的面积为________.四、解答题17.设1e ,2e 是两个不共线的向量,如果1232AB e e =-,124BC e e =+,1289CD e e =-. (1)求证:A ,B ,D 三点共线;(2)试确定λ的值,使122e e λ+和12e e λ+共线; (3)若12e e λ+与12e e λ+不共线,试求λ的取值范围.18.化简:(1)()()532423a b b a -+-; (2)()()()111232342a b a b a b -----;(3)()()x y a x y a +--.19.已知4a =,2b =,且a 与b 夹角为120°,求: (1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ-与3a b λ-平行,求实数λ的值.20.如图,在菱形ABCD 中,1,22CF CD CE EB ==.(1)若EF xAB y AD =+,求23x y +的值; (2)若6,60AB BAD ∠==,求AC EF ⋅.21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭.(1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.22.已知:a 、b 是同一平面内的两个向量,其中()1,2a =. (1)若5||2b =且a b +与b 垂直,求a 与b 的夹角θ ; (2)若()1,1b =且a 与a b λ+的夹角为锐角,求实数λ的取值范围.参考答案1.B 2.B 3.C 4.C 5.C 6.A 7.A 8.B 9.ABC 10.ABD 11.BD 12.AC 13.()1,0- 14.409 15.2π31691517.(1)证明:因为()121212124891284324BD BC CD e e e e e e e e AB=+=++-=-=-=,所以AB 与BD 共线.因为AB 与BD 有公共点B , 所以A ,B ,D 三点共线.(2)因为122e e λ+与12e e λ+共线, 所以存在实数μ,使()12122e e e e λλμ=++. 因为1e ,2e 不共线,所以2,1,λμλμ=⎧⎨=⎩所以22λ=±. (3)假设12e e λ+与12e e λ+共线,则存在实数m ,使()1212e e m e e λλ+=+.因为1e ,2e 不共线,所以1,,m m λλ=⎧⎨=⎩所以1λ=±.因为12e e λ+与12e e λ+不共线, 所以1λ≠±.18.(1)()()()()532423*********a b b a a a b b a b -+-=-+-+=-. (2)()()()111131211232342342322a b a b a b a a a b b b ⎛⎫⎛⎫-----=--+-++ ⎪ ⎪⎝⎭⎝⎭ 111123a b =-+.(3)()()()()2x y a x y a xa xa ya ya ya +--=-++=. 19.(1)解:因为()2224246844164a b a a b b -⋅+=-=++=,所以2221a b -=(2)因为()2222168412a b a a b b +=+⋅+=-+=,所以23a b +=,又()216412a b a a a b ⋅=+=-+⋅=, 所以()123cos ,43a ab a a b a a b⋅+<+>===⨯+ 所以a 与a b +的夹角为6π.(3)因为向量2a b λ-与3a b λ-平行, 所以()233a b k a b k a kb λλλ-=-=-, 因为向量a 与b 不共线,所以23k kλλ=⎧⎨=⎩,解得6λ=±20.(1)因为1122CF CD AB ==-,2CE EB =所以2233EC BC AD ==,所以21213232EF EC CF BC CD AD AB =+=+=-, 所以12,23x y =-=, 故231x y +=.(2)AC AB AD =+,()221211223263AC EF AB AD AB AD AB AB AD AD ⎛⎫∴⋅=+⋅-+=-+⋅+ ⎪⎝⎭,ABCD 为菱形,||||6,60AD AB BAD ∠∴===,所以66cos6018AB AD ⋅=⨯⨯=,2211261869263AC EF ∴⋅=-⨯+⨯+⨯=.21.(1)πππππ2sin cos cos cos 3636A A A A ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+=--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2πcos 21π13cos 624A A ⎛⎫++ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭,∴π31cos 22A ⎛⎫+=- ⎪⎝⎭,因为0πA <<,得ππ7π2333A <+<,所以π2π233A +=或4323ππA +=,解得π6A =或π2A =,因为a c <,得π2A <,∴π6A =. (2)由(1)知,6A π=,sin sin 43sin a A c C B +=,由正弦定理,得22312a c b +==,由余弦定理,得2222cos a b c bc A =+-⋅,即22312323c c c -=+-, 整理,得22390c c --=,由0c >得3c =, 所以11133sin 33222ABC S bc A ==⨯=△ 22.(1)解:由()a b b +⊥得()0a b b +⋅=,即2+0a b b ⋅= ,所以254a b b ⋅=-=-,得514cos 2552a b a bθ-⋅===-⋅⨯,又[]0,πθ∈,所以2π3θ=; (2)解:因为()1,2a =,()1,1b =,所以()()()1,21,11,2a b λλλλ+=+=++ 所以()0a a b λ⋅+>,则512403λλλ+++>⇒>-, 由//a a b λ+得0λ=,由与a 与a b λ+的夹角为锐角,所以5,0(0,)3λ⎛⎫∈-+∞ ⎪⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一平面向量测试题
一、选择题:
1.下列向量组中能作为表示它们所在平面内所有向量的基底的是 ( )
A .)0,0(=a ρ )2,1(-=b ρ
B .)2,1(-=a ρ
)4,2(-=b ρ C .)5,3(=a ρ )10,6(=b ρ D .)3,2(-=a ρ )9,6(=b ρ
2.已知向量)3,2(=→
a ,)2,1(-=→
b ,若→→+b n a m 与 →
→-b a 2共线,则
n
m
等于( ) A .21-
; B .2
1
; C .2-;
D .2;
3.已知两个非零向量2
2
),2,3(),6,3(,--=--=+则与=( )
A .-3
B .-24
C .21
D .12。

4. 在四边形ABCD 中,2+=,--=4,35--=,则四边形ABCD
的形状是( )A .长方形 B .平行四边形 C.菱形 D.梯形 5.已知向量a =(x ,y), b =( -1,2 ),且a +b =(1,3),则a 等于( ) A . 2 B . 3 C. 5 D. 10
6.已知向量a = (-3 ,2 ) , b =(x, -4) , 若a//b ,则x=( )
A 4
B 5
C 6
D 7
7.下列式子中(其中的a 、b 、c 为平面向量),正确的是
( )
A.=-
B.a (b ·c )= (a ·b )c
C.()()(,)a a λμλμλμ=∈R D .00=⋅ 8. 已知向量b a b a b a b a 与则满足,37|2|,3||,2||,=
+==的夹角为( )
A .30°
B .45°
C .60°
D .90°
9.已知向量等于则垂直与若a b a n b n a ρ
ρ
ρ
ρ
,),,1(),,1(-==( ) A .1
B .2
C .2
D .4 10.(2,1),(3,4)a b →

==,则向量a b →

在向量方向上的投影为 ( )
A
. B . 2
C .
D .10
11.,,3AB a AC b BD DC ===u u u r r u u u r r u u u r u u u r ,用,a b r r 表示AD u u u r ,则AD =u u u r
A B
C
D
A .34a b +r r
B .1344a b +r r
C .1144
a b +r r
D .3144
a b +r r
12.若平面向量b 与向量a =(1,-2)的夹角是180o
, 且
b 3=则b 等于( ).
A. (3,6)-
B. (3,6)-
C. (6,3)-
D. (6,3)-
13.已知→
a =2,→
b =3,→

-b a =7,则向量→a 与向量→
b 的夹角是( )
A .
6
π
B .
4π C .3π
D .2
π
14.已知非零单位向量a r 、b r 满足a b a b +=-r r r r
,则a r 与b a -r r 的夹角是( )
A .

4
B .π
3
C .
π
4
D .π6
15.已知)1,6(),2,3(-==,而)()(λλ-⊥+,则λ等于( )
A .1或2
B .2或-1
2
C . 2
D .以上都不对
16.已知向量(2,2),(5,)a b k =-=r r ,若a b +r r
不超过5,则k 的取值范围是( )
A .[-4,6] B. [-6,4] C. [-6,2] D. [-2,6]
17.设a 、b 是非零向量,)()()(,x x x f R x -⋅+=∈若函数的图象是一条直线,则 必有( ) A .⊥ B .//
C .||||=
D .||||≠
18.在△ABC 中,已知D 是AB 边上一点,若λλ则则,3
1
,2+===( ) A .
3
2 B .
3
1 C .-
3
1 D .-3
2
19.21,e e 是平面内不共线两向量,已知2121213,2,e e CD e e CB e k e AB -=+=-=,若D B A ,,三点共线,则k 的值是( ) A .2 B .3-
C .2-
D .3
二、填空题:
1.已知i r 与j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r 且a r 与b r
的夹角为锐角,则实数λ的
取值范围是
2.设向量a r 与b r
的模分别为6和5,夹角为120°,则||a b +r r 等于
3 已知向量1(3,2),(5,1),2OM ON MN =-=--u u u u r u u u r u u u u
r 则等于
4 已知平面内三点(2,2),(1,3),(7,)A B C x BA AC ⊥u u u r u u u r
满足,则x 的值为
5 设12e e u r u u r 、是两个单位向量,它们的夹角是ο
60,则1212(2)(32)e e e e -⋅-+=u r u u r u r u u r
6.已知向量
(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,且A 、B 、C 三点共线, 则k = .
7.若向量)4,3(-=a ρ,则与a ρ
平行的单位向量为________________ , 与a ρ
垂直的单位向量为______________________。

三、解答题:
1 已知3280A AB -=u u u r
(,),(,),求线段AB 的中点C 的坐标
2 已知4,5,a b a b ==r r r r 与的夹角为ο
60,求3a b -r r
3.已知,1||,2||==b a ϖϖa ϖ与b ϖ的夹角为3
π
,若向量b k a ϖϖ+2与b a ϖϖ+垂直, 求k.
4.已知(1,2)a =r
,)2,3(-=,当k 为何值时,
(1)ka b +r r 与3a b -r r
垂直?
(2)ka +r 与3a -r
平行?平行时它们是同向还是反向?
5 平面向量(3,,4),(2,),(2,),a b x c y =-==r r r 已知a r ∥b r
,a c ⊥r r ,求b c r r 、
及b c r r 与夹角 6.已知).1,2(),0,1(==b a ϖϖ
① 求|3|b a ϖ
ϖ+;
②当k 为何实数时,k -a ϖb ϖ与b a ϖ
ϖ3+平行, 平行时它们是同向还是反向? 7.已知向量(3,4),(6,3),(5,3)OA OB OC x y =-=-=---u u u r u u u r u u u r

(1)若点,,A B C 能构成三角形,求,x y 满足的条件;
(2)若ABC ∆为等腰直角三角形,且B ∠为直角,求,x y 的值.。

相关文档
最新文档