有理数加减乘除法
有理数加减混合运算法则

知识点总结
法则符号计算绝对值
加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减
减法减去一个数等于加上这个数的相反数
乘法同号取正
绝对值相乘异号取负
除法同号取正
绝对值相除异号取负
除以一个数等于乘以这个数的倒数
三、有理数加减乘除混合运算运算法则
1、有理数的加法法则:
1)同号两数的相加,取相同的符号,并把绝对值相加;
2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
3)一个数同0相加仍得这个数.
2、有理数的减法法则:
减去一个数,等于加上这个数的相反数.
3、有理数的乘法法则:
1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.
4、有理数的除法法则:
1)除以一个数就是乘以这个数的倒数;
2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.
注:0不能作除数
5、有理数的乘方符号法则:
1)正数的任何次幂都是正数;
2)负数的奇次幂为负,偶次幂为正.
四、有理数的运算律
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
3、乘法交换律:ab=ba
4、乘法结合律:(ab)c=a(bc)
5、乘法分配律:a(b+c)=ab+ac
五、有理数混合运算的法则:
(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;
3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
有理数加减乘除法

有理数加减乘除法有理数是数学中的一类数,包括整数、分数和小数。
有理数运算是数学中的基本运算之一,包括加法、减法、乘法和除法。
有理数的运算规则和方法是学习数学的重要内容之一,本文将介绍有理数的加减乘除法及其运算规则。
一、有理数的加法有理数的加法是指在两个有理数之间进行相加运算,其运算规则如下:1. 同号相加,取绝对值相加,符号不变。
例如,(-3) + (-4) = -7。
2. 异号相加,取绝对值相减,结果的符号由绝对值较大的数的符号决定。
例如,(-2) + 3 = 1。
3. 加法满足交换律和结合律。
即a + b = b + a,(a + b) + c = a + (b +c)。
二、有理数的减法有理数的减法是指在两个有理数之间进行相减运算,其运算规则如下:1. 减去一个负数可以看作是加上一个正数。
即a - (-b) = a + b。
2. 减法也满足交换律和结合律。
三、有理数的乘法有理数的乘法是指在两个有理数之间进行相乘运算,其运算规则如下:1. 同号相乘,结果为正,绝对值为两个因数绝对值的乘积。
例如,(-2) × (-3) = 6。
2. 异号相乘,结果为负,绝对值为两个因数绝对值的乘积。
例如,(-2) × 3 = -6。
3. 乘法满足交换律和结合律。
四、有理数的除法有理数的除法是指在两个有理数之间进行相除运算,其运算规则如下:1. 除以正数,结果的符号由被除数决定。
2. 除以负数,结果的符号与被除数相反。
3. 除法满足结合律,但不满足交换律。
总结:有理数的加减乘除法是数学中的基本运算,通过熟练掌握运算规则和方法,可以简化计算过程,提高计算效率。
在实际生活和学习中,有理数的加减乘除法应用广泛,例如在计算金融、纳税、商品价格等方面都离不开有理数的运算。
因此,学好有理数的运算是数学学习的基础,也是实际应用的必备技巧。
总之,有理数的加减乘除法在数学中占据重要地位,通过理解和掌握运算规则,可以轻松进行相关计算。
有理数的加减乘除混合运算

5
.
【解析】
15 7 5 4 15 7 5 4 原式=- 4 ×-3×-7×-5= × × × =5. 4 3 7 5
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
分层作业
1.[2016· 新泰月考]下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷ (-9)=- 2 9 3 1 4;③ ×-4÷ (-1)= ;④(-4)÷ ×(-2)=16.其中计算正确的个数为( C ) 3 2 2 A.4 个 C.2 个 B.3 个 D.1 个
A.4 C.-2
B.2 D.-4
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
6.计算:
1 3 (1)42×-7+(-0.25)÷ ; 4 1 -1 ; (2)-1-2.5÷ 4
(3)[12-4×(3-10)]÷ 4.
1 解:(1)-6 ;(2)1;(3)10. 3
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
5 7 5 - (2) 12-18÷ 36 5 7 36 =12-18×- 5
5 36 7 36 = ×- 5 - ×- 5 12 18 14 =-3+ 5 1 =- . 5
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
2.[2017· 双柏县期末]计算-5-3×4 的结果是( A ) A.-17 C.-8 B.-7 D.-32
3.计算:[2017· 武汉]2×3+(-4)=
2
有理数加减乘除法则口诀

有理数加减乘除法则口诀有理数是数学中一个重要的概念,它包括整数和分数。
而有理数的加减乘除是我们在学习中常遇到的计算问题。
为了方便记忆和理解,我们可以借助口诀来帮助我们掌握有理数的加减乘除法则。
一、有理数的加法法则口诀两个正数加,看符号进位;两个负数加,看符号进位;正数加负数,差值取正负;零与任何数,相加结果不变。
例如,计算-3+6,根据口诀,我们可以直接取绝对值相加,再根据原来数的符号确定结果的符号,即 |-3|+6 = 3+6 = 9,由于第一个数是负数,所以最终结果为-9。
二、有理数的减法法则口诀减去一个正数,等同于加上它的相反数;减去一个负数,等同于加上它的绝对值;负数减去正数,结果取负;正数减去零,结果不变;零与任何数,相减结果不变。
例如,计算-5-(-3),根据口诀,我们可以将减号改为加号,再将第二个负数化为它的相反数,即 -5+3 = -2。
三、有理数的乘法法则口诀同号相乘为正,异号相乘为负;零乘任何数,结果为零;数的绝对值越大,结果越大。
例如,计算-4×3,根据口诀,我们知道两个数的符号不同,所以最终结果为负数,再将两个数的绝对值相乘,即 |-4|×3 = 4×3 = 12,由于第一个数是负数,所以最终结果为-12。
四、有理数的除法法则口诀同号相除为正,异号相除为负;被除数为零,结果为零;零不能作为除数。
例如,计算-9÷3,根据口诀,由于两个数的符号相同,所以最终结果为正数,再将两个数的绝对值相除,即 |-9|÷3 = 9÷3 = 3,由于第一个数是负数,所以最终结果为-3。
通过以上口诀的记忆和应用,我们可以更加方便地计算有理数的加减乘除运算。
当然,在进行计算的过程中,我们仍然需要注意运算符的优先级和规则,确保计算结果的准确性。
总结:有理数加法法则口诀:两正进,两负进,正负差,零与任何数不变。
有理数减法法则口诀:正减正等于正,正减负等于正,负减正等于负,正减零不变,零与任何数不变。
有理数加减乘除混合运算法则小结5.10

有理数的加减乘除知识梳理一、有理数的加法法则:①同号两数相加,和取相同的符号并把绝对值相加;如:-2+(-3)=-5②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 如: 2+(-3)=-(3-2)=-1 ③一个数与零相加仍得这个数; 如: 0+(-3)=-3④两个互为相反数的数相加和为零; 如: 3+(-3)=0二、有理数的减法法则:减去一个数等于加上这个数的相反数 如: 5-(-3)=5+3=8三、有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;如:(-2)×(-5)=+(2×5)=10 2×(-5)=-(2×5)=-10②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正。
如:(-4)×(-2)×1×(-3)=-(4×2×1×3)=-24④几个有理数相乘若其中有一个为零积就为零四、有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数六、运算律:① 加法交换律:a +b =b +a 。
② 加法结合律:(a +b )+c =a +(b +c )。
③ 乘法交换律:ab =ba 。
④ 乘法结合律:(ab )c =a (bc )。
⑤ 乘法分配律:a (b +c )=ab +ac 。
七、运算顺序:有理数的混合运算法则大体与整数混合运算相同:先算乘方或开方,再算乘法或除法,后算加法或减法,有括号时、先算小括号里面的运算、再算中括号、然后算大括号。
有理数计算题1、(1)2+(-3) (2)(-5)+(-8) (3)6+(-4)(4)5+(-5) (5)0+(-2) (6))43(31-+(7)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121 (8)()⎪⎭⎫ ⎝⎛++-5112.1 2、(1)9-(-5) (2)(-3)-1 (3)(-3)-(-5)(4)0-8 (5)0-(-74) (6)(-6)-(-6) (7)(-52)-(-53) (8)(-32)-52; 3、(1) )127()65()411()310(-++-+ (2))539()518()23()52()21(++++-+-;(3)(-72)-(-37)-(-22)-17; (4)(-32)-21-(-65)-(-31);(5)(-8)-(-15)+(-9)-(-12) (6)0.5+(-41)-(-2.75)+21;(6)(-32)+(-61)-(-41)-21 (8)21+(-32)-(-54)+(-21)4、(1)(-9)×32 (2)(-132)×(-0.26)(3)(74)×56 (4)(-132)×(-0.26) 5、(1)18÷(-3) (2) (-57)÷(-3) (3) (-53)÷526、(1)(-4)×(-10)×0.5×(-3) (2) (-83)×34×(-1.8)(3)-36÷(-131)÷(-32) (4)(-1)÷(-4)÷74(5)3÷(-76)×(-97) (6)131÷(-3)×(-31)7、 (1)(65―43―97)×36 (2) 3×(–9)+7×(–9)(3)-3÷(31-41) (4)56×(-31-21)÷45。
有理数加减乘除乘方计算题

有理数加减乘除乘方计算题一、有理数加法1. 计算:(-3)+5- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|5| = 5,| - 3|=3,5>3,所以结果为正,(-3)+5 = 5 - 3=2。
2. 计算:(-2)+(-3)- 解析:同号两数相加,取相同的符号,并把绝对值相加。
(-2)+(-3)=-(2 +3)=-5。
二、有理数减法3. 计算:4-(-2)- 解析:减去一个数等于加上这个数的相反数。
4-(-2)=4 + 2 = 6。
4. 计算:(-3)-5- 解析:(-3)-5=(-3)+(-5)=-8。
三、有理数乘法5. 计算:(-2)×3- 解析:两数相乘,异号得负,并把绝对值相乘。
(-2)×3=- (2×3)=-6。
6. 计算:(-2)×(-3)- 解析:两数相乘,同号得正,并把绝对值相乘。
(-2)×(-3)=2×3 = 6。
四、有理数除法7. 计算:6div(-2)- 解析:两数相除,异号得负,并把绝对值相除。
6div(-2)=-(6div2)= - 3。
8. 计算:(-6)div(-2)- 解析:两数相除,同号得正,并把绝对值相除。
(-6)div(-2)=6div2 = 3。
五、有理数混合运算(先乘除后加减)9. 计算:2×(-3)+4- 解析:先算乘法2×(-3)=-6,再算加法-6 + 4=-2。
10. 计算:(-2)×3-(-4)- 解析:先算乘法(-2)×3=-6,再算减法-6-(-4)=-6 + 4=-2。
六、有理数乘方11. 计算:2^3- 解析:2^3=2×2×2 = 8。
12. 计算:(-2)^3- 解析:(-2)^3=(-2)×(-2)×(-2)=-8。
七、综合运算13. 计算:2×(-3)^2+4- 解析:先算乘方(-3)^2=(-3)×(-3)=9,再算乘法2×9 = 18,最后算加法18+4 = 22。
有理数加减乘除的计算方法(自我)总结

有理数加减的计算方法:
加法:1、正加正,还是正(符号为“+”,两数相加)
2、负加负,还是负(符号为“-”,两数相加)
3、有正有负,打一架,谁赢听谁的;
(谁赢符号就是谁,用大数减小数)
减法:减去一个数,就是加上它的相反数。
去括号的口诀:
●正负,负正,都是负;负负,即是正。
有理数乘除的计算方法:
乘法:同号得正,异号得负;(除法同样适用)
(符号:负负得正,正负得负,两数相乘)
除法:除以一个数,就是乘以它的倒数。
计算时:
1、先看题目,有几个负号(奇负偶正),
2、把负号提到最前面,后面全是正。
3、能不能用分配律或结合律,有没有相同的分母,
能不能揍成整数等等。
有理数混合的计算方法:
●先乘除,再加减。
●同级运算,从左到右。
●有括号,先做括号内的,按小,中,大依次进行。
有理数(加减乘除、大小比较、科学计数法)

有理数运算知识点:一、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.二、有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.三、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.乘方就是多个相同有理数相乘。
几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.四、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b ab÷=⋅,(0b≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.运算技巧:①分除以一个分数转化为乘以它的倒数;②几个因数相乘,有一个因数为0,这几个因数的乘积为0;③几个因数相乘,先确定乘积的符号,再绝对值相乘;④互为倒数的两个数相乘或乘积为整数的几个数相乘。
五、运算律加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba=(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc=(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac+=+(乘法分配律)六、混合运算顺序①先乘方,再乘除,最后加减②同级运算从左到右③如有括号,先算括号内;并按小括号、中括号、大括号的顺序依次计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*2.
选择题
1.
如果xi = 4, |y|= 3,则x -y 的值是(
)
A. ±
B. ±
C. ± 或± 2. 已知:a v 0, b >0,用|a|与|b|表示a 与b 的差是( A. |a|-|b| B. -(|a|- |b|) C. |a|+ |b| 3. 如果a v 0,那么a 和它的相反数的差的绝对值等于( A. — 2a B. — a C. 0
D. a
4. 1997个不全相等的有理数之和为零,则这 1997个有理数中( ) A.至少有一个为零 B.至少有998个正数 C.至少有一个是负数 D.至少有1995个负数
5. 被减数、减数都是负数,则差一定是 ()
A. 正数
B.零
C. 负数
D.以上情况都有可能
6.
3 5 的相反数是 ( )
4 6
A.
3 5 B. - 5
C. 3 5
D. - 5
4 6
4 6
4 6
4 6
7.根据父换律,由式子一a+b - c 可得 ()
A. b — a+c
B. — b+a+c
C. b — a — c
D. — b+a — c
8.下列代数式的和等于4的是
()
A. 1 1
1
3 2丄 1丄
B.
-2
4 4
2
4 C.
3
5 D.
3
1 5 0.125
4- 7- 3- 5_
4
8
4
2
8
二、填空题
1. 在-13与23之间插入三个数,使这5个数中每相邻两个数在数轴上表示的 点之间的距离相等,贝U 这三个数的和是 __ 。
2. 1 — 2 + 3 — 4+ 5— 6+•——100+ 101= ______ 。
89+ 899+ 8999+ 89999+ 899999= __________ 。
2
3. 已知 |x+3|+ y 2-
0,那么 y — x= ___ 。
3
4. 一个负数减去它的相反数,其结果是 _______ 数。
三、简答题
3
5
1 1. 0.75
2 0.125 12 4
4 7 8
有理数加减法
D. 7 或 1 ) D. -(|a|+ |b|) )
2001 2000 2000 1999 1999 2001
1 1 1
**3
256 512 1024
4.1 + 2 + 3+・・・+ 1997+ 1998+ 1999
5. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自0 地出发到收工时所走路线(单位:千米)为:+10、—3、+4、+2、—8、+13、一2、+12、+8、+5
(1)收工时距O地多远?
(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?
6.
情况。
(1)到本周三,小张所持股票每股多少元?
(2)本周内,股价最高出现在星期几?是多少元?
(3)已知小张买进股票时付了 1.5 %。
的手续费,卖出时需付成交额 1.5 %。
的手续费和3%。
的交易税,如果小张在本周末卖出全部股票,他收益如何?
有理数乘除法
一、选择题
1. 设a, b 是两个有理数,且ab = 0,a + b v 0,则a 和b () A. 一个为0,另一个为正数 B. 一个为0,另一个为负数
C. 都等于0
D. 异号,其中正数的绝对值比负数的绝对值小 2. 有下列说法:
① 积比每一个因数都大
② 两数相乘,如果积为正数,则这两个因数都是正数 ③ 两数相乘,如果积为负数,则这两个因数都不是正数
④ 两数相乘,如果积为0,则这两个数中必定有等于0的 其中正确说法的个数是( A. 1
B. 2
C. 3
D. 4
*3.已知abcd>0, a v c, bcd v 0,则下列式子中能成立的是 () A. a >0, b >0, c v 0, d >0 B. a v 0, b v 0, c >0, d v 0
C. a >0, b v 0, c >0, d v 0
D. a v 0, b >0, c v 0, d >0
便而使用了 ()
A.乘法交换律
B. 乘法结合律
C.乘法分配律
D. 乘法结合律和交换律 *5.若 a v b v 0, 那么下列式子中成立的是( )
A. 1 1
B. ab v 1
C.
空1 D. - 1
a b
b
b
6. |a|
- 1,则 a
a
|为( )
A.正数
B.负数
C.非正数
D.非负数
、、填空题
7.若a, b ,c ,d 是互不相等的整数,且
*8.已知x ,y ,z 是三个有理数,若x v y ,x + y = 0,且xyz >0,则x + z 的符 号为
9. 一个数的50%是—2.5,则这个数是 _________ .
**10.设 a = 1 吃七 V ,b = 1-( 2七V ), c = 1-( 2七)詔,d = 1 吃十(3 詔)。
计算(b —a ) — (c —I )的结果是 .
(0.25) ( 4)
1
I7 [( 0.25) ( 4)]
1
1-,这是为了运算简
abcd= 9,贝U a + b + c + d = ____
16
三、计算题 1 11. 108 -
6
12. 29 36+(— 27)
X 36+(— 21) X 36.
13. 3.6 X — 3.2) X (— 128) X (— 336) X0X (— 48).
1 1
14. — 2— 1 ( — 4).
2 4
2 4 1
伍(—
5)-丐--
24
7
.
四、综合题
*16.若a, b 互为相反数,c, d 互为倒数,m 的绝对值是1,求(a b)cd 的值. *17.计算 1996X 19951995- 1995X 9961996.
32 ~3
2009m。