高一数学必修4平面向量练习题及答案(完整版)

合集下载

(典型题)高中数学必修四第二章《平面向量》测试卷(有答案解析)

(典型题)高中数学必修四第二章《平面向量》测试卷(有答案解析)

一、选择题1.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .432.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A .31-B .221-C .231-D .71-3.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A .10B .210C .10D .204.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .65.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .326.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53-C .523+D .57.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ). A 5B .5C .42D 318.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .263-C .63D .239.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =2BC =,0GA GB GC ++=,则AB CG=( )A .3B C .2D 10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .⎡⎣B.2⎣C .⎤⎦D .[]0,312.设非零向量a 与b 的夹角是23π,且a a b =+,则22a tb b+的最小值为( )A.3B .2C .12D .1二、填空题13.记集合{|X x b a xc ==+且||||4}a b a b ++-=中所有元素的绝对值之和为(,)S a c ,其中平面向量a ,b ,c 不共线,且||||1a c ==,则(,)S a c 的取值范围是______________.14.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.15.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力; ②θ的范围为[]0,π; ③当2πθ=时,1F G =;④当23πθ=时,1F G =. 其中正确结论的序号是______.16.已知向量(12,2)a t =-+,(2,44)b t =-+,(1,)c λ=(其中t ,)R λ∈.若(2)c a b ⊥+,则λ=__.17.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.18.已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________. 19.已知P 为圆22(4)2x y +-=上一动点,点()1,1Q ,O 为坐标原点,那么OP OQ ⋅的取值范围为________.20.已知(2,1)a =,(3,4)b =,则a 在b 的方向上的投影为________.三、解答题21.如图,在菱形ABCD 中,1,22BE BC CF FD ==.(1)若EF x AB y AD =+,求32x y +的值; (2)若||6,60AB BAD =∠=︒,求AC EF ⋅.22.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,左顶点为A ,若122F F =,椭圆的离心率为12e =. (1)求椭圆的标准方程.(2)若P 是椭圆上的任意一点,求1PF PA⋅的取值范围.23.已知()sin ,a x x =,()cos ,cos b x x =-,函数3()2f x a b =⋅+. (1)求函数()f x 图象的对称轴方程;(2)若方程1()3f x =在()0,π上的解为1x ,2x ,求()12cos x x +的值. 24.解答下列问题:(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程;(2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是5的直线方程. 25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=2.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立.因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 3.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.4.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.5.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果.【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.6.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ON OM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.7.B解析:B 【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模. 【详解】由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B.【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解. 8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b +=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a ba b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以2101,1 5.2AB CE CG CG===∴== 本题选择B 选项.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.D解析:D 【分析】把DE 用,DA DB 表示,由三点共线把DF 用,DC DB 表示,然后计算数量积,利用函数的知识得取值范围. 【详解】∵菱形ABCD 边长为2,60BAD ∠=︒,2BD =,∴22cos602DA DB DB DC ⋅=⋅=⨯⨯︒=,22cos1202DA DC ⋅=⨯⨯︒=-, ∵E 是AB 边上的中点,∴1()2DE DA DB =+, 点F 是BC 边上,设BF xBC =(01x ≤≤),则()(1)DF DB BF DB xBC DB x DC DB xDC x DB =+=+=+-=+-,DE DF ⋅1()(1)2DA DB xDC x DB ⎡⎤=+⋅+-⎣⎦21(1)(1)2xDA DC x DA DB xDB DC x DB ⎡⎤=⋅+-⋅+⋅+-⎢⎥⎣⎦ []122(1)24(1)3(1)2x x x x x =-+-++-=-, ∵01x ≤≤,∴03(1)3x ≤-≤. 故选:D. 【点睛】本题考查平面向量的数量积,解题关键是对动点F 引入参数x :BF xBC=(01x ≤≤),这样所求数量积就可表示为x 的函数,从而得到范围.本题考查了向量共线的条件,属于中档题.12.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值.【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==, a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb bbbπ++++=,222222222244cos 42312444a t a b t b a t a a t a t t b aπ++-+==-+当且仅当1t =时,22a tb b+的最小值为3故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.二、填空题13.【分析】由条件有两边平方可得当时当时可得答案【详解】解:因为所以所以两边平方得化简得设向量的夹角为则当时当时所以集合中所有元素的绝对值之和为因为所以所以所以所以的取值范围为【点睛】关键点点睛:此题考 解析:[3,4)【分析】由条件有|2||||2|||4a xc xc a xc x ++=++=,两边平方可得3xa c x ⋅=-,当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,可得答案【详解】解:因为||||4a b a b ++-=,b a xc =+,||||1a c == 所以|2||||2|||4a xc xc a xc x ++=++=, 所以|2|4||a xc x +=-,两边平方得,2244168xa c x x x +⋅+=-+, 化简得,3xa c x ⋅=-,设向量,a c 的夹角为θ,(0,)θπ∈,则cos 32x x θ=-, 当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,所以集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,因为(0,)θπ∈,所以20cos 1θ≤<, 所以234cos 4θ<-≤,所以212344cos θ≤<-, 所以(,)S a c 的取值范围为[3,4)【点睛】关键点点睛:此题考查向量数量积的性质的运用,解题的关键是由已知条件得到3xa c x ⋅=-,然后设出向量,a c 的夹角为θ,则当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,从而可得集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,再利用三角函数的有界性可求得结果,考查数学转化思想14.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==, 故向量BA 在向量BC方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.15.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以12F G =,③错误.对于④,当23πθ=时,221F G =,所以1F G =,④正确.综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题16.-1【分析】根据条件求出然后由得到再求出的值【详解】解:且故答案为:【点睛】本题考查向量坐标的加法数乘和数量积的运算向量垂直的充要条件考查计算能力属于基础题解析:-1 【分析】根据条件求出2(4,4)a b t t +=,然后由(2)c a b ⊥+,得到·(2)0c a b +=,再求出λ的值. 【详解】解:2(4,4)a b t t +=,(1,)c λ=,且(2)c a b ⊥+,∴·(2)440c a b t t λ+=+=,1λ∴=-.故答案为:1-. 【点睛】本题考查向量坐标的加法、数乘和数量积的运算,向量垂直的充要条件,考查计算能力,属于基础题.17.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=- ⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.18.【分析】易得结合可得又可得即可求解【详解】则则又故答案为:【点睛】本题考查向量模的取值范围的计算考查了向量模的三角不等式的应用考查计算能力属于中等题解析:5⎡⎣【分析】 易得()2225a b+=,结合()()22225a ba b+≤+=,可得5a b +≤.又a b a b +≥±,可得2a b ±≥,即可求解.【详解】1a b +=,2a b -=,2221a a b b ∴+⋅+=,2224a a b b -⋅+=,()2225a b∴+=,则()()22225a ba b+≤+=,则5a b +≤.又a b a b +≥±,2a b ∴+≥,25a b ∴≤+≤.故答案为:5⎡⎣.【点睛】本题考查向量模的取值范围的计算,考查了向量模的三角不等式的应用,考查计算能力,属于中等题.19.【分析】先将圆的方程化为参数方程设利用数量积运算结合三角函数的性质求解【详解】因为圆的方程所以其参数方程为:设所以因为所以故答案为:【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函 解析:[2,6]【分析】先将圆的方程化为参数方程2,42x cos R y θθθ⎧=⎪∈⎨=+⎪⎩,设(2,42)P θθ+,利用数量积运算结合三角函数的性质求解.因为圆的方程22(4)2x y +-=,所以其参数方程为:,4x R y θθθ⎧=⎪∈⎨=⎪⎩,设,4)P θθ,所以2cos (4)2sin()44πθθθ⋅=++=++OP OQ ,因为[]sin()1,14πθ+∈-,所以[2,6]⋅∈OP OQ . 故答案为:[2,6] 【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函数的性质,还考查了运算求解的能力,属于中档题.20.2【分析】根据向量在的方向上的投影为结合向量的数量积的坐标运算和模的计算公式即可求解【详解】由题意向量可得则在的方向上的投影为故答案为:【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应解析:2 【分析】根据向量a 在b 的方向上的投影为a b b⋅,结合向量的数量积的坐标运算和模的计算公式,即可求解. 【详解】由题意,向量(2,1)a =,(3,4)b =,可得231410a b ⋅=⨯+⨯=,2345b =+=, 则a 在b 的方向上的投影为1025a b b⋅==. 故答案为:2. 【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应用,以及向量的投影的概念与计算,其中解答熟记平面向量的数量积、模及投影的计算公式是解答的关键,着重考查推理与运算能力.三、解答题21.(1)1-;(2)9-.(1)利用平面向量基本定理,取AB AD 、为基底,利用向量加减法可解; (2)把所有的向量用基底AB AD 、表示后,计算AC EF ⋅. 【详解】解:(1)因为1,22BE BC CF FD ==, 所以12122323EF EC CF BC DC AD AB =+=-=-,所以21,32x y =-=, 故213232132x y ⎛⎫+=⨯-+⨯=- ⎪⎝⎭. (2)∵AC AB AD =+, ∴2212121()23236AC EF AB AD AD AB AD AB AB AD ⎛⎫⋅=+⋅-=--⋅⎪⎝⎭∵ABCD 为菱形∴||=||6AD AB = ∴2211||||cos 66AC EF AB AB BAD ⋅=--∠. 11136369662=-⨯-⨯⨯=-,即9AC EF ⋅=-. 【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则; (2)树立“基底”意识,利用基向量进行线性运算.22.(1)22143x y +=;(2)[0,12].【分析】(1)由椭圆的离心率及焦距,可得1,2c a ==,b =(2)设()00,P x y ,(2,0)A -,1(1,0)F -,再将向量的数量积转化为坐标运算,研究函数的最值,即可得答案; 【详解】解:(1)由题意,∵122F F =,椭圆的离心率为12e =, ∴1,2c a ==, ∴b =∴椭圆的标准方程为22143x y +=.(2)设()00,P x y ,(2,0)A -,1(1,0)F -,∴()()22200001001232PF P x x y x A x y ⋅----+=+++=,∵P 点在椭圆上,∴2200143x y +=,2200334y x =-,∴21001354PF PA x x ⋅=++, 由椭圆方程得022x -≤≤,二次函数开口向上,对称轴062x =-<-, 当02x =-时,取最小值0, 当02x =时,取最大值12. ∴1PF PA ⋅的取值范围是[0,12]. 【点睛】本题考查椭圆标准方程的求解、向量数量积的取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意问题转化为二次函数的最值问题. 23.(Ⅰ)5()212k x k Z ππ=+∈; (Ⅱ)13. 【分析】(1)先根据向量数量积的坐标表示求出()f x ,利用二倍角公式与辅助角公式化简()f x ,结合正弦函数的对称性即可求出函数的对称轴;(2)由方程1()3f x =在()0,π(上的解为12,x x ,及正弦函数的对称性可求12x x +,进而可得结果. 【详解】解:(),a sinx =,(),b cosx cosx =-,()2311212222232cos x f x a b sinxcosx x sin x sin x π+⎛⎫∴=⋅+===-- ⎪⎝⎭()1令112232x k πππ-=+可得512x k ππ=+,k z ∈∴函数()f x 图象的对称轴方程512x k ππ=+,k z ∈()2方程()13f x =在()0,π上的解为1x ,2x ,由正弦函数的对称性可知12526x x k ππ+=+,1x ,()20,x π∈,()1212562x x cos x x π∴+=∴+=-.【点睛】本题主要考查了向量数量积的坐标表示,正弦函数的对称性的应用,属于基础试题.以三角形和平面向量为载体,三角恒等变换为手段,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.24.(1)3x+4y+3=0或3x+4y-7=0 (2) 3x-y+9=0或3x-y-3=0 【详解】试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解. 试题解:(1)设所求直线上任意一点P (x ,y ),由题意可得点P 到直线的距离等于1,即34215x y d +-==,∴3x+4y-2=±5,即3x+4y+3=0或3x+4y-7=0.(2)所求直线方程为30x y c -+=,由题意可得点P 到直线的距离等于5,即d ==,∴9c =或3c =-,即3x-y+9=0或3x-y-3=0. 考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系 25.(1)()26f x sin x π⎛⎫=-⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=- ⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴.(3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴.【详解】(1)()()2113322ωωωωωω=+-=+-f x sin x sin x cos x sin x sin xcos x , 3122226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1,故函数f (x )的解析式为()sin 26f x x π⎛⎫=- ⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ; (3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(12 【分析】(1)利用定义得出a b ⋅,再结合模长公式求解即可;(2)先得出()a a b ⋅+,再由数量积公式得出a 与a b +的夹角的余弦.【详解】(1)313cos 32a b π⋅=⨯⨯=2223()||2||122a b a b a a b b ∴+=+=+⋅+=+⨯=(2)235()||122a a b a a b ⋅+=+⋅=+= 5()2cos ,26113a ab a a b a a b ⋅+∴+===⨯⋅+ 【点睛】 本题主要考查了利用定义求模长以及求夹角,属于中档题.。

高一数学必修四平面向量基础练习题及答案

高一数学必修四平面向量基础练习题及答案

平面向量的基本定理及坐标表示、选择题1、若向量a=(1,1),b=(1, - 1), c =( —1,2),则c 等于()13 1 3 . 3 1 -3 1 ,A、一a+ —bB、一a — bC、 a — bD、a+ b22 2 2 2 222 2、已知,A (2, 3), B (—4, 5),则与AB共线的单位向量是( )—r 3.10.10 3.10 10 , 3 1010、A、e (, ---- -)B、e (——, ------ )或( -------- ,)101010 10 1010C、e (6,2)D、e ( 6,2)或(6,2)—*3、已知a,(1,2),b(3,2),ka b与a3b垂直时k值为( )A、171B、18C、19D、204、已知向量OP=(2, 1), OA =(1 , 7), OB =(5 , 1),设X是直线OP上的一点(O为坐标原点),那么XA XB的最小值是()A、-16B、-8C、0D、45、若向量m (1,2),n(2,1)分别是直线ax+(b —a)y —a=0 和ax+4by+b=0 的方向向量,贝U a,b的值分别可以是( )A、 1 , 2B、—2 , 1C、 1 , 2D、2 , 16、若向量a=(cos,sin),b=(cos ,sin),则a与b 一定满足( )A、a与b的夹角等于一B、(a + b)丄(a —b)C、a// bD、a 丄b7、设i , j分别是x轴,y轴正方向上的单位向量,OP 3cos i3sin j ,(0,?),OQ i。

若用来表示OP与OQ的夹角,贝U 等于()A、B、—2c、—2D、8、设0 2 ,已知两个向量OR cos , sin , OP2 2 sin , 2 cos ,则向量P-l P2长度的最大值是( )A、、2B、.3C、32D、二、填空题9、已知点A(2 , 0), B(4 , 0),动点P在抛物线y2=- 4x运动,则使AP BP取得最小值的点P的坐标是____________________________________ 、10、把函数y 、.3cosx si nx的图象,按向量a m,n (m>0)平移后所得的图象关于y 轴对称,则m 的最小正值为____________________ 、11、_____________________________________________________________ 已知向量OA ( 1,2),OB (3,m),若OA AB,则m ________________________________ 、三、解答题12、求点A (- 3, 5)关于点P (- 1, 2)的对称点A、13、平面直角坐标系有点P(1, cosx), Q (cosx,1), x [,].4 4(1)求向量OP和OQ的夹角的余弦用x表示的函数f(x);(2)求的最值、14、设OA (2sinx,cos2x),OB ( cosx, 1),其中x€ [0, 卜2(1)求f(x)= OA OB的最大值和最小值;um uuu uuu⑵当OA丄OB,求| AB卜215、已知定点A(0,1)、B(0, 1)、C(1,0),动点P 满足:AP BP k|PC|、量P-l P2长度的最大值是( )(1)求动点P的轨迹方程,并说明方程表示的图形;(2)当k 2时,求| AP BP |的最大值和最小值、4min14、解:⑴ f(x)= OAOB = -2sinxcosx+cos2x= 2cos(2x、选择题参考答案I 、 B ; 2、B ; 3、C ; 4、B ; 5、D ; 6、B ; 7、D ; 8、C 二、 填空题 9、 (0, 0)510、 m 一 6II 、 4 三、 解答题12、解:设A3 x2,则有L 25 y 2解得1、所以 A/(1,- 1)o13、解:(1)OP OQ 2cosx,|OP||OQ| 12cos x, cosOP OQ |OP| |OQ|2cosx 1 cos 2 xf (x)(2) COSf(x)2cosx 1 2cos2 cosxcosxcosx2T 1]2 cosx3.2cosx◎ f(x) 1,即 口33cos 1max2(2 arccos一 3AP BP(x, y1) (x, y 1) (2x,2y) •••I AP BP |5■/ 0$w ,_w2+— <— 2 4 4 4• ••当 2X+ —= 一,即 x=0 时,f(X )max =1 ;4 4当 2x+ 一= n,即 x= — n 时,f(x) min =- 2、4 8⑵ OA OB 即 f(x)=0 , 2x+ 一 = — , • x= 一、428此时 | AB |, (2sinx cosx)2 (cos2x 1)2=.4sin 2 x cos 2 x 4sin xcosx (cos2x 1)27 72— —cos2x 2sin2x cos 2x 2 22 7cos — 2sin — cos2 — 2 2 4 44=1 ■16 3.2、2的圆、|1 k|, 方 程化 为 (x 2)2 y 2115、解:(1 )设动点P 的坐标为(x, y),则AP(x,y 1) , BP(x,y 1),PC (1 x,y)AP BP k | PC |2,• x 2y 21 k (x2 21) y即 (1 k)x 2(1 k)y 22kx k 10。

高一数学必修4第二章平面向量测试题(含答案)

高一数学必修4第二章平面向量测试题(含答案)

必修4第二章平面向量基础练习1.以下说法错误的是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是()A .;)++(BC CD AB B .);+)+(+(CM BC MB AD C .;-+BM AD MB D .;+-CD OA OC 3.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦为()A .6563B .65C .513D .134.已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =()A .7B .10C .13D .45.设1e 与2e 是不共线的非零向量,且k 1e +2e 与1e +k 2e 共线,则k 的值是()(A ) 1 (B )-1 (C )1(D )任意不为零的实数6.在四边形ABCD 中,AB =DC ,且AC ·BD =0,则四边形ABCD 是()(A )矩形(B )菱形(C )直角梯形(D )等腰梯形7.已知a =(1,2),b =(-2,3),且k a +b 与a -k b 垂直,则k =()(A )21(B )12(C )32(D )238、若平面向量(1,)a x 和(23,)b x x 互相平行,其中x R .则a b ()A. 2或0; B. 25; C. 2或25; D. 2或10.9.若),4,3(AB A点的坐标为(-2,-1),则B点的坐标为.10.已知(3,4),(2,3)a b ,则2||3a a b .11、ΔABC 中,A(1,2),B(3,1),重心G(3,2),则C 点坐标为________________。

12、设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2AB +AC 的模;(2)试求向量AB 与AC 的夹角;(3)试求与BC 垂直的单位向量的坐标.13.如图,=(6,1),,且。

高一数学必修4平面向量测试题(含答案)

高一数学必修4平面向量测试题(含答案)
3.已知a=(3,4),b=(5,12),a与b则夹角的余弦为()
A.
63
65
B.65C.
13
5
D.13
4.已知a,b均为单位向量,它们的夹角为60°,那么a3b=()
A.7B.10C.13D.4
5.已知ABCDEF是正六边形,且AB=a,AE=b,则BC=()
1abB.1(ba)C.a+1bD.1(ab)A.2()
14、已知向量a3,b(1,2),且ab,则a的坐标是_________________。
15、ΔABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为________________。
16.如果向量a与b的夹角为θ,那么我们称a×b为向量a与b的“向量积”,a×b是一个
向量,它的长度|a×b|=|a||b|sinθ,如果|a|=4, |b|=3,a·b=-2,则
3
A.B.C三点共线。
2
19. 已知a3,b2,a与b的夹角为
0
60,c3a5b,dma3b;
(1)当m为何值时,c与d垂直?(2)当m为何值时,c与d共线?
20、已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角均为120°.
(1)求证:(a-b)⊥c;(2)若|ka+b+c|>1(k∈R),求k的取值范围.
222
6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b,则下列关系
式中正确的是()
AAD=BCB.AD=2BCC.AD=-BCD.AD=-2BC
7.设
e与e2是不共线的非零向量,且ke1+e2与e1+ke2共线,则k的值是()
1
A. 1B.-1C.1D.任意不为零的实数

北师大版高一数学必修4第二章平面向量测试题及答案

北师大版高一数学必修4第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。

A、-9B、-6C、9D、62.已知=(2,3), b=(-4,7),则在b上的投影为()。

A、B、C、D、3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得向量为()。

A、(2,3)B、(1,2)C、(3,4)D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。

A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。

A、B、C、D、6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。

A、B、C、D、7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。

A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b|(3)| +b|2=( +b)2(4)(b) -(a)b与不一定垂直。

其中真命题的个数是()。

A、1B、2C、3D、49.在ΔABC中,A=60°,b=1,,则等于()。

A、B、C、D、10.设、b不共线,则关于x的方程x2+b x+ =0的解的情况是()。

A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题:(本大题共4小题,每小题4分,满分16分.).2,则 =_________ 11.在等腰直角三角形ABC中,斜边AC=212.已知ABCDEF为正六边形,且AC=a,AD=b,则用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。

(好题)高中数学必修四第二章《平面向量》检测卷(含答案解析)

(好题)高中数学必修四第二章《平面向量》检测卷(含答案解析)

一、选择题1.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .432.已知向量,a b ,满足||1,||2a b ==,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤,则向量,a b 的夹角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,63ππ⎡⎤⎢⎥⎣⎦D .20,3π⎡⎤⎢⎥⎣⎦3.延长正方形CD AB 的边CD 至E ,使得D CD E =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,若λμAP =AB +AE ,下列判断正确的是( )A .满足2λμ+=的点P 必为CB 的中点 B .满足1λμ+=的点P 有且只有一个C .λμ+的最小值不存在D .λμ+的最大值为34.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-1 5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A.3 B.2 C .52D.327.已知非零向量,OA a OB b==,且BC OA⊥,C为垂足,若(0)OC aλλ=≠,则λ等于( )A.a ba b⋅B.2a ba⋅C.2a bb⋅D.a ba b⋅8.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且2DE AE=,2CF BF=.若有(7,16)λ∈,则在正方形的四条边上,使得PE PFλ=成立的点P有()个.A.2 B.4 C.6 D.09.已知抛物线2:4C y x=的焦点为F,准线为l,P是l上一点,Q是直线PF与C 的一个交点,若2FP QF=,则||QF=()A.8 B.4 C.6 D.310.已知O是三角形ABC内部一点,且20OA OB OC++=,则OAB∆的面积与OAC∆的面积之比为()A.12B.1 C.32D.211.已知ABC∆为等边三角形,则cos,AB BC=( )A .3B.12-C.12D312.ABC是边长为23的正三角形,O是ABC的中心,则()()OA OB OA OC+⋅+=()A.2 B.﹣2 C.634-D.634-二、填空题13.已知平面向量,,a b c满足()()||2,||2||a cbc a b a b-⋅-=-==.则c的最大值是________.14.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为1F,2F,且12F F=,1F与2F的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力; ②θ的范围为[]0,π; ③当2πθ=时,1F G =;④当23πθ=时,1F G =.其中正确结论的序号是______.15.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 16.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 17.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 18.已知点()0,1A ,()3,2B,向量()4,3AC =,则向量BC =______.19.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.20.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.三、解答题21.已知在等边三角形ABC 中,点P 为线段AB 上一点,且()01AP AB λλ=≤≤. (1)若等边三角形ABC 的边长为6,且13λ=,求CP ; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围. 22.已知||6a =,||4=b ,(2)(3)72a b a b -⋅+=-. (1)求向量a ,b 的夹角θ; (2)求|3|a b +.23.已知a ,b ,c 是同一平面内的三个向量,其中()1,2a =,()3,b k =-,()2,4c =-.(1)若()//(2)ma c a c +-,求m ; (2)若()a a b ⊥+,c a b λμ=+,求λμ+.24.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标.25.对于任意实数a ,b ,c ,d ,表达式ad bc -称为二阶行列式(determinant ),记作a b c d,(1)求下列行列式的值:①1001;②1326;③251025--; (2)求证:向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=;(3)讨论关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示).26.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值; (2)若2t =,求向量a ,b 的夹角.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=2.B解析:B 【分析】根据向量不等式得到7a b +≤,平方得到1a b ⋅≤,代入数据计算得到1cos 2α≤得到答案. 【详解】由||1a =,||2b =,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤ 可得:()()27a b c a b c a c b c +⋅≤+⋅≤⋅+⋅≤ 可得:()227a b +⋅≤,7a b +≤平方得到2227a b a b ++⋅≤,即1a b ⋅≤1cos 1,cos ,23a b a b παααπ⋅=⋅≤∴≤∴≤≤故选:B 【点睛】本题考查了向量夹角的计算,利用向量三角不等式的关系进行求解是解题的关键.3.D解析:D 【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则,,,,A B C D E 的坐标为(0,0),(1,0),(1,1),(0,1),(1,1)-,则(1,0),(1,1)AB AE ==-设(,)AP a b =,由λμAP =AB +AE 得(,)(,)a b λμμ=-,所以{a b λμμ=-=,当P 在线段AB 上时,01,0a b ≤≤=,此时0,a μλ==,此时a λμ+=,所以01λμ≤+≤;当P 在线段BC 上时,,此时,1b a b μλμ==+=+,此时12b λμ+=+,所以13λμ≤+≤;当P 在线段CD 上时,,此时1,1a a μλμ==+=+,此时2a λμ+=+,所以13λμ≤+≤;当P 在线段DA 上时,0,01,a b =≤≤,此时,b a b μλμ==+=,此时2b λμ+=,所以02λμ≤+≤;由以上讨论可知,当2λμ+=时,P 可为BC 的中点,也可以是点D ,所以A 错;使1λμ+=的点有两个,分别为点B 与AD 中点,所以B 错,当P 运动到点A 时,λμ+有最小值0,故C 错,当P 运动到点C 时,λμ+有最大值3,所以D 正确,故选D .考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.4.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大, 而由x+y=11x ⎧⎨=⎩ 可得A (1,0),此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

(好题)高中数学必修四第二章《平面向量》测试题(有答案解析)

(好题)高中数学必修四第二章《平面向量》测试题(有答案解析)

一、选择题1.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )AB.C .10D .202.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-13.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( ) A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B.0,(1,)3⎛⋃+∞ ⎝⎭C.3⎛⎫ ⎪ ⎪⎝⎭ D .(1,)+∞4.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17115.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B . 4C .3D .26.已知1a =,2b=,则a b ab ++-的最大值等于( ) A .4B C .D .57.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,2]B .[0,2]C .22,222]-+D .[222,2]-9.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =,2BC =,0GA GB GC ++=,则AB CG=( )A .3B .5C .2D .10210.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-11.已知向量(6,4),(3,),(2,3)a b k c =-==-,若//a b ,则b 与c 的夹角的余弦值为( ) A .1213B .1213-C .45-D .4512.设O 为ABC 内一点,已知2332OA OB OC AB BC CA ++=++,则::AOB BOC COA S S S ∆∆∆= ( )A .1:2:3B .2:3:1C .3:1:2D .3:2:1二、填空题13.已知平面向量a ,b 的夹角为120︒,且1a b ⋅=-,则a b -的最小值为________. 14.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为_____. 15.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.16.如图,在ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若2BC CD =,且34AE AB AC λ=+,则λ=___________.17.已知(2,3),(4,7)a b ==-,则向量b 在a 方向上的投影为_________.18.已知ABC 的三边长3AC =,4BC =,5AB =,P 为AB 边上任意一点,则()CP BA BC ⋅-的最大值为______________.19.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.20.在ABC △中,已知4CA =,3CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,左顶点为A ,若122F F =,椭圆的离心率为12e =. (1)求椭圆的标准方程.(2)若P 是椭圆上的任意一点,求1PF PA ⋅的取值范围. 22.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 23.已知向量()1,2a =-,()3,1b =-. (1)若()a b a λ+⊥,求实数λ的值;(2)若2c a b =-,2d a b =+,求向量c 与d 的夹角. 24.已知向量()cos ,sin m x x =-,()3,3n =,[]0,x π∈. (1)若m 与n 共线,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足1cos cos sin sin 2b A C a B C b -=.(1)求B 的大小;(2)设1BA BC ⋅=-,D 为边AC 上的点,满足2AD DC =,求BD 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.2.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大, 而由x+y=11x ⎧⎨=⎩可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

人教版高一数学必修4第二章平面向量测试题(含答案)60642

人教版高一数学必修4第二章平面向量测试题(含答案)60642

必修 4 第二章平面向量教课质量检测一.选择题( 5 分× 12=60 分) :1.以下说法错误的选项是()A.零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向同样D.平行向量必定是共线向量2.以下四式不可以化简为AD的是()A.(AB+CD)+BC;B.(AD+MB)+(BC+CM);C.MB+AD-BM;D.OC-OA+CD;3.已知a =(3,4),b =(5,12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、b 均为单位向量 ,它们的夹角为60°,那么 | a+ 3b| = ()A. 7B. 10C. 13D. 45.已知 ABCDEF是正六边形,且 AB = a , AE = b ,则BC=()(A)1()()1()1()12 a b2 (b a)2 (a b)B C a +2b D6.设 a , b 为不共线向量, AB = a +2b , BC=- 4a - b , CD=- 5 a - 3b ,则以下关系式中正确的选项是()(A) AD =BC(B) AD =2 BC(C) AD =-BC(D) AD =- 2 BC7.设e1与e2是不共线的非零向量,且 k e1+ e2与 e1+k e2共线,则 k 的值是()(A) 1(B)-1(C)1(D)随意不为零的实数8.在四边形 ABCD中, AB =DC,且AC·BD =0,则四边形 ABCD是()(A)矩形(B)菱形(C)直角梯形( D)等腰梯形9.已知 M(- 2,7)、N( 10,- 2),点 P 是线段 MN 上的点,且PN=- 2 PM ,则 P 点的坐标为()(A)(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知 a =( 1,2), b =(- 2,3),且 ka + b 与 a -k b 垂直,则 k=()(A)1 2 (B) 2 1(C) 2 3(D) 32、若平面向量r和r相互平行,此中 x R .则r r()11a(1, x) b (2 x3,x)a bA.2或 0;B. 2 5;C. 2或2 5;D. 2或10.12、下边给出的关系式中正确的个数是()①0 a0 ② a b b a ③a2 a 2④( a b )c a(b c) ⑤ a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 (5 分× 5=25 分):13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3,4), b(2,3),则 2 | a |3a b.15、已知向量a3, b(1,2) ,且a b ,则a的坐标是_________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量练习题 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21-a +23b B 、21a 23-b C 、23a 21-b D 、2
3-a + 21b 2、已知,A (2,3),B (-4,5),则与AB 共线的单位向量是
( ) A 、)10
10,10103(-=e B 、)1010,10103()1010,10103(--=或e C 、)2,6(-=e D 、)2,6()2,6(或-=e
3、已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为
( ) A 、17 B 、18 C 、19 D 、20
4、已知向量OP =(2,1),OA =(1,7),OB =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA ⋅的最小值是 ( )
A 、-16
B 、-8
C 、0
D 、4
5、若向量)1,2(),2,1(-==n m 分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( )
A 、 -1 ,2
B 、 -2 ,1
C 、 1 ,2
D 、 2,1
6、若向量a =(cos α,sin β),b =(cos α,sin β),则a 与b 一定满足 ( )
A 、a 与b 的夹角等于α-β
B 、(a +b )⊥(a -b )
C 、a ∥b
D 、a ⊥b
7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i OP θθsin 3cos 3+=,i OQ -=∈),2
,0(πθ。

若用来表示OP 与OQ 的夹角,则等于 ( )
A 、θ
B 、θπ
+2 C 、θπ
-2 D 、θπ-
8、设πθ20<≤,已知两个向量()θθsin ,cos 1=OP ,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是( )
A 、2
B 、3
C 、23
D 、
二、填空题
9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP ⋅取得最小值的点P 的坐标
是 、
10、把函数sin y x x =-的图象,按向量(),a m n =- (m>0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________、
11、已知向量=⊥=-=m AB OA m OB OA 则若,),,3(),2,1( 、
三、解答题
12、求点A (-3,5)关于点P (-1,2)的对称点/A 、
13、平面直角坐标系有点].4,4[),1,(cos ),cos ,1(π
π
-∈=x x Q x P
(1)求向量OQ OP 和的夹角θ的余弦用x 表示的函数)(x f ;
(2)求θ的最值、
14、设,)2cos ,sin 2(x x OA =,x ,OB )1cos (-=其中x ∈[0,2π
]、
(1)求f(x)=OB OA ·的最大值和最小值;
(2)当 OA ⊥OB ,求|AB |、
15、已知定点)1,0(A 、)1,0(-B 、)0,1(C ,动点P 满足:2||−→
−−→−−→−=⋅PC k BP AP 、
(1)求动点P 的轨迹方程,并说明方程表示的图形;
(2)当2=k 时,求||−→
−−→−+BP AP 的最大值和最小值、
参考答案
一、选择题
1、B ;
2、B ;
3、C ;
4、B ;
5、D ;
6、B ;
7、D ;
8、C
二、填空题
9、(0,0)
10、56m π
=
11、4
三、解答题
12、解:设/A (x,y),则有31
252
2x y -+⎧
=-⎪⎪⎨+⎪=⎪⎩,解得1
1x y =⎧⎨=-⎩、所以
/A (1,-1)。

13、解:(1))
(cos 1cos 2||||cos ,cos 1||||,cos 222x f x x
OQ OP OQ OP x OQ OP x OQ OP =+=⋅=+==⋅θ (
2)x
x x x x f cos 1cos 2
cos 1cos 2)(cos 2+=+==θ且]4,4[ππ-∈x ,]1,22
[cos ∈∴x
22
3cos 1
cos 2≤+≤x x 1cos 322,1)(32
2≤≤≤≤θ即x f ;32
2arccos max =θ
0min =θ
14、解:⑴f(x)=OB OA ·= -2sinxcosx+cos2x=)42cos(2π
+x 、
∵0≤x ≤2π
, ∴4π
≤2x+4π≤45π

∴当2x+4π=4π
,即x=0时,f(x)max =1;
当2x+4π
=π,即x=83
π时,f(x)min = -2、 ⑵OB OA ⊥即f(x)=0,2x+4π=2π
,∴x=8π

此时|AB |22)12(cos )cos sin 2(-++=x x x =222)12(cos cos sin 4cos sin 4-+++x x x x x =x x x 2cos 2sin 22cos 27
27
2++-
=4cos 4sin 24cos 27
272
π
ππ
++- =231621
-、
15、解:( 1 ) 设动点P 的坐标为),(y x ,
则)1,(-=−→−y x AP ,)1,(+=−→−y x BP ,),1(y x PC -=−→
−、
∵2||−→
−−→−−→−=⋅PC k BP AP ,∴[]2222)1(1y x k y x +-=-+,
即 012)1()1(22=--+-+-k kx y k x k 。

若1=k ,则方程为1=x ,表示过点)0,1(且平行于y 轴的直线、
若1≠k ,则方程为222)11()1(k y k k
x -=+-+,表示以)0,1(k k
-为圆心,以为半径
|1|1
k -的圆、
( 2 ) 当2=k 时,方程化为1)2(22=+-y x 、)
2,2()1,()1,(y x y x y x BP AP =++-=+−→
−−→− ∴222||y x BP AP +=+−→
−−→−、
又∵1)2(22=+-y x ,∴ 令θθsin ,cos 2=+=y x ,则
θcos 4522||22+=+=+−→−−→−y x BP AP
∴当1cos =θ时,||−→
−−→−+BP AP 的最大值为6,当1cos -=θ时,最小值为2。

相关文档
最新文档