高一数学《平面向量》单元测试.docx
(word完整版)高一数学数学必修4平面向量复习题

1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为(D )2A.1B.2C. 2A. 2B. 2 2C. 1D.12r r rr r r r r r uu r r r 2解析Q a,b,c 是单位向量a c ?bc ago (a b)gs crr r _ r r r1 |ab|gc| 1 <2cos ab,c 1.2.2.已知向量a 2,1 ,ab 10,|ab| 5J2,则 |b|(C )A. .5B. .10C.5D. 25r r 宀 r 宀 r r r 宀“ r2 2 2 2解析 Q50 |a b| |a | 2a gD |b| 5 20 | b ||b| 5 故选 C.3.平面向量a 与b 的夹角为600, a (2,0) , b 1则a 2b ( B )A.、3B. 2 3C. 4D.2解析 由已知 |a|= 2,|a + 2b|2= a 2 + 4a b + 4b 2= 4+ 4X2X1 Xcos60° + 4= 12A a 2b2^3LUIUuiuuuu uiPC) = 2AP PM=2 AP PM cosO 2 -5.已知a 3,2 , b1,0,向量a b 与a2b 垂直,则实数的值为()1 A.—1 B.-1 C.—D.17766uuruur uuu UUJ uujruuu6.设 D 、E 、 F 分别是△ ABC 的三边 BC 、CA 、AB 上的点,且DC2BD,CE2EA, AF 2FB,UJLT 则ADUUU uuu uuu BE CF 与 BC(A)A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直(A )4444A.B.c.D.9339uu 由APUuu UJ uuuu 解析 2PM 知,p 为 ABC 的重心,根据向量的加法 ,PB P C2PM则 uur 4.在 ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足学PALunn uur uuu uuu2PM ,则 PA (PB PC)等于uuruuu uiuuu uuu AP (PB1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为( D )27.已知a , b 是平面内两个互相垂直的单位向量,右向量 c 满足(ac) (b c)0,则 c 的最大值是(C )3 4uuu uuu uuur8.已知O 是厶ABC 所在平面内一点,D 为BC 边中点,且2OA OB OC 0,那么( A )则—的取值范围是mA .、3B . 2.3C .6 D . 2、616.在平行四边形 ABCD 中, uuu AE 1 uuu unr-AB, AF1 UULT一AD , CE 与BF 相交于G 点.的最小值为(B ) A. uuir unr AO ODunr uuir B. AO 2ODuuir uuirC. AO 3ODuur unr D. 2AO OD 9•设a5 ^2(4,3) , a 在b 上的投影为 ,b 在x 轴上的投影为2,且 | b |< 14,则 b 为(B ) (2,4)2,C .D . (2,) 10.设a, b 是非零向量,若函数f(x)(xa b) (a xb )的图象是一条直线, 则必有( A )11.设两个向量a ( 2,a//2cos C . |a|)和b|b|D . |a| |b|mm,—2 sin ,其中,m, 为实数.若a 2b ,A . [-6, 1]B. [4,]C. (-6, 1] D . [-1 , 6]12.已知向量a(1, n),(1, n ),若2a b 与b 垂直,则|a(C13•如图,已知正六边形 RP 2P 3P 4P 5P 6 ,F 列向量的数量积中最大的是(A. RP2 ,R F 3B. P 1P 2, P 1P4C. P 1P 2 , P 1 P 5D.P 1P 2 ,P 1P614.已知向量a 尢,|e |= 1,对任意t € R , 恒有|a - t e | 冷一e |,贝y ( B )A. a 丄 eB. e 丄(a - e )C.a 丄(a - e )D.(a + e )丄(a - e )15.已知向量 unr unr n uurOA , OB 的夹角为一,|OA| 4 ,3luu r|OB| 1,若点 M 在直线 OB 上,贝U |&A OM |uuu r uur r uuur AB a, AD b,则AG342 r 1 r 2 rA. a bB. a7 7 7 17.设向量a与b的夹角为A」10 B. 3b 73.10 10C.(2,1),C.1 r r 4 rb D. a7 72b (4,5),则cosD.18.已知向量a , b的夹角为3,且|a||b| 1 ,19.20.21.22.23.24.中,25.7等于D 则向量a与向量a 2b的夹角等于(5A .6已知向量A. [0, .2]已知单位向量A . 2.3在厶ABC 已知向量已知向量中,arOib-r-|b|其中b均为非零向量, 则| p |的取值范围是(B )B.[0,1]C.(0,2]D.[0,2]a,b的夹角为一,那么a2bAR 2RB,CP 2PR,若AP mAB nAC,贝U mC.a和b的夹角为120 ,B. 7|a| 2,且(2aOAA. [0,4]b) a,则|b |(0,2),OB (2,0),BCB .[冷C 2 cos ,2 sinC. [4,3T]),贝UOA与OC夹角的取值范围是(上海)直角坐标系xOy中,i, j分别是与x, y轴正方向同向的单位向量. 在直角三角形ABC若AB 2i A. 1 j, AC 3i k j,则k的可能值个数是(B. 2若四边形ABCD满足AB CDc.「uuu0 , (AB3uiur uuirAD) ACD. 4则该四边形一定是BA.直角梯形B.菱形C.矩形D.正方形ir r ir 26.已知向量m,n的夹角为一,且|m |6uuir D为BC边的中点,贝U | AD |(乜,订| 2 ,在△ABC中,uuuABir r uuur ir r2m 2n,AC 2m 6n,112427. A . 2 uuu|OA|已知A.3 B . uuu,|OB| .3 ,OA?O B =0 , AOCD . 8uuur 30o ,设OC uuu uuu mOA nOB (m, nR),则D. 28.如图, 其中45°直角三角板的斜边与 所对的直角边重合.若 x , y 等于B x 3, y 1B. 345°直角三角板和 30°直角三角板拼在一起, 直角三角板的 30°角 uuur y DA , uu u DB 30° uuu r DC 则A. C. x 2, y . 3 二、填空题 1. 若向量 a , b 满足 2. 3. 4. 5. 6. 7.8. 答案 .7 设向量 答案 1 3,y 3 3,y 1 3 1,b 2且a 与b 的夹角为—, 3 a (1,2), (2,3),若向量 a b 与向量c (4, 7)共线,则已知向量a 与b 的夹角为120°,且a b 4,那么 b (2a b)的值为答案 0 已知平面向量a (2,4) , b ( 1,2).答案 8,2b 的夹角为120 ,答案设向量 答案若向量 答案若向量 答案uuuAB60若 c a (a 则5a bb)b , 则|C|uu ur 2, ACuuu uur3, AB AC | J 19,则r r aba 与b 的夹角为60 , 1,则 a? a bCABa,b 满足2,(a b) a ,则向量a 与b 的夹角等于uuu UULT LUU LUT UJU9. O 为平面上定点,A, B, C 是平面上不共线的三若 (OB OC ) •OB OC 2OA)=0,贝U ABC 的形状是 __________________________ .等腰三角形答案 -2510.不共线的向量m^ , m 2的模都为2,若a3m i2m 2 , b 2mi 3m 2 ,则两向量a b 与a b 的夹角为 _________________ 90 ° 11 •定义一种运算 S a b ,在框图所表达的算法中揭示了这种运算“”的含义•那么,按照运算 “”的含义,计算 tan 15o tan300 tan300 tan 15o _________ 1 ___r r12、 已知向量 a (cos15o ,sin150), b ( sin 150, cos1S),贝y a b 的值为 ________ . 答案113、 已知 Rt △ ABC 的斜边BC=5 ,则 AB BC BC CA CA AB 的值等于y 轴平行的单位向量,若直角三角形ABC 中,uur r AB ir uuur r rj , AC 2i mj ,则实数 m=答案 —2或0三、解答题rr r r r r1、已知ia 4,|b| 3,(2a — 3b) (2a b) 61 ,r rr r(1 )求 a b 的值;求a 与b 的夹(3)求b 的值;r r r r 心解:(1)由(2a —3b) (2a b) 61 得4a r r 「2「2又由 k 4,|b| 3得 a 16, 9代入上式得64 4a b 2761 a br rr3b14.在直角坐标系xOy 中,i[j 分别是与x 轴,艸(13|fr!=4・得卜2・{妨=』_虛讪一&r5 52’uuuruur uur(2, 4),在向量OC 上是否存在点P ,使得PA PB ,若存在,求出点P 的坐标,若不存在,请说明理由。
重点中学平面向量单元测试题(含答案)

平面向量单元测试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.向量a =(1,-2),向量a 与b 共线,且|b |=4|a |.则b =( )A .(-4,8)B .(-4,8)或(4,-8)C .(4,-8)D .(8,4)或(4,8)2.已知a=(2,1),b =(x ,1),且a +b 与2a -b 平行,则x 等于( )A .10B .-10C .2D .-23.已知向量a 和b 满足|a |=1,|b |=2,a ⊥(a -b ).则a 与b 的夹角为( ) A .30º B .45º C .75º D .135º4.设e 1、e 2是两个不共线向量,若向量 a =3e 1+5e 2与向量b =m e 1-3e 2共线,则m 的值等于( )A .- 53B .- 95C .- 35D .- 595.设□ABCD 的对角线交于点O ,AD → =(3,7),AB → =(-2,1),OB → =( )A .( -52 ,-3)B .(52 ,3)C .(1,8)D .(12 ,4) 6.设a 、b 为两个非零向量,且a ·b =0,那么下列四个等式①|a |=|b |;②|a +b |=|a -b |; ③a ·(b +a )=0;④(a +b )2=a 2+b 2.其中正确等式个数为( )A .0B .1C .2D .37.下列命题正确的是( )A .若→a ∥→b ,且→b ∥→c ,则→a ∥→c B .两个有共同起点且相等的向量,其终点可能不同 C .向量AB 的长度与向量BA 的长度相等D .若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线8.a =),(21-,b =),(1-1,c =),(2-3用a 、b 作基底可将c 表示为c =p a +q b ,则实数p 、q 的值为( )A .p =4 q =1B . p =1 q =4C . p =0 q =4D . p =1 q =09.设平面上四个互异的点A 、B 、C 、D ,已知(DB → +DC → -2DA → )·(AB→ -AC → )=0.则ΔABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形10.设()()2211,,,y x b y x a ==定义一种向量积()()().,,,21212211y y x x y x y x b a =⊗=⊗已知,0,3,21,2⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=πn m 点()y x P ,在x y sin =的图象上运动,点Q 在()x f y =的图象上运动,且满足(),为坐标原点其中O n OP m OQ +⊗=则()x f y =的最大值A 及最小正周期T 分别为( ) A .π,2 B .,2π4 C .,21π4 D .π,21二、填空题:每小题5分,共25分.11.已知()2,1,10==b a ,且b a //,则a 的坐标为_______ 12.已知向量a 、b 满足a=b =1,b a 23-=3,则 b a +3 =13.已知向量a =( 2 ,- 2 ),b =( 3 ,1)那么(a +b )·(a -b )的值是 . 14.若a =(2,3),b =(-4,7),a +c =0,则c 在b 方向上的投影为 .15.若对n 个向量 a 1,a 2,a 3,…,a n ,存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1 a 1+k 2a 2+…+k n a n =0成立,则称a 1,a 2,…,a n 为“线性相关”.依此规定,能使a 1=(1,0),a 2=(1,-1),a 3=(2,2)“线性相关”的实数k 1,k 2,k 3 依次可以取 . 三、解答题16.(本题满分13分)已知向量a =(sin 2x ,cos 2x),b =(sin 2x ,1), )(x f )=8a ·b .(1)求)(x f 的最小正周期、最大值和最小值.(2)函数y=)(x f 的图象能否经过平移后,得到函数y=sin4x 的图象,若能,求出平移向量m ;若不能,则说明理由.17.(本题满分12分)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c .已知222a c b -=,且sin 4cos sin B A C =,求b .18.(本题满分13分)如图,在矩形ABCD 中,,,22==BC AB 点E 为BC 的中点,点F 在边CD 上,若,2=⋅AF AB 求BF AE ⋅的值.19. (本题满分12分)已知向量OA→ =3i -4j ,OB → =6i -3j ,OC → =(5-m )i -(4+m )j ,其中i 、j 分别是直角坐标系内x 轴与y 轴正方向上的单位向量.(1)若A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ΔABC 为直角三角形,且∠A 为直角,求实数m 的值.20.(本题满分12分)已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ; (2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈,若0=⋅a n ,试求||b n +的取值范围.21. (本题满分13分)已知向量a 、b 、c 、d ,及实数x 、y ,且|a |=1,|b |=1,c =a +(x 2-3)b ,d =-y a +x b ,如果a ⊥b ,c ⊥d ,且|c |≤10 .(1)求x 、y 的函数关系式y =f (x )及定义域;(2)判断f (x )的单调性,指出单调区间,并求出函数的最大值、最小值.ECA BDF答案一、选择题1.B2.C3.B4.B5.A6.C7.C8.B9. B 10. D 二、填空题11.),),((22-2-22,2 12.23 13.0 14.- 65515.-4,2,1 . 16.解:(1)f(x)=8a ·b =8(sin 2x ,cos 2x)·(sin 2x ,1) = 8(sin 4x +cos 2x)= 2(1-cos2x)2+4(1+cos2x) =2(1-2cos2x +cos 22x)+4+4cos2x =6+2cos 22x=7+cos4x .∴f(x)的最小正周期为最大值为8,最小值为6.(2)假设它的图象可以按向量m =(h,k)平移后得到y=sin4x 的图象.故按向量平移后便得到y=sin4x 的图象.17.3818.略19. (1)AB → =(3,1) ,AC → =(2-m ,-m ),AB → 与AC →不平行则m ≠1 .(2)AB → · AC → =0 m =2320.解:(1)令⎩⎨⎧-==⎩⎨⎧=-=⇒⎪⎩⎪⎨⎧-=+⋅-=+=1001143cos 21),(22y x y x y x y x y x n 或则π )1,0()0,1(-=-=∴n n 或 3分(2))1,0(0),0,1(-=∴=⋅=n a n a 4分)1sin ,,(cos -=+x x b n 6分b n +=222)1(sin cos -+x x =x sin 22-=)sin 1(2x -; 8分∵ ―1≤sinx ≤1, ∴ 0≤b n +≤2, 10分21. 提示:(1) 由 |c |≤10 ,及a ·b = 0得 -6≤ x ≤6 又由c ⊥d 得 y =x 3-3x(2)单调增区间为[-6,-1]、[1,6],单调减区间为[-1,1] 最大值为f (6)=36,最小值为f (-6)=-36 .。
高一数学《平面向量》单元测试

高一数学《平面向量》单元测试姓名: 班级:一、 选择题(共8小题,每题5分)1. 下列命题正确的是 ( )A .单位向量都相等B . 任一向量与它的相反向量不相等C .平行向量不一定是共线向量D .模为0的向量与任意向量共线2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于( )A .34B .34-C .43D .43- 3.在以下关于向量的命题中,不正确的是 ( )A .若向量a =(x ,y ),向量b =(-y ,x )(x 、y ≠0),则a ⊥bB .四边形ABCD 是菱形的充要条件是=,且||=||C .点G 是△ABC 的重心,则GA +GB +CG =0D .△ABC 中,AB 和的夹角等于180°-A4.设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为( )A .-9B .-6C .9D .6 5.若||1,||2,a b c a b ===+ ,且c a ⊥ ,则向量a 与b 的夹角为( )A .30°B .60°C .120°D .150°6.在△ABC 中,A >B 是sin A >sin B 成立的什么条件( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.若将函数x y 2sin =的图象按向量平移后得到函数)42sin(π-=x y -1的图象,则向量可以是: ( )A . )1,8(-πB . )1,8(π-C . )1,4(πD .)1,4(--π 8.在△ABC 中,已知S ABC ⋅===∆则,3,1||,4||的值为( ) A .-2 B .2 C .±4 D .±2二、 填空题(共4小题,每题5分)9.已知向量、的模分别为3,4,则|-|的取值范围为 .10.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .11.设21e e 是两个单位向量,它们的夹角是60,则=+-⋅-)23()2(2121e e e e12.在∆ABC 中,a =5,b=3,C=0120,则=A sin 三、 解答题(共40分)13.设21,e e 是两个垂直的单位向量,且2121,)2(e e e e λ-=+-=(1)若a ∥b ,求λ的值; (2)若⊥,求λ的值.(12分)14.设函数x f ⋅=)(,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R. (1)若f(x)=1-3且x ∈[-3π,3π],求x ; (2)若函数y =2sin2x 的图象按向量=(m ,n) (|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值. (14分)15. 已知△ABC 三个内角A 、B 、C 的对边分别为a 、b 、c ,向量)2sin ,2(cosC C m =,)2sin ,2(cos C C n -=,且n m 与的夹角为.3π (1)求角C 的值; (2)已知27=c ,△ABC 的面积233=S ,求b a +的值. (14分)。
平面向量单元测试题及答案

平面向量单元测试题(一)2一,选择题:1,下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2,下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若AB =DC ,则A 、B 、C 、D 四点构成平行四边形C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量D. AB 与BA 是两平行向量3,下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量AB 的长度与向量BA 的长度相等,D 、若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。
4,已知向量(),1m =a ,若,a=2,则m =( )A .3 C. 1± D.3±5,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ∥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,6,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ⊥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,7,在ABC ∆中,若=+,则ABC ∆一定是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定8,已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B 060C 030D 90o二,填空题:(5分×4=20分)9。
已知向量a 、b 满足==1,a 3-=3,则a +3=10,已知向量a =(4,2),向量b =(x ,3),且a //b ,则x =11,.已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =12,.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像, 则平移向量a 是(用坐标表示)三,解答题:(10分×6 = 60分)13,设),6,2(),3,4(21--P P 且P 在21P P =,,则求点P的坐标14,已知两向量),1,1(,),31,,31(--=-+=b a 求a 与b 所成角的大小,15,已知向量a =(6,2),b =(-3,k ),当k 为何值时,有(1),a ∥b ?(2),a ⊥b ?(3),a 与b 所成角θ是钝角?16,设点A (2,2),B (5,4),O 为原点,点P 满足OP =OA +AB t ,(t 为实数);(1),当点P 在x 轴上时,求实数t 的值;(2),四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由, 17,已知向量OA =(3, -4), OB =(6, -3),OC =(5-m, -3-m ),(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.18,已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈, 若0=⋅a n ,试求||b n +的取值范围.平面向量单元测试题2答案:一,选择题:A D C D B C C A二,填空题: 9,23; 10,6; 11,13132 12,)3,2(- 三,解答题:13,解法一:设分点P (x,y ),∵P P1=―22PP ,λ=―2 ∴ (x ―4,y+3)=―2(―2―x,6―y),x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15,∴ P(―8,15)解法二:设分点P (x,y ),∵P P1=―22PP , λ=―2 ∴ x=21)2(24---=―8,y=21623-⨯--=15, ∴ P(―8,15)解法三:设分点P (x,y ),∵212PP P P =,∴―2=24x+, x=―8,6=23y+-, y=15, ∴ P(―8,15)14,解:a=22, b =2 , cos <a ,b >=―21, ∴<a ,b >=1200, 15,解:(1),k=-1; (2), k=9; (3), k <9,k ≠-116,解:(1),设点P (x ,0),AB =(3,2),∵OP =OA +AB t ,∴ (x,0)=(2,2)+t(3,2),⎩⎨⎧+=+=,22032,t t x 则由∴⎩⎨⎧-=-=,11t x 即(2),设点P (x,y ),假设四边形OABP 是平行四边形,则有OA ∥BP , ⇒ y=x ―1,OP ∥AB ⇒ 2y=3x ∴⎩⎨⎧-=-=32y x 即……①,又由OP =OA +AB t ,⇒(x,y)=(2,2)+ t(3,2),得 ∴⎩⎨⎧+=+=t y t x 2223即……②,由①代入②得:⎪⎪⎩⎪⎪⎨⎧-=-=2534t t ,矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。
(完整版)平面向量单元测试卷及答案

《平面向量》单元测试卷一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( ) A 、→-→-BA AB 与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。
2.;;④;③∥;②是单位向量;①是任一非零向量,若1|b |0|a |b a |b ||a |b a ±=>>→→→→→→→→),其中正确的有(⑤→→→=b a a|| A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.首尾相接能,,;命题乙:把命题甲:是任意三个平面向量,,,设→→→→→→→→→→=++c b a 0c b a c b a 围成一个三角形。
则命题甲是命题乙的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.)的是(下列四式中不能化简为→-AD A 、→-→-→-++BC CD AB )(B 、)()(→-→-→-→-+++CD BC MB AM C 、)()(→-→-→-→--++CB AD AB ACD 、→-→-→-+-CD OA OC5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CGD 、→-→-→-=+BC 21FC 32DA 31图17.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA 、4πB 、6πC 、3πD 、36ππ或 8.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34 C 、73 D 、74二、填空题(本题共4小题,每题5分,共20分) 11.。
平面向量单元测试卷及答案

《平面向量》单元测试卷一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( ) A 、→-→-BA AB 与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。
2.;;④;③∥;②是单位向量;①是任一非零向量,若1|b |0|a |b a |b ||a |b a ±=>>→→→→→→→→),其中正确的有(⑤→→→=b a a|| A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.首尾相接能,,;命题乙:把命题甲:是任意三个平面向量,,,设→→→→→→→→→→=++c b a 0c b a c b a 围成一个三角形。
则命题甲是命题乙的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.)的是(下列四式中不能化简为→-AD A 、→-→-→-++BC CD AB )(B 、)()(→-→-→-→-+++CD BC MB AM C 、)()(→-→-→-→--++CB AD AB ACD 、→-→-→-+-CD OA OC5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CG D 、→-→-→-=+BC 21FC 32DA 317.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA B C D EFG ͼ1A 、4πB 、6πC 、3πD 、36ππ或 8.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34 C 、73 D 、74二、填空题(本题共4小题,每题5分,共20分) 11.。
人教A版高一数学必修第二册第六章《平面向量及其应用》单元练习题卷含答案解析 (2)

高一数学必修第二册第六章《平面向量及其应用》单元练习题卷5(共22题)一、选择题(共10题)1. 在 △ABC 中,E ,F 分别为 AB ,AC 的中点,P 为 EF 上的任一点,实数 x ,y 满足 PA ⃗⃗⃗⃗⃗ +xPB ⃗⃗⃗⃗⃗ +yPC ⃗⃗⃗⃗⃗ =0⃗ ,设 △ABC ,△PBC ,△PCA ,△PAB 的面积分别为 S ,S 1,S 2,S 3,记 S 1S=λi (i =1,2,3),则 λ2⋅λ3 取到最大值时,2x +y 的值为 ( ) A . −1 B . 1C . −32D . 322. 在 △ABC 中,已知 b =2√3,c =2,C =30∘,那么 a 等于 ( ) A . 2 B . 4 C . 2 或 4 D .无解3. 若 ∣∣AB ⃗⃗⃗⃗⃗ ∣∣=5,∣∣AC ⃗⃗⃗⃗⃗ ∣∣=4,则 ∣∣BC ⃗⃗⃗⃗⃗ ∣∣ 的取值范围是 ( ) A . [1,5] B . [1,9] C . [4,5] D . [0,9]4. 正方形 ABCD 的边长为 2,E 是线段 CD 的中点,F 是线段 BE 上的动点,则 BF ⃗⃗⃗⃗⃗ ⋅FC ⃗⃗⃗⃗⃗ 的取值范围是 ( ) A . [−1,0]B . [−1,45]C . [−45,1]D . [0,1]5. 若 P 1P ⃗⃗⃗⃗⃗⃗⃗ =4P 2P ⃗⃗⃗⃗⃗⃗⃗ ,则下列各式中不正确的是 ( )A . ∣P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣=2∣P 2P ⃗⃗⃗⃗⃗⃗⃗ ∣B . ∣P 1P ⃗⃗⃗⃗⃗⃗⃗ ∣=4∣P 2P ⃗⃗⃗⃗⃗⃗⃗ ∣C . ∣P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣=3∣P 2P ⃗⃗⃗⃗⃗⃗⃗ ∣D . 4∣P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣=3∣P 1P ⃗⃗⃗⃗⃗⃗⃗ ∣6. 已知点 C 为线段 AB 上一点,P 为直线 AB 外一点,PC 是 ∠APB 的角平分线,I 为 PC 上一点,满足 BI ⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +λ(AC ⃗⃗⃗⃗⃗ ∣∣AC ⃗⃗⃗⃗⃗ ∣∣+AP ⃗⃗⃗⃗⃗ ∣∣AP ⃗⃗⃗⃗⃗ ∣∣)(λ>0),∣∣PA ⃗⃗⃗⃗⃗ ∣∣−∣∣PB ⃗⃗⃗⃗⃗ ∣∣=4,∣∣PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ ∣∣=10,则 BI⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ ∣∣BA ⃗⃗⃗⃗⃗ ∣∣的值为 ( ) A .2 B .3 C .4 D .57. 已知非零向量 a ,b ⃗ 满足 ∣a ∣=6∣∣b ⃗ ∣∣,a ,b ⃗ 的夹角的余弦值为 13,且 a ⊥(a −kb ⃗ ),则实数 k 的值为 ( ) A . 18 B . 24 C . 32 D . 368. 在 △ABC 中,AC =3,BC =√7,AB =2,则 AB 边上的高等于 ( ) A . 2√3 B .3√32C .√262D . 329. 已知点 O 是 △ABC 内部一点,满足 OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ =mOC ⃗⃗⃗⃗⃗ ,S △AOB S △ABC=47,则实数 m 为 ( ) A . 2 B . −2 C . 4 D . −410. 已知 A ,B 都是数轴上的点,O 为原点,A (3),B (−2),则 3OA ⃗⃗⃗⃗⃗ +4OB ⃗⃗⃗⃗⃗ 的坐标为 ( ) A . 17B . 1C . −1D . −17二、填空题(共6题)11. 设 I 为 △ABC 的内心,三边长 AB =7,BC =6,AC =5,点 P 在边 AB 上,且 AP =2,若直线 IP 交直线 BC 于点 Q ,则线段 QC 的长为 .12. 如图,两块全等的等腰直角三角板拼在一起形成一个平面图形,若直角边长为 2,且 AD⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,则 λ+μ= .13. 设向量 a =(3,3),b ⃗ =(1,−1),若 (a +λb ⃗ )⊥(a −λb ⃗ ),则实数 λ= .14. 思考辨析,判断正误.在 △ABC 中,若 a 2+b 2−c 2=0,则角 C 为直角.( )15. 如图,在折线 ABCD 中,AB =BC =CD =4,∠ABC =∠BCD =120∘,E ,F 分别是 AB ,CD的中点,若折线上满足条件 PE⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =k 的点 P 至少有 4 个,则实数 k 的取值范围是 .16. 山上有一塔,高 50 m ,自山下地面某点测得塔顶仰角为 75∘,测得塔底仰角为 45∘,则山高m .三、解答题(共6题)17. 已知 ∣a ∣=1,∣∣b ⃗ ∣∣=2,a与 b ⃗ 夹角 π3,m ⃗⃗ =3a −b ⃗ ,n ⃗ =ka +2b ⃗ . (1) 当 k 为何值时,m ⃗⃗ ∥n ⃗ ? (2) 当 k 为何值时,m ⃗⃗ ⊥n ⃗ ?18. 已知 △ABC 的三个内角 A ,B ,C 的对边分别是 a ,b ,c ,a >c ,且 2csinA =√3a .(1) 求角 C 的大小;(2) 若 c =4,△ABC 的面积为 √3,求 △ABC 的周长.19. 在 △ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,且 bsinA =√3acosB .(1) 求角 B 的大小;(2) 若 b =3,sinC =2sinA ,求 a ,c 的值.20. 已知锐角 △ABC ,同时满足下列四个条件中的三个 ①A =π3;②a =13;③c =15;④sinC =13.(1) 请指出这三个条件,并说明理由; (2) 求 △ABC 的面积21. 对于任意实数 a ,b ,c ,d ,表达式 ad −bc 称为二阶行列式(determinant ),记作 ∣∣∣ab cd ∣∣∣. (1) 求下列行列式的值:① ∣∣∣1001∣∣∣; ② ∣∣∣1326∣∣∣; ③ ∣∣∣−2510−25∣∣∣;(2) 求证:向量 p =(a,b ) 与向量 q =(c,d ) 共线的充要条件是 ∣∣∣a b cd ∣∣∣=0. (3) 讨论关于 x ,y 的二元一次方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1a 2b 1b 2≠0) 有唯一解的条件,并求出解.(结果用二阶行列式的记号表示)22. 已知 O 为坐标原点,对于函数 f (x )=asinx +bcosx ,称向量 OM⃗⃗⃗⃗⃗⃗ =(a,b ) 为函数 f (x ) 的伴随向量,同时称函数 f (x ) 为向量 OM⃗⃗⃗⃗⃗⃗ 的伴随函数.(1) 设函数 g (x )=√3sin (π+x )−sin (3π2−x),试求 g (x ) 的伴随向量 OM⃗⃗⃗⃗⃗⃗ ; (2) 记向量 ON ⃗⃗⃗⃗⃗⃗ =(1,√3) 的伴随函数为 f (x ),当 f (x )=85,且 x ∈(−π3,π6) 时,求 sinx 的值; (3) 将(1)中函数 g (x ) 的图象的横坐标伸长为原来的 2 倍(纵坐标不变),再把整个图象向右平移2π3个单位长度得到 ℎ(x ) 的图象,已知 A (−2,3),B (2,6),问在 y =ℎ(x ) 的图象上是否存在一点 P ,使得 AP⃗⃗⃗⃗⃗ ⊥BP ⃗⃗⃗⃗⃗ ?若存在,求出 P 点坐标;若不存在,说明理由.答案一、选择题(共10题) 1. 【答案】D【知识点】平面向量的数量积与垂直2. 【答案】C【解析】由 bsinB =csinC 得, sinB =bsinC c=2√3sin30∘2=√32, 所以 B =60∘ 或 B =120∘. 当 B =60∘ 时,A =90∘, a =√(2√3)2+22=4;当 B =120∘ 时,A =30∘,a =c =2, 故 a =4 或 a =2. 【知识点】正弦定理3. 【答案】B【知识点】平面向量的数量积与垂直4. 【答案】B【知识点】平面向量的数量积与垂直5. 【答案】A【知识点】平面向量的数乘及其几何意义6. 【答案】B【解析】因为 BI ⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AI ⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +λ(AC ⃗⃗⃗⃗⃗∣∣AC ⃗⃗⃗⃗⃗ ∣∣+AP ⃗⃗⃗⃗⃗∣∣AP ⃗⃗⃗⃗⃗ ∣∣)(λ>0),所以 I 在 ∠PAB 的角平分线上,又 I 在 ∠APB 的角平分线上,所以 I 为 △PAB 的内心.因为 ∣∣PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ ∣∣=10,所以 ∣AB ∣=10.BI⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ ∣∣BA ⃗⃗⃗⃗⃗ ∣∣ 表示 BI⃗⃗⃗⃗ 在 BA ⃗⃗⃗⃗⃗ 方向上的投影,过 I 作 IK 垂直 BA 于 K ,则由圆的切线性质和已知可得 ∣AK ∣+∣BK ∣=∣AB ∣=10,∣AK ∣−∣BK ∣=4,所以 ∣BK ∣=3,故BI⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ ∣∣BA ⃗⃗⃗⃗⃗ ∣∣ 的值为 3 .【知识点】平面向量的分解、平面向量的数量积与垂直、平面向量的加减法及其几何意义7. 【答案】A【解析】由 ∣a ∣=6∣∣b ⃗ ∣∣,可设 ∣∣b ⃗ ∣∣=t ,则 ∣a ∣=6t (t >0),因为 a ⋅(a −kb ⃗ )=∣a ∣2−ka ⋅b⃗ =36t 2−k ×6t ×t ×13=0, 所以 k =18.【知识点】平面向量的数量积与垂直8. 【答案】B【知识点】正弦定理、余弦定理9. 【答案】D【知识点】平面向量的分解10. 【答案】B【解析】 3OA⃗⃗⃗⃗⃗ +4OB ⃗⃗⃗⃗⃗ 的坐标为 3×3+4×(−2)=1. 【知识点】平面向量数乘的坐标运算二、填空题(共6题) 11. 【答案】138【解析】如图, 由题意易得 AP ⃗⃗⃗⃗⃗ =25PB ⃗⃗⃗⃗⃗ , 所以 IP ⃗⃗⃗⃗ −IA ⃗⃗⃗⃗ =25(IB ⃗⃗⃗⃗ −IP ⃗⃗⃗⃗ ), 所以 IP ⃗⃗⃗⃗ =57IA ⃗⃗⃗⃗ +27IB⃗⃗⃗⃗ . 设 CQ =x ,BQ =y ,则 x +y =6, 所以 CQ⃗⃗⃗⃗⃗ =−x yBQ ⃗⃗⃗⃗⃗ , 所以 IQ ⃗⃗⃗⃗ −IC ⃗⃗⃗⃗ =x y(IB ⃗⃗⃗⃗ −IQ⃗⃗⃗⃗ ), 所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ . 因为 7IC⃗⃗⃗⃗ +5IB ⃗⃗⃗⃗ +6IA ⃗⃗⃗⃗ =0, 点 I 是 △ABC 的内心,根据三角形内心的向量表示得向量等式. 所以 IC⃗⃗⃗⃗ =−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ , 所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6(−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ )=−y 7IA ⃗⃗⃗⃗ +(x 6−5y 42)IB ⃗⃗⃗⃗ . 因为 IQ ⃗⃗⃗⃗ ∥IP⃗⃗⃗⃗ ,所以 (−y 7):(x 6−5y 42)=52,结合 x +y =6,解得 x =138.所以线段 QC 的长为138.【知识点】平面向量数乘的坐标运算12. 【答案】 1+√2【解析】因为 ∠DEB =∠ABC =45∘,所以 AB ∥DE ,过 D 作 AB ,AC 的垂线 DM ,DN , 则 AN =DM =BM =BD ⋅sin45∘=√2, 所以 DN =AM =AB +BM =2+√2, 所以 AD ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ =2+√22AB ⃗⃗⃗⃗⃗ +√22AC ⃗⃗⃗⃗⃗ , 所以 λ=2+√22,μ=√22,所以 λ+μ=1+√2.【知识点】平面向量的分解13. 【答案】 ±3【知识点】平面向量数量积的坐标运算14. 【答案】 √【知识点】余弦定理15. 【答案】 [−94,−2]【解析】以 BC 的垂直平分线为 y 轴,以 BC 为 x 轴,建立如图所示的平面直角坐标系. 因为 AB =BC =CD =4,∠ABC =∠BCD =120∘, 所以 B (−2,0),C (2,0),A(−4,2√3),D(4,2√3).因为 E ,F 分别是 AB ,CD 的中点,所以 E(−3,√3),F(3,√3).设 P (x,y ),−4≤x ≤4,0≤y ≤2√3,因为 PE⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =k , 所以 (−3−x,√3−y)(3−x,√3−y)=x 2+(y −√3)+9=k , 即 x 2+(y −√3)=k +9.当 k +9>0 时,点 P 的轨迹为以 (0,√3) 为圆心,以 √k +9 为半径的圆. 当圆与直线 DC 相切时,此时圆的半径 r =3√32,此时点有 2 个;当圆经过点 C 时,此时圆的半径为 r =√22+3=√7,此时点 P 有 4 个.因为满足条件 PE ⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =k 的点 P 至少有 4 个,结合图象可得, 所以274≤k +9≤7,解得 −94≤k ≤−2,故实数 k 的取值范围为 [−94,−2].【知识点】平面向量数量积的坐标运算16. 【答案】 25(√3−1)【知识点】解三角形的实际应用问题三、解答题(共6题) 17. 【答案】(1) −6. (2) 1.【知识点】平面向量的数乘及其几何意义、平面向量的数量积与垂直18. 【答案】(1) 由题意知 2csinA =√3a ,由正弦定理得 2sinCsinA =√3sinA , 又由 A ∈(0,π),则 sinA >0,所以 sinC =√32, 又因为 a >c ,则 ∠A >∠C , 所以 ∠C =60∘.(2) 由三角形的面积公式,可得 S △ABC =12absinC =12ab ×√32=√3,解得 ab =4, 又因为 cosC =a 2+b 2−c 22ab=a 2+b 2−422ab=12,解得 a 2+b 2=20, 即 (a +b )2=28,所以 a +b =2√7,所以 △ABC 的周长为 a +b +c =2√7+4. 【知识点】余弦定理、正弦定理19. 【答案】(1) 由 bsinA =√3acosB 及正弦定理 a sinA=b sinB,得 sinB =√3cosB , 故有 tanB =sinBcosB =√3. 即 B =π3.(2) 由 sinC =2sinA 及正弦定理 a sinA=c sinC,得 c =2a, ⋯⋯①由 b =3 及余弦定理 b 2=a 2+c 2−2accosB , 得 9=a 2+c 2−ac, ⋯⋯② 联立①②,解得 a =√3,c =2√3. 【知识点】正弦定理、余弦定理20. 【答案】(1) △ABC 同时满足 ①,②,③. 理由如下:若 △ABC 同时满足 ①,④,则在锐角 △ABC 中, sinC =13<12, 所以 0<C <π6. 又因为 A =π3, 所以 π3<A +C <π2.所以 B >π2,这与 △ABC 是锐角三角形矛盾, 所以 △ABC 不能同时满足 ①,④, 所以 △ABC 同时满足 ②,③. 因为 c >a ,所以 C >A 若满足 ④, 则 A <C <π6,则 B >π2, 这与 △ABC 是锐角三角形矛盾,故 △ABC 不满足 ④,故 △ABC 同时满足 ①,②,③.(2) 因为 a 2=b 2+c 2−2bccosA , 所以 132=b 2+152−2×b ×15×12,解得 b =8 或 b =7. 当 b =7 时 cosC =72+132−1522×7×13<0,所以 C 为钝角,与题意不符合, 所以 b =8.所以 △ABC 的面积 S =12bcsinA =30√3. 【知识点】余弦定理、判断三角形的形状21. 【答案】(1) ① ∣∣∣1001∣∣∣=1;② ∣∣∣1326∣∣∣=1×6−2×3=0;③ ∣∣∣−2510−25∣∣∣=(−2)×(−25)−5×10=0. (2) 若向量 p =(a,b ) 与向量 q =(c,d ) 共线,则 当 q ≠0⃗ 时,有 ad −bc =0,即 ∣∣∣a b c d ∣∣∣=0, 当 q =0⃗ 时,有 c =d =0,即 ∣∣∣a b c d ∣∣∣=ad −bc =0, 所以必要性得证. 反之,若 ∣∣∣a b cd ∣∣∣=0,即 ad −bc =0, 当 c ,d 不全为 0 时,即 q ≠0⃗ 时, 不妨设 c ≠0,则 b =ad c,所以 p =(a,ad c),因为 q =(c,d ),所以 p =a cq ,所以 p ∥q , 所以向量 p =(a,b ) 与向量 q =(c,d ) 共线, 当 c =0 且 d =0 时,q =0⃗ , 所以向量 p =(a,b ) 与向量 q =0⃗ 共线, 充分性得证.综上,向量 p =(a,b ) 与向量 q =(c,d ) 共线的充要条件是 ∣∣∣ab cd ∣∣∣=0.(3) 用 b 2 和 b 1 分别乘上面两个方程的两端,然后两个方程相减, 消去 y 得 (a 1b 2−a 2b 1)x =c 1b 2−c 2b 1, ⋯⋯① 同理,消去 x 得 (a 1b 2−a 2b 1)y =a 1c 2−a 2c 1, ⋯⋯② 所以,当 a 1b 2−a 2b 1≠0 时,即 ∣∣∣a 1b 1a 2b 2∣∣∣≠0 时, 由①②可得 x =c 1b 2−c 2b 1a 1b 2−a 2b 1=∣∣∣c 1b 1c 2b 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣,y =a 1c 2−a 2c 1a1b 2−a 2b 1=∣∣∣a 1c 1a 2c 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣, 所以,当 ∣∣∣a 1b 1a 2b 2∣∣∣≠0 时,方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2 有唯一解且 x =∣∣∣c 1b 1c 2b 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣,y =∣∣∣a 1c 1a 2c 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣. 【知识点】平面向量数乘的坐标运算、二阶行列式22. 【答案】(1) g (x )=√3sin (π+x )−sin (3π2−x)=−√3sinx +cosx,所以 g (x ) 的伴随向量 OM⃗⃗⃗⃗⃗⃗ =(−√3,1). (2) 向量 ON ⃗⃗⃗⃗⃗⃗ =(1,√3) 的伴随函数为 f (x )=sinx +√3cosx , 因为f (x )=sinx +√3cosx =2sin (x +π3)=85,所以 sin (x +π3)=45, 因为 x ∈(−π3,π6), 所以 x +π3∈(0,π2), 所以 cos (x +π3)=35, 所以sinx =sin [(x +π3)−π3]=12sin (x +π3)−√32cos (x +π3)=4−3√310. (3) 由(1)知 g (x )=−√3sinx +cosx =−2sin (x −π6),将函数 g (x ) 的图象的横坐标伸长为原来的 2 倍(纵坐标不变),得到函数 y =−2sin (12x −π6)的图象,再把整个图象向右平移 2π3个单位长度得到 ℎ(x ) 的图象,则ℎ(x )=−2sin [12(x −2π3)−π6]=−2sin (12x −π2)=2cos 12x.设 P (x,2cos 12x),因为 A (−2,3),B (2,6),所以 AP ⃗⃗⃗⃗⃗ =(x +2,2cos 12x −3),BP ⃗⃗⃗⃗⃗ =(x −2,2cos 12x −6), 又因为 AP⃗⃗⃗⃗⃗ ⊥BP ⃗⃗⃗⃗⃗ , 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0, 所以 (x +2)(x −2)+(2cos 12x −3)(2cos 12x −6)=0, 即 x 2−4+4cos 212x −18cos 12x +18=0, 所以 (2cos 12x −92)2=254−x 2(*),因为 −2≤2cos 12x ≤2, 所以 −132≤2cos 12x −92≤−52,所以254≤(2cos 12x −92)2≤1694.又因为254−x 2≤254,所以当且仅当 x =0,即 (2cos 12x −92)2和254−x 2 同时等于254时,(*)式成立.所以在 y =ℎ(x ) 的图象上存在点 P (0,2),使得 AP⃗⃗⃗⃗⃗ ⊥BP ⃗⃗⃗⃗⃗ . 【知识点】Asin(ωx+ψ)形式函数的性质、三角函数的图象变换、平面向量数量积的坐标运算。
平面向量单元测试(含答案)

《平面向量》单元测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1所示,D 是△ABC 的边AB 上的中点, 则向量=CD ( )A .BA BC 21+- B .BA BC 21--C .BA BC 21-D .BA BC 21+2.与向量a ==⎪⎭⎫ ⎝⎛b ,21,27⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是( )A .⎪⎭⎫- ⎝⎛53,54B .⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 C .⎪⎭⎫- ⎝⎛31,322 D .⎪⎭⎫-⎝⎛31,322或⎪⎭⎫⎝⎛-31,322 3.设a r 与b r 是两个不共线向量,且向量a b λ+r r 与()2b a --r r共线,则λ=( )A .0B .-1C .-2D .0.54.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =( )A .⎪⎪⎭⎫ ⎝⎛21,23 B .⎪⎪⎭⎫ ⎝⎛23,21 C .⎪⎪⎭⎫ ⎝⎛433,41 D .(1,0)5.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量 的数量积中最大的是( )A .3121P P P P ⋅B .4121P P P P ⋅C .5121P P P P ⋅D .6121P P P P ⋅ 6.在OAB ∆中,OA a =u u u r ,OB b =u u u r ,OD 是AB 边上的高,若AD AB λ=u u u r u u u r,则实数λ等 于 ( )A .2()a b a a b⋅-- B .2()a a b a b⋅--C .()a b a a b⋅--D .()a a b a b⋅--7.设1(1,)2OM =u u u u r ,(0,1)ON =u u u r ,则满足条件01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r 的动点P 的 变化范围(图中阴影部分含边界)是( )A .B .C .D . 8.将函数f (x )=tan(2x +3π)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =( )A .(,16π-)B .(,16π-)C .(,112π)D .(,112π--)9.已知向量a r 、b r 、c r 且0a b c ++=r r r r ,||3a =r ,||4b =r ,||5c =r .设a r 与b r 的夹角为1θ,b r与c r 的夹角为2θ,a r 与c r的夹角为3θ,则它们的大小关系是( )A .123θθθ<<B .132θθθ<<C .231θθθ<<D .321θθθ<<10.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2λ<⋅b a 恒成立时实数λ的取值范围是( )A .2>λ或2-<λB .2>λ或2-<λC .22<<-λD .22<<-λ11.已知1OA =u u u r,OB =u u u r ,0OA OB ⋅=u u u r u u u r ,点C 在AOB ∠内,且30oAOC ∠=,设OC mOA nOB =+u u u r u u u r u u u r (,)m n R ∈,则mn等于( )A .13B .3 C.3D12.对于直角坐标平面内的任意两点11(,)A x y ,22(,)B x y ,定义它们之间的一种“距离”:2121.AB x x y y =-+-给出下列三个命题:①若点C 在线段AB 上,则;AC CB AB += ②在ABC ∆中,若90,o C ∠=则222;AC CB AB +=③在ABC ∆中,.AC CB AB +> 其中真命题的个数为( )A .0B .1C .2D .3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.在中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r,M 为BC 的中点,则MN =u u u u r _______.(用a b r r 、表示)14.已知()()2,1,1,1,A B O --为坐标原点,动点M 满足OM mOA nOB =+u u u u r u u u r u u u r,其中,m n R ∈且2222m n -=,则M 的轨迹方程为 .15.在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值为 .16.已知向量)3,5(),3,6(),4,3(m m ---=-=-=,若点A 、B 、C 能构成三角形,则实数m 满足的条件是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量)sin 1,sin 1(x x -=,)2cos ,2(x =.(1)若]2,0(π∈x ,试判断与能否平行?(2)若]3,0(π∈x ,求函数x f ⋅=)(的最小值.18.(本小题满分12分)(2006年湖北卷)设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=,()R x x x c ∈-=,sin ,cos .(1)求函数()x f 的最大值和最小正周期;(2)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .19.(本小题满分12分)(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(1)若a⊥b,求θ;(2)求|a+b|的最大值.20.(本小题满分12分)在ABC △中,2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r. (1)求22AB AC +u u u r u u u r 的值;(2)当ABC △的面积最大时,求A ∠的大小.21.(本小题满分12分)(2006陕西卷)如图,三定点A (2,1),B (0,-1),C (-2,1); 三动点D ,E ,M 满足]1,0[,,,∈===t t t t (1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.22.(本小题满分14分)已知点P 是圆221x y +=上的一个动点,过点P 作PQ x ⊥轴于点Q ,设OM OP OQ =+u u u u r u u u r u u u r .(1)求点M 的轨迹方程;(2)求向量OP uuu r 和OM u u u u r夹角的最大值,并求此时P 点的坐标参考答案1.21+-=+=,故选A . 2.B 设所求向量e r=(cos θ,sin θ),则由于该向量与,a b r r 的夹角都相等,故e b e a e b e a ⋅=⋅⇔=⋅||||||||7117cos sin cos sin 2222θθθθ⇔+=-⇔3cos θ=-4sin θ,为减少计算量,可将选项代入验证,可知B 选项成立,故选B .3.D 依题意知向量a b λ+r r 与-2共线,设a b λ+r rk =(-2),则有)()21(=++-k k λ,所以⎩⎨⎧=+=-0021λk k ,解得5.0=k ,选D . 4.解选B .设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩ 5.解析:利用向量数量积121(1,2,3,4,5,6)i PP PP i =u u u u r u u u rg 的几何意义:数量积121i PP PP u u u u r u u u rg 等于12P P u u u u r的长度12PP u u u u r 与1i PP u u u r 在12P P u u u u r 的方向上的投影1121cos ,i iPP PP PP <>u u u r u u u u r u u u r的乘积.显然由图可知13P P u u u u r 在12P P u u u u r 方向上的投影最大.所以应选(A).6.B (),,AD AB OD OA OB OA λλ=∴-=-u u u r u u u r u u u r u u u r Q 即得()()11,OD OA OB a b λλλλ=-+=-+u u u r u u u r u u u r又OD Q 是AB 边上的高,0OD AB ∴⋅=u u u r u u u r即()()()0,10OD OB OA a b b a λλ⋅-=∴-+⋅-=⎡⎤⎣⎦u u u r u u u r u u u r ,整理可得()2(),b a a a b λ-=⋅-即得()2a ab a bλ⋅-=-,故选B . 7.A 设P 点坐标为),(y x ,则),(y x =.由01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r得⎩⎨⎧≤≤≤+≤10220y y x ,在平面直角坐标系中画出该二元一次不等式组表示的平面区域即可,选A .8.A 要经过平移得到奇函数g(x),应将函数f(x)=tan(2x+3π)+1的图象向下平移1个单位,再向右平移)(62Z k k ∈+-ππ个单位.即应按照向量))(1,62(Z k k a ∈-+-=ππ进行平移.要使|a|最小,应取a=(,16π-),故选A .9.B 由0a b c ++=r r r r得)(+-=,两边平方得1222cos ||||2||||||θ++=,将||3a =r ,||4b =r ,||5c =r 代入得0cos 1=θ,所以0190=θ;同理,由0a b c ++=r r r r得)(b c a +-=,可得54cos 2-=θ,53cos 3-=θ,所以132θθθ<<.10. B 由已知得1||=b ,所以4||22=+=n m a ,因此)sin(sin cos 22ϕθθθ++=+=⋅n m n m b a 4)sin(4≤+=ϕθ,由于2λ<⋅恒成立,所以42>λ,解得2>λ或2-<λ.11.答案B ∵ 1OA =u u u r,OB =u u u r,0OA OB ⋅=u u u r u u u r∴△ABC 为直角三角形,其中1142AC AB ==∴11()44OC OA AC OA AB OA OB OA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴31,44m n == 即3m n= 故本题的答案为B . 12.答案B 取特殊值、数形结合A BC在ABC ∆中, 90oC ∠=,不妨取A (0,1), C (0,0),B (0,1),则 ∵2121AB x x y y =-+- ∴ 1AC = 、1BC =、|10||01|2AB =-+-= 此时222AC CB +=、24AB = 、222AC CB AB +≠;AC CB AB +=即命题②、③是错误的.设如图所示共线三点11(,)A x y ,22(,)B x y ,33(,)C x y ,则1313||||||||||||AC x x y y AC CC ''-+-=+==||||||||AB B C C C C C ''''''''+++ =||||||||AB B B BC C C ''''''+++1212||||||||||||AB x x y y AB BB ''=-+-=+ 2323||||||||||||BC x x y y BC C C ''''=-+-=+∴ AC CB AB += 即命题①是正确的. 综上所述,真命题的个数1个,故本题的答案为B .13.解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12AM a b =+u u u u r r r,所以3111()()4244MN a b a b a b =+-+=-+u u u u r r r r r r r .14.2222=-y x 设),(y x M ,则),(y x =,又)1,1(),1,2(-=-=,所以由OM mOA nOB =+u u u u r u u u r u u u r 得),(),2(),(n n m m y x -+-=,于是⎩⎨⎧+-=-=nm y n m x 2,由2222m n -=消去m, n 得M 的轨迹方程为:2222=-y x . 15.2- 如图,设x AO =,则x OM -=2,所以)(+⋅OM OA OM OA ⋅⋅-=⋅=222)1(242)2(222--=-=--x x x x x ,故当1=x 时,OM mOA nOB =+u u u u r u u u r u u u r取最小值-2.AC 'CBB 'C ''16.21≠m 因为)3,5(),3,6(),4,3(m m ---=-=-=,所以),1(),1,3(m m ---==.由于点A 、B 、C 能构成三角形,所以与不共线,而当AB 与BC 共线时,有m m -=--113,解得21=m ,故当点A 、B 、C 能构成三角形时实数m 满足的条件是21≠m .17.解析:(1)若与平行,则有2sin 12cos sin 1⋅-=⋅x x x ,因为]2,0(π∈x ,0sin ≠x ,所以得22cos -=x ,这与1|2cos |≤x 相矛盾,故a 与b 不能平行.(2)由于x f ⋅=)(xx x x x x x x x sin 1sin 2sin sin 21sin 2cos 2sin 2cos sin 22+=+=-=-+=,又因为]3,0(π∈x ,所以]23,0(sin ∈x , 于是22sin 1sin 22sin 1sin 2=⋅≥+x x x x ,当xx sin 1sin 2=,即22sin =x 时取等号.故函数)(x f 的最小值等于22.18.解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π). 所以,f(x)的最大值为2+2,最小正周期是22π=π. (Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求. 19.解析:解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.20.解:(Ⅰ)由已知得:222,2 4.AB AC AB AB AC AC ⎧⋅=⎪⎨-⋅+=⎪⎩u u u r u u u r u u u r u u u r u u u r u u u r 因此,228AB AC +=u u u r u u u r . (Ⅱ)2cos AB AC A AB AC AB AC⋅==⋅⋅u u u r u u u ru u u r u u u r u u u r u u ur , 1sin 2ABC S AB AC A =⋅u u ur u u u r △12AB =⋅u u ur u u=≤=.(当且仅当2AB AC ==u u u r u u u r 时,取等号),当ABC △1cos 2AB AC A AB AC⋅==⋅u u u r u u u ru u u r u u u r,所以3π=∠A . 解:(I )由条件知: 0a b =≠r r 且2222(2)444a b a b a b b +=++=r r r r r r r g42-=⋅, 设a b r r 和夹角为θ,则41||||cos -==b a θ, ∴1cos 4arc θπ=-,故a b r r 和的夹角为1cos 4arc π-,(Ⅱ)令)a a b -r r r和(的夹角为βQ a b a -===r r r, ∴41021cos 222=+===β∴ )a a b -r r r和(的夹角为21.解析:如图,(Ⅰ)设D(x 0,y 0),E(x E ,y E ),M(x ,y).由AD →=tAB →, BE → = t BC →,知(x D -2,y D -1)=t(-2,-2). ∴⎩⎨⎧x D =-2t+2y D =-2t+1 同理 ⎩⎨⎧x E =-2ty E =2t -1.∴k DE = y E -y D x E -x D = 2t -1-(-2t+1)-2t -(-2t+2)= 1-2t. ∴t ∈[0,1] , ∴k DE ∈[-1,1].(Ⅱ) 如图, OD →=OA →+AD → = OA →+ tAB →= OA →+ t(OB →-OA →) = (1-t) OA →+tOB →,OE →=OB →+BE → = OB →+tBC → = OB →+t(OC →-OB →) =(1-t) OB →+tOC →,OM → = OD →+DM →= OD →+ tDE →= OD →+t(OE →-OD →)=(1-t) OD →+ tOE →= (1-t 2) OA → + 2(1-t)tOB →+t 2OC →.设M 点的坐标为(x ,y),由OA →=(2,1), OB →=(0,-1), OC →=(-2,1)得 ⎩⎨⎧x=(1-t 2)·2+2(1-t)t ·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t ·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y, ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y, x ∈[-2,2]22.解析:(1)设(,)P x y o o ,(,)M x y ,则(,)OP x y =o o u u u r ,(,0)OQ x =o u u u r,(2,)OM OP OQ x y =+=o o u u u u r u u u r u u u r222212,1,124x x x x x x y y y y y y⎧==⎧⎪∴⇒+=∴+=⎨⎨=⎩⎪=⎩o o o o o o Q .(2)设向量OP uuu r 与OM u u u u r的夹角为α,则22cos ||||OP OMOP OM α⋅===⋅u u u r u u u u r u u u r u u u u r 令231t x =+o,则cos α==≥当且仅当2t =时,即P点坐标为(时,等号成立.第21题解法图OP u u u r 与OM u u u u r夹角的最大值是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学《平面向量》单元测试
姓名 :
班级 :
一、 选择题 (共 8 小题 ,每题 5 分 )
1. 下列命题正确的是
(
)
A .单位向量都相等
B . 任一向量与它的相反向量不相等
C .平行向量不一定是共线向量
D .模为 0 的向量与任意向量共线
2.已知向量 a =( 3,4), b =( sin α, cos α),且 a ∥ b ,则 tan α等于(
)
A .
3
B .
3 C .
4
D .
4
4
4
3
3
3.在以下关于向量的命题中,不正确的是
(
)
A .若向量 a=(x , y),向量 b=(- y , x)(x 、 y ≠ 0),则 a ⊥ b
B .四边形 ABCD 是菱形的充要条件是
AB = DC ,且 | AB |=| AD |
C .点 G 是△ ABC 的重心,则 GA + GB + CG =0
D .△ ABC 中, AB 和 CA 的夹角等于 180°- A
4.设 P ( 3, 6), Q ( 5, 2), R 的纵坐标为
9,且 P 、 Q 、 R 三点共线,则
R 点的横坐标为
( )
A . 9
B . 6
C . 9
D . 6
r r r r r r
r
r r
)
5.若 | a | 1,| b | 2, c a b ,且 c
a ,则向量 a 与
b 的夹角为 (
A . 30°
B .60°
C .120°
D . 150°
6.在△ ABC 中, A >B 是 sinA > sinB 成立的什么条件(
)
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要
7.若将函数
y
sin 2x 的图象按向量
a 平移后得到函数
y sin( 2x
) -1 的图象 ,则向量 a 可以是:
4
(
)
A . ( , 1)
B . (
,1) C . (
,1) D . (
, 1)
8
8
4
4
8.在△ ABC 中,已知 | AB | 4,| AC | 1, S
ABC
3,则 AB AC 的值为(
)
A .- 2
B . 2
C .± 4
D .± 2 二、 填空题 (共 4 小题 ,每题 5 分 )
9.已知向量 a 、 b 的模分别为 3,4,则| a - b |的取值范围为
.
r
r r
r
r
10.已知 e 为一单位向量,
a 与 e 之间的夹角
是
120O ,而 a 在 e 方向上的投影为-
2,则
r
a
.
11.设 e 1、e 2 是两个单位向量,它们的夹角是 60 ,则 (2e 1
e 2 ) ( 3e 1 2e 2 )
12.在 ?ABC 中, a =5, b= 3,C= 1200 ,则 sin A
三、
解答题 (共 40 分 )
13.设 e 1 ,e 2 是两个垂直的单位向量,且
a
( 2e 1 e 2 ) ,b
e 1 e 2
(1)若 a ∥ b ,求
的值;
(2) 若 a
b ,求
的值 .( 12 分)
14.设函数 f ( x)
a b ,其中向量
a =(2cosx , 1),
b =(cosx ,
3 sin2x), x ∈ R.
(1)若
f(x)=1-
3 且
x ∈ [-
,
] ,求
x ;
( 2)若函数
y=2sin2x 的图象按向量
c =(m , n) (|m|<
)平移后得到
3
3
2
函数 y=f(x) 的图象,求实数 m 、 n 的值 . (14 分)
15. 已知△ ABC 三个内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,向量
C C C
C m (cos , sin
) , n (cos
,
sin ) ,且 m 与 n 的夹角为 .
2
2
2
2
3
(1)求角 C 的值; ( 2)已知 c
7 3 3
b 的值 . ( 14 分)
2
,△ ABC 的面积 S
,求 a
2。