有理数的加减乘除运算
有理数加减乘除法

有理数加减乘除法有理数是数学中的一类数,包括整数、分数和小数。
有理数运算是数学中的基本运算之一,包括加法、减法、乘法和除法。
有理数的运算规则和方法是学习数学的重要内容之一,本文将介绍有理数的加减乘除法及其运算规则。
一、有理数的加法有理数的加法是指在两个有理数之间进行相加运算,其运算规则如下:1. 同号相加,取绝对值相加,符号不变。
例如,(-3) + (-4) = -7。
2. 异号相加,取绝对值相减,结果的符号由绝对值较大的数的符号决定。
例如,(-2) + 3 = 1。
3. 加法满足交换律和结合律。
即a + b = b + a,(a + b) + c = a + (b +c)。
二、有理数的减法有理数的减法是指在两个有理数之间进行相减运算,其运算规则如下:1. 减去一个负数可以看作是加上一个正数。
即a - (-b) = a + b。
2. 减法也满足交换律和结合律。
三、有理数的乘法有理数的乘法是指在两个有理数之间进行相乘运算,其运算规则如下:1. 同号相乘,结果为正,绝对值为两个因数绝对值的乘积。
例如,(-2) × (-3) = 6。
2. 异号相乘,结果为负,绝对值为两个因数绝对值的乘积。
例如,(-2) × 3 = -6。
3. 乘法满足交换律和结合律。
四、有理数的除法有理数的除法是指在两个有理数之间进行相除运算,其运算规则如下:1. 除以正数,结果的符号由被除数决定。
2. 除以负数,结果的符号与被除数相反。
3. 除法满足结合律,但不满足交换律。
总结:有理数的加减乘除法是数学中的基本运算,通过熟练掌握运算规则和方法,可以简化计算过程,提高计算效率。
在实际生活和学习中,有理数的加减乘除法应用广泛,例如在计算金融、纳税、商品价格等方面都离不开有理数的运算。
因此,学好有理数的运算是数学学习的基础,也是实际应用的必备技巧。
总之,有理数的加减乘除法在数学中占据重要地位,通过理解和掌握运算规则,可以轻松进行相关计算。
有理数加减乘除法运算方法

有理数加减乘除法运算方法
1. 嘿,有理数的加法呀,就像搭积木一样!比如 3 + (-2),这不是就像你先有 3 块积木,然后拿走 2 块嘛,结果不就是 1 嘛!加法可简单啦,大家难道还会搞错吗?
2. 哎呀呀,有理数的减法呢,其实就是反过来想嘛!就像 5 - 3,不就是 5 个里面去掉 3 个嘛,结果就是 2 呀。
这有啥难的呀,对吧?
3. 有理数的乘法呀,那可有意思啦,就好比排队分组!比如2 × (-3),不就是分成 2 组,每组有-3 个嘛,结果就是-6 啦。
是不是很形象呀?
4. 喂喂喂,除法呢,就像是分东西啦!像6 ÷ (-2),就是把 6 个东西平均分给-2 份,一份不就是-3 嘛。
这不是很容易明白嘛!
5. 有理数加法可别小瞧哦,像(-4) + (-5),不就像欠了 4 块钱又欠了 5 块钱,一共欠 9 块嘛,哈哈,有趣吧!
6. 那有理数的乘法也有门道呀,比如(-3) × 4,不就像有 4 组每组欠 3 个嘛,那就是欠 12 个呀,是不是很好玩?
7. 嘿,有理数的除法还有这样的,8 ÷ 2,那就是 8 个平均分成 2 份,每份 4 个呀,超级简单咧!
8. 想一想啊,(-6) ÷ (-3),不就是负数的东西平均分给负数的份数嘛,结果就是 2 啦,有趣极了!
我的观点结论:有理数的加减乘除运算方法其实都不难,只要大家用心去理解,都能掌握得很好!。
有理数加减乘除运算法则概括

在连减中,先把两个减数加起来,再用被减数减去两个减数的和,差不变。a-b-c=a-(b+c)
乘法
求几个相同加数的和的简便运算叫做乘法。
乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
乘法结合律:三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。 (a×b)×c=a×(b×c)
减去一个数再加上一个数,等于减去这两个数的差。a-b+c=a-(b-c)
在连减中,先把两个减数加起来,再用被减数减去两个减数的和,差不变。a-b-c=a-(b+c)
乘法
1、两数相乘,同号得正,异号得负,并把绝对值相乘。任何一个数与0相乘,积仍为0。
2、多个有理数相乘,几个不是0的数相乘负因数的个数是偶数时,积为正数,负因数的个数是奇数时,积为负数。
开方
若一个数b为数a的n次方根,则bn=a。如果n是偶数,那么负数将没有主n次方根。
4、一个数同零相加仍得这个数。
5、减去一个数等于加上它的相反数,然后按加法法则计算。
加法换律:两个数相加,交换加数的位置,和不变。 a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 (a+b)+c=a+(b+c)
减法
减去一个数,等于加这个数的相反数。a-b=a+(-b)
分配律:乘法运算的一种简便运算,可用于分数、小数中。
主要公式为(a+b)c=ac+bc。两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。
分配律的反用:
有理数加减乘除运算公式

有理数加减乘除运算公式
有理数的加法法则:
①同号两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加和为0. ③一个数同0相加,仍得这个数.
有理数的减法法则:
减去一个数,等于加上它的相反数.
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘.
任何数与0相乘,都得0.
有理数除法法则:
①两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0数,都得0.
②除以一个不等于0的数,等于乘这个数的倒数. 用数学式子表示为:
()01≠∙=÷b b a b a
加法交换律:
两个数相加,交换加数的位置,和不变.
字母表示:
加法结合律:
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. 字母表示:
乘法交换律:
两个数相乘,交换因数的位置,积不变.
字母表示:
分配律:
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
字母表示:(a +b)c =ac +bc
(a 、b 、c 表示任意有理数)
)()(c b a c b a
++=++ab
ba =)(表示任意有理数、b a a b b a +=+)(表示任意有理数、b a )(表示任意有理数、、c b a
有理数的运算顺序
(1)先乘除,再加减.
(2)同级运算,按从左到右的顺序进行.
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.。
有理数的加减乘除乘方混合运算

倒数, m 的绝对值和倒数都是它
本身, n 的相反数是它本身,求
:
1( a 2017 b 2017 ) 9 ( 1 ) 2017 ( m ) 2016 n 2017
5
xy
的值。
11、 1 8 0 ( 2 )2 ( 4 ) ( 3 )
审选
定算 查改
定时作业:1、计算:
(1 )( 5 ) 2 ( - 4 )( - 2)3 5
( 2)- 3 2 5 (- - 2)4 4
( 3)- 2 2 ( - 1 )( 0 . 8)3 2
( 4)2 ( - 5) 2 2 - 3 1 2
( 5)- 10 8 ( - 2)2 (- - 4)( - 3)
定时作业:2、计算:
(1)、( - 2)2 - - 7 3 - 2 ( - 1 ) 2
( 2)、- 9 3 ( 1 - 2 ) 12 3 2 23
( 3)、- 2 2 (- - 2)2 ( - 3)2 ( - 2 )- 4 2 - 4 3
例1 计算:
(1)(6)2 ( 2 1 ) 23 32
(2) 5 2 1 62 32
633
1.只含某一级运算
左右
例1 计算 1)-17/6+10/3 -11/2
2)-50÷2×(-1/5)
2.有不同级运算在一起的 高 低
例2 计算: 1)2×(-3)2
2)14-6÷(-2)-4·(-6) 3)1-2×(-3)2
有理数 的
混合运算
我们学过的有理数 的运算律: 加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
有理数的加减乘除混合运算

有理数的加减乘除混合运算有理数是指能够表示为两个整数的比值的数,包括正整数、负整数、零以及分数。
在数学中,有理数的加减乘除混合运算是一个基础而重要的概念。
本文将对有理数的加减乘除混合运算进行详细介绍。
1. 加法运算有理数的加法运算是指在两个有理数之间进行相加操作。
当两个有理数的符号相同时,只需要将它们的绝对值相加,并保留相同的符号。
例如,(-3) + (-2) = -5。
当两个有理数的符号不同时,我们需要进行减法操作。
即将绝对值较大的数减去较小的数,并保留绝对值较大数的符号。
例如,(-3) + 2 = -1。
2. 减法运算有理数的减法运算是指在两个有理数之间进行相减操作。
可以将减法转化为加法,即将减数取相反数,然后进行加法运算。
例如,5 - 3可以转化为 5 + (-3)。
3. 乘法运算有理数的乘法运算是指在两个有理数之间进行相乘操作。
正数与正数相乘或负数与负数相乘,结果为正数;正数与负数相乘或负数与正数相乘,结果为负数。
即符号相同为正,符号不同为负。
例如,(-2) ×5 = -10,(-3) × (-4) = 12。
4. 除法运算有理数的除法运算是指将两个有理数进行相除操作。
除法可以通过乘法的倒数得到,即将除数的倒数与被除数相乘。
例如,(-10) ÷ 2可以转化为 (-10) × (1/2) = -5。
5. 混合运算有理数的混合运算是指在一个表达式中同时包含加减乘除这四种运算。
在进行混合运算时,需要按照运算符的优先级进行计算,并使用括号来改变运算顺序。
通常,括号中的运算先于乘除法的运算,乘除法的运算先于加减法的运算。
例如,计算表达式:(-3) + 4 × (-2) - 6 ÷ 3。
首先进行乘法和除法运算:4 × (-2) = -8;6 ÷ 3 = 2。
然后进行加法和减法运算:(-3) + (-8) - 2 = -13。
有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。
它们的混合运算在解决复杂问题时尤为重要。
下面将介绍有理数的加减乘除的混合运算技巧。
一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。
1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。
1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。
二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。
2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。
2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。
三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。
3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。
3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。
四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。
4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。
4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。
五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。
5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。
5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。
六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。
有理数的加减乘除运算

有理数的加减乘除运算有理数是指可以用两个整数的比来表示的数,包括整数和分数。
在数学运算中,我们经常会遇到有理数的加减乘除运算。
本文将详细介绍有理数的这些运算规则。
一、有理数的加法运算有理数的加法运算是指对两个有理数进行相加的操作。
在加法运算中,我们需要根据有理数的正负性进行不同的处理。
1. 同号相加:当两个有理数都为正数或都为负数时,我们只需将它们的绝对值相加,并且保持相同的符号。
例如,计算(-3) + (-5),首先将绝对值相加得到8,然后保持负号,所以结果为-8。
2. 异号相加:当两个有理数符号不同的情况下,我们需要先将绝对值相减,并且结果的符号取绝对值较大的数的符号。
例如,计算(-8) + 5,先进行8-5得到3,然后取绝对值较大的数-8的符号,所以结果为-3。
二、有理数的减法运算有理数的减法运算是指对两个有理数进行相减的操作。
在减法运算中,我们可以利用加法的规则来进行计算。
将减法问题转化为加法问题,例如减法问题a - b,可以写成a + (-b)的形式,然后根据加法运算的规则进行计算。
三、有理数的乘法运算有理数的乘法运算是指对两个有理数进行相乘的操作。
在乘法运算中,我们可以直接计算两个有理数的乘积。
乘法运算的规则如下:1. 同号相乘结果为正:当两个有理数符号相同时,将它们的绝对值相乘,结果为正数。
例如,计算(-2) ×(-3),先计算绝对值2 ×3得到6,结果为6。
2. 异号相乘结果为负:当两个有理数符号不同时,将它们的绝对值相乘,结果为负数。
例如,计算(-4) × 7,先计算绝对值4 × 7得到28,结果为-28。
四、有理数的除法运算有理数的除法运算是指对两个有理数进行相除的操作。
在除法运算中,我们可以利用乘法的逆运算来进行计算。
将除法问题转化为乘法问题,例如除法问题a ÷ b,可以写成a ×(1/b)的形式,然后根据乘法运算的规则进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减乘除运算一、目标认知学习目标:掌握有理数的加法法则,会使用运算律简算;并能解决简单的实际问题。
掌握有理数的减法法则和运算技巧,认识减法与加法的内在联系,合理运算。
重点:有理数的加法法则、减法法则、乘法法则、除法法则。
有理数的加法结合律、交换律;乘法交换律、结合律、乘法分配律。
混合运算的顺序。
难点:有理数运算法则的理解,尤其是有理数加法和减法法则的理解;有理数运算中的符号问题;运用运算律进行简算问题;运算的准确性问题等。
二、知识要点梳理知识点一:有理数的加法:把两个有理数合成一个有理数的运算叫做有理数的加法。
要点诠释:相加的两个有理数有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个都是0。
知识点二:有理数加法法则根据有理数的加法法则,两数相加,先弄清这两个加数是同号还是异号,根据法则确定和的符号,然后根据法则求出和的绝对值。
要点诠释:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
知识点三:有理数加法的运算定律要点诠释:(1)加法交换律:。
(2)加法结合律:。
知识点四:有理数减法的意义要点诠释:有理数减法的意义与小学学过的减法的意义相同。
已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
知识点五:有理数减法法则要点诠释:减去一个数,等于加上这个数的相反数,即知识点六:有理数加减法统一成加法的意义要点诠释:对于有理数的加减混合运算中的减法,可以根据有理数减法法则将减法转化为加法。
这样一来,就将原来的混合运算统一为加法运算。
统一成加法以后的式子是几个正数或负数的和的形式,有时,我们把这样的式子叫做代数和。
知识点七:有理数加减混合运算的方法要点诠释:(1)运用减法法则将有理数混合运算中的减法转化为加法。
(2)运用加法法则、加法交换律、加法结合律简便运算。
知识点八:有理数乘法法则要点诠释:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
知识点九:有理数乘法法则的推广要点诠释:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
(2)几个数相乘,只要有一个因数为0,积就为0。
知识点十:有理数乘法的运算定律要点诠释:(1)乘法交换律:(2)乘法结合律:(3)分配律:知识点十一:倒数的概念要点诠释:乘积是1的两个数互为倒数。
由于,所以当a是不为0的有理数时,a的倒数是。
若a、b互为倒数,则ab=1。
知识点十二:有理数除法法则要点诠释:(1)除以一个数等于乘以这个数的倒数。
即。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
三、规律方法指导1、有理数的加法运算分两种情况:同号和异号两数相加,互为相反数的两数之和为0.在运用有理数的加法运算时,关键是要确定和的符号,在具体运算过程中注意能用结合律或交换律一定要用,以便使运算简便。
2、有理数的减法法则是减去一个数等于加上这个数的相反数,这样就把减法转化为加法解,同时注意运用运算律。
3、在进行有理数的乘法运算时,关键是确定积的符号,善于应用乘法运算律,互为倒数的两个数的积为1;4、有理数的除法运算可以转化为乘法运算进行。
5、在进行加减乘除的混合运算时,要注意运算顺序。
经典例题透析类型一:有理数的运算问题例1、计算思路点拨:由于上题中有互为相反数的-和+,同分母的4和-3.2(-3.2=-3),可以利用加法的交换律和结合律先分别计算出它们的值,使运算简便。
解:总结升华:互为相反数的两个数的和等于0。
绝对值较大的加数是正数的两个数的和等于正数。
绝对值较大的加数是负数的两个数的和等于负数。
举一反三:【变式】计算思路点拨:先根据减法法则去掉括号,写成省略加号的代数和。
再利用加法交换律把同分母的项结合到一起进行计算。
一定要注意交换加数的位置时要连同前面的符号一起交换。
解:原式=总结升华:0减去一个有理数所得的差是这个有理数的相反数。
要善于在有理数加减混合运算中运用减法法则把减法转化为加法。
此外对于运算过程中性质符号和运算符号可以互相转化。
例2、计算①②③思路点拨:①小题先确定符号,有三个负因数相乘积为负。
再利用乘法交换律先计算的值。
②小题利用分配律进行计算。
③小题把化为再利用分配律进行计算。
解:①原式=②原式=③原式=总结升华:在进行有理数的乘法运算时,应先考虑计算结果的符号,再进行计算。
在进行乘法和加减运算时,应运用乘法分配律进行简算。
举一反三:【变式】计算①②③思路点拨:①小题要注意运算顺序,先算乘除,再算加减,而不能从左到右依次计算。
③小题可以直接计算,也可以把写成24+后利用分配律进行计算。
类型二:有理数运算的实际问题例3、超市新进了10箱橙子,每箱标准重量为50kg,到货后超市复秤结果如下(超过标准重量的千克数记为正数,不足的千克数记为负数):+0.5,+0.3,-0.9,+0.1,+0.4,-0.2,-0.7,+0.8,+0.3,+0.1.那么超市购进的橙子共多少千克?思路点拨:本题运用了正负数的意义表示每箱橙子的重量,比如:+0.5表示这箱橙子的重量超过标准重量0.5千克,为(50+0.5)千克。
因此,计算总的重量就是求所有箱重量的和。
解:购进橙子的总重量为:(50+0.5)+(50+0.3)+(50-0.9)+(50+0.1)+(50+0.4)+(50-0.2)+(50-0.7)+(50+0.8)+(50+0.3)+(50+0.1)=50×10+(0.5+0.3-0.9+0.1+0.4-0.2-0.7+0.8+0.3+0.1)=500+0.7=500.7(千克)答:超市购进的橙子共500.7千克总结升华:注意凑整进行运算比较简便举一反三:【变式1】出租车司机小李某天下午的营运全都是在东西方向的人民大街上进行的,如果规定向东为正, 向西为负,他这天下午行车里程表示如下(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6 ,(1)将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远?(2)如果汽车耗油量为0.8升/千米,这天下午小李共耗油多少升?【变式2】某人用410元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,-3,+2,+1,-2,-1,0,-2,当它卖完8套儿童服装后是盈利还是亏损?盈利(或亏损)多少钱?【变式3】某教具厂加工正方体模型,在图纸上注明边长为(5±0.1)cm,表示这种正方体的边长的标准尺寸是多少?要求边长最大不超过标准尺寸多少厘米?符合要求的正方体边长最小是多少厘米?类型三:代数式求值问题例4、已知:a的相反数是,b的倒数是,求算式的值思路点拨:根据题意,可求出字母a和b所表示的数,然后再带入需要计算的代数式。
在计算的过程中还要注意运算法则和顺序。
解:由题意知:,,把它们分别代入算式,得:==总结升华:互为相反数的两数的和恒为0,互为倒数的两个非零数的积是常数1.举一反三:【变式1】已知的负倒数是5,的相反数是-6,求算式的值【变式2】已知:【变式3】已知:互为相反数,互为倒数,且。
求代数式的值。
类型四:综合提高例5、计算:思路点拨:本题可直接计算,观察,,…,将原式进行约分即可。
解:原式总结升华:本题是一类典型问题,解决此类题目的关键是找到分子、分母的规律。
举一反三:【变式1】【变式2】已知:,,,则【变式3】现在定义两种计算“”和“”,对于任意两个整数,,。
求:的值。
解:,。
原式【变式4】计算:有理数的加减乘除运算一、选择题:1、计算:-6+3=()A、-9B、9C、-3D、32、下列各组数中,互为倒数的是()A、-1与-1B、0.1与1C、-2与12D、-43与433、月球表面白天的温度可达123°C,夜晚可降到-233°C,那么月球表面昼夜的温差为()A、110°CB、-110°CC、356°CD、-356°C4、两个有理数在数轴上的对应点位于原点的两旁,那么这两个数的商是()A、正数B、负数C、零D、以上情况都有可能5、如果两个有理数的和是正数,那么这两个加数()A、一定都是正数或零B、一定都是负数或零C、一定都是非负数D、至少有一个是正数6、某天 A 种股票的开盘价为 18 元,上午 11:30 下跌了 1.5 元,下午收盘时又上涨了0.3 元,则 A种股票这天的收盘价为()元.A.0.3 B.16.2 C.16.8 D.187、一个水利勘察队沿一条河向上游走了 5.5 千米,又继续向上游走了 4.8千米,然后又向下游走了 5.2 千米,接着又向下游走了 3.8 千米,这时勘察队在出发点的()处. A.上游 1.3 千米 B.下游 9千米 C.上游 10.3千米 D.下游 1.3千米8、计算()A.1B.25C.-5D.35二、填空题:1、计算:(- 2)+5=__________;- 8 – 6=__________。
2、计算:25×(- 2/5)=__________;0÷(- 2.7)=__________。
3、- 5的倒数是__________;- 5的平方是__________。
4、按照神舟号飞船环境控制与生命保障系统的设计指标,“神舟”五号飞船返回舱的温度为21°C±4°C,该返回舱的最高温度为__________°C5、找出满足下列条件的数:(每空格各写出一个即可)(1)加上-8,和为正数:__________;(2)乘以-8,积为正数:__________。
6、计算:(1-2+3-4+5-6+7-8+9-10)÷(-5)=__________。
7、观察下面一列数的规律,然后在横线上填上适当的数:-5,-2,1,4,7,_______,_______。
三、解答题:1、计算:(1) (2) -9-40+25(3)(4)(-16)(5) (6)(7)(8)2、某冷冻厂的一个冷库,现在的室温是 -2°C,现有一批食品,需要在 -28°C下冷藏,如果每小时能降温4°C,要降到所需温度,需要几个小时?3. 10袋小麦, 如果以40千克为准,超过的千克数记作正数,不足的千克数记做负数.称重的记录如下:+2,+1,―0.5,―1,―2,+3,―0.5,―1,―1,0 这10袋小麦的总重量是多少千克?4.下表列出了国外几大个城市与北京的时差(带正号的数表示同一时刻比北京时间早的小时数)(1)如果现在是北京时间上午8:00,那么东京时间是多少?(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?(1)谁最重?谁最轻?(2)最重的与最轻的相差多少?6. 某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?答案:三、1、(1)(2)-24 (3)-26 (4)144(5)运用加法结合律,将同分母分数结合。