高速铁路与铁路信号(一)
《铁路技术管理规程》(高速铁路部分)-信号、通信

《铁路技术管理规程》(高速铁路部分)第三章信号、通信一般要求第58条为保证信号、通信设备的质量,应设电务段、通信段等电务维修机构。
电务段、通信段管辖范围应根据信号、通信设备等条件确定。
第59条电务维修机构应具备设备检修、测试场所,配置相应的仪器仪表、工装机具以及交通工具、应急通信设备等。
在动车组、机车和轨道车的检修地点应设列控车载设备、机车信号、列车运行监控装置(LKJ)、轨道车运行控制设备(GYK)及车载无线通信设备等的检修与测试场所。
铁路电务设备维护工作应按设备技术状态进行维修,并按周期进行中修和大修。
电务车载设备结合动车组、机车和轨道车各级检修修程,同步进行检修。
第60条对设有加锁加封的信号设备,应加锁加封,必要时可设置计数器,使用人员应负责其完整。
对加封设备启封使用或对设有计数器的设备每计数一次时,使用人员均须在《行车设备检查登记簿》内登记,写明启封或计数原因。
加封设备启封使用后,应及时通知信号部门加封。
使用计算机技术控制的信号设备实现加锁加封功能时,应使用密码方式操作。
第61条集中联锁车站和自动闭塞区段应装设信号集中监测系统,对信号设备运用状态进行实时监测,实现故障及超限告警。
第62条信号、通信设备及机房,应采取综合防雷措施,设置机房专用空调。
信号及通信设备,应装有防止强电及雷电危害的浪涌保护器等保安设备,电子设备应符合电磁兼容有关规定。
第63条列控车载设备、机车信号设备、列车运行监控装置(LKJ)、轨道车运行控制设备(GYK)和车载无线通信设备等的电源,均应取自车上直流控制电源系统,直流输出电压为110 V时,电压波动允许范围为-20%~+5%。
信号第64条信号机按用途分为进站、出站、通过、进路、复示、调车信号机等。
第65条各种信号机及表示器,在正常情况下的显示距离:1.高柱进站、高柱通过信号机,不得小于1 000 m;2.高柱出站、高柱进路信号机,不得小于800 m;3.调车、矮型进站、矮型出站、矮型进路、矮型通过、复示信号机,引导信号及各种表示器,不得小于200 m。
高速铁路信号与控制系统—调度集中

调度集中CTC
• 11、限速命令管理
临时限速命令由调度所集中管理,通过CTC系 统向临时限速管辖车站下达限速调度命令。车 站列控中心从限速调度命令中获取限速命令控 制信息,设置限速命令。临时限速调度命令在 调度所、车站以统一的“窗口方式”模板输入、 显示、签收(确认)及回执。在CTC的车站车 务终端上增加列控中心设备的人机界面,用以 发送列控指令、显示列控中心相关设备工作状 态。
调度集中CTC
• 8、调车作业管理 CTC系统调车作业遵循的基本原则是调车作业 不得干扰列车作业。调车作业是以列车运行调 整计划为基础,在不影响列车正常运行的情况 下,寻找列车与列车之间的空档适时进行。 CTC系统提供调车作业管理功能,便于相关人 员编制调车作业计划,并进行调车进路卡控。
调度集中CTC
调度集中CTC
• CTC系统功能 • 1、运行计划管理
运行计划管理是全路列车运行组织的基础。表 现在时机运输组织工作中为运行图,分为计划 运行图和实际运行图。运行计划管理包括基本 图管理、日班计划管理、阶段计划管理、实际 图自动铺画、列车编组管理、命令自动生成等 功能。
调度集中CTC
• 2、控制模式 在《分散自律调度集中系统技术条件(暂行修 订稿)》中,规定CTC应具有分散自律控制模 式和非常站控模式。
调度集中CTC
• 4、进路预告 列车进路预告是行车安全的重要保障,CTC系统根据 车次自动跟踪结果选择适当时机发送既定车次的列车 进路上机车,以告知机车在前方车站需要进行的相关 作业标准。机车在收到进路预告以后与既有作业计划 进行对比,不一致时进行报警。
调度集中CTC
• 5、综合维修管理 系统在车站设有综合维修终端,协调进行系统 综合维修方面的管理。综合维修终端用于车站 电务、工务、电力、桥隧等部门在施工、维修 和抢险等情况下,现场人员和调度中心的联系, 以及设备日常维护、天窗修、施工以及故障处 理方面的登销记手续的办理。
高速铁路通信信号与列车间通信的协议研究

高速铁路通信信号与列车间通信的协议研究随着科技的不断发展,高速铁路系统已经成为现代交通运输的重要组成部分。
高速铁路的通信信号和列车间的通信是确保铁路运行安全和高效的关键因素。
因此,研究高速铁路通信信号与列车间通信的协议变得至关重要。
高速铁路通信信号指的是在高速铁路系统中传输各种信息的信号。
这些信息包括列车状态、速度、位置等关键数据。
为了确保列车在高速运行过程中能够及时准确地获取这些信息,高速铁路通信信号的设计必须保证高可靠性、高带宽和低延迟。
在高速铁路系统中,列车间的通信尤为重要。
列车间的通信在许多方面起着关键作用,例如列车位置监测、列车调度、列车控制等。
为了实现这些功能,需要一种高效可靠的通信协议来确保列车之间的通信畅通无阻。
为了研究和实现高速铁路通信信号与列车间通信的协议,需要考虑以下几个方面:1. 高可靠性:高速铁路是一种高度安全敏感的运输系统,因此通信协议必须具备高可靠性。
这意味着协议设计需要考虑到信号传输的稳定性和容错能力,以确保信息的可靠传输和处理。
2. 高带宽:高速铁路系统中涉及的信息量巨大,因此通信协议需要具备高带宽的特性,以满足数据传输的需求。
这意味着协议设计需要采用高效的数据压缩和传输技术,以提高系统的数据处理能力。
3. 低延迟:在高速铁路系统中,每一秒的延迟都可能导致严重的事故发生。
因此,通信协议必须具备低延迟的特性,以确保信息能够在短时间内传输和处理。
这需要协议设计中考虑到多路复用和信息压缩等技术,以减少数据传输和处理的时间。
4. 安全性:高速铁路通信信号和列车间通信涉及到的信息非常敏感,必须得到保护,防止未经授权的访问和恶意攻击。
因此,通信协议必须具备安全性的特性,包括数据加密、身份验证和访问控制等。
为了满足这些需求,可以参考以下几个通信协议:1. EtherCAT(以太术语器):EtherCAT是一种基于以太网的实时通信协议,广泛应用于工业自动化领域。
它具有高可靠性、高带宽和低延迟的特性,适用于高速铁路通信信号和列车间通信。
铁路信号概论 (1)

铁道信号是一种控制列车运行间隔保证列车运行的一种技术手段。
铁道信号也称为铁路信号,铁道信号的作用是保证列车运行安全,有效提高铁路运输效率,降低运输成本,大大改善行车人员的劳动条件;因此铁路信号装备是组织指挥列车运行,保证行车安全,提高运输效率,传递行车信息,改善行车人员劳动条件的关键设备。
铁道信号有广义和狭义之分。
广义的铁道信号是铁路运输系统中,保证行车安全、提高区间和车站通过能力以及编解能力的手动控制、自动控制及远程控制技术的总称;狭义的铁道信号是在行车、调车工作中,读行车人员有关指示的运行条件而规定的物理特征符号(如:红、绿灯的显示含义)。
狭义铁路信号简介以标志物、灯具、仪表和音响等向铁路行车人员传送机车车辆运行条件、行车设备状态和行车有关指示的技术与设备。
其作用是保证机车车辆安全有序地行车与调车作业。
铁路信号随着第一列列车在英国出现而出现。
早期的信号是十分简陋的。
现代信号借助电子工业的发展,使行车指挥系统走上自动化,列车运行也向着自动驾驶与自动控制发展。
中国于1907年在大连至长春的铁路上开始安装了臂板式信号机,1951年自行设计与制造的进路继电式集中联锁设备装在衡阳铁路车站。
此后在各铁路线上逐步配置了自动闭塞、集中联锁、调度集中控制等设备。
分类铁路信号按其作用可分为指挥列车运行的行车信号和指挥调车作业的调车信号;按信号设置的处所可分为车站信号、区间信号,以及行车指挥和列车运行自动化等;按信号显示制式可分为选路制信号和速差制信号;按结构可分为臂板信号、色灯信号、灯列信号(中国大陆不采用)以及机车信号机。
铁路信号设备可分为三大类:一是信号机,其原始形式是手灯、手旗、明火、声笛等,现代信号机主要有进、出站信号机,通过信号机,进路信号机,驼峰信号机,驼峰辅助信号机,接近信号机,遮断信号机,调车信号机,防护信号机,减速信号机和停车信号机等,以及其他复示信号机等辅助性信号机;二是标志,主要有预告标、站界标、警冲标、鸣笛标、作业标、减速地点标及机车停止位置标等;三是表示器,其作用是补充说明信号的意义,主要有发车表示器、发车线路表示器、进路表示器、调车表示器、道岔表示器等。
高速铁路信号系统的设计与使用方法

高速铁路信号系统的设计与使用方法高速铁路信号系统是确保列车运行安全和高效的重要组成部分。
在高速铁路系统中,信号系统承担着向列车提供指示信号和保障运行安全的重要任务。
本文将探讨高速铁路信号系统的设计原理和使用方法,以确保高速铁路的运行安全和效率。
一、高速铁路信号系统的设计原理1. 信号所的分类高速铁路信号系统的设计由主要信号、辅助信号和区间信号三个部分组成。
主要信号通常由色灯信号和标志信号组成,用于向列车发出行车指示。
辅助信号主要包括速度限制信号和警示信号,用于提醒驾驶员注意车速和行车条件。
区间信号则用于划分列车运行的不同区段。
2. 信号系统的传输方式高速铁路信号系统采用数字化传输方式,以提高传输精度和可靠性。
传统的模拟信号系统存在信号衰减和干扰的问题,而数字信号可以通过纠错编码和差错校验来提高信号的可靠性和抗干扰能力。
3. 核心控制系统高速铁路信号系统的核心控制系统采用计算机或 PLC (可编程逻辑控制器)来实现信号灯的控制和列车位置的监测。
核心控制系统可以根据列车的位置和速度信息来发送合适的信号指令,保障列车的安全运行。
4. 信号灯的设计高速铁路信号灯通常采用LED(发光二极管)灯泡,其具有亮度高、寿命长等优点。
信号灯的设计需要考虑到不同天气条件下的可见性,确保列车驾驶员能够准确辨识信号的颜色和状态。
5. 信号传输通道的设计高速铁路信号系统的传输通道可以采用电缆、光缆或者无线电信号传输。
不同的传输方式具有不同的传输速率和传输距离,需要根据具体情况选择适合的传输通道。
二、高速铁路信号系统的使用方法1. 行车信号的解读高速铁路信号系统中的行车信号对列车驾驶员来说非常重要,驾驶员需要准确解读行车信号所代表的含义。
行车信号通常包括停车信号、开行信号、减速信号等,驾驶员需要根据信号的显示来调整列车的速度和行驶状态。
2. 跟随安全间隔高速铁路信号系统中的信号之间存在一定的安全间隔,驾驶员需要遵循这些安全间隔来保证列车的安全行驶。
铁路进行信号的名词解释

铁路进行信号的名词解释铁路信号:一场看不见的安全交响曲寂静的铁路线上,列车穿梭于山林之间,铁轨在地下律动,承载着人们的生活与梦想。
然而,在这片深深的铁路世界里,有着看不见的安全守护者,它们就是铁路信号。
铁路信号是保障列车安全、维护行车秩序的重要设备。
本文将对铁路信号进行名词解释,带您一同探索这个充满活力而神秘的世界。
一、信号基本概述1. 信号定义:铁路信号是指为了指挥和控制列车行驶而设置的各种用以向列车运输系统的驾驶员和其他人员传递信息的设备。
2. 信号种类:根据功能和形态的不同,信号可分为进站信号、出站信号、中间信号等。
在不同情况下,信号会显示不同的颜色和形状来传递信息。
3. 信号设备:铁路信号设备主要包括信号机、车载信号设备和通信设备。
信号机是安装在铁路线路上的,用来传递与行车有关的信息。
车载信号设备则安装在列车上,用于接收并解读信号机传递的信息。
通信设备则是用于信号信息的传输与交换。
4. 信号原理:铁路信号是基于一套复杂的逻辑原理工作的。
例如,红色表示停车,绿色表示行驶。
信号机间的组合及其显示状态的变化,以及与车载设备的联动,都能帮助驾驶员准确判断行车情况。
二、信号机的类型和功能1. 轨道侧向信号:安装在铁路线路两侧,并沿线布置,用于向驾驶员显示前方铁路线的行车指示。
它们以不同的颜色、灯光组合和形态来传递行车指令,如直行、减速、停车、限速等。
2. 平面信号:安装在站内或车辆停放区的信号。
它们显示列车在站内的位置指示,为调度员和行车指挥员提供运营决策依据。
3. 车载信号设备:安装在列车驾驶室内的信号显示设备。
它们接收信号机传来的信息,并向驾驶员提供清晰可视的信号显示。
驾驶员根据信号的指示执行相应的行车操作。
4. 方向信号:表明列车在叉道或岔道处的行驶方向。
根据信号的显示,驾驶员可以判断是否需要调转方向。
5. 道岔信号:用于指示车辆行驶是否可以通过道岔区域。
道岔信号帮助驾驶员正确选择行进的线路。
高速铁路信号系统

高速铁路信号系统近年来,我国高速铁路建设取得了迅猛发展,截至2011年底,高速铁路营业里程达7 531 km(不包括台湾地区),在建高速铁路1万多千米,已成为世界高速铁路运营速度最高,运营里程最长、在建规模最大的国家.铁路信号系统是为了保证铁路运输安全而诞生和发展的,它的第一使命是保证行车安全,没有铁路信号,就没有铁路运输的安全.随着列车运行速度的提高,完全靠人工望、人工驾驶列车已经不能保证行车安全了,当列车提速到200km/h时,紧急制动距离将达到2 km(常用制动距离超过3 km),因此,国际上普遍认为当列车速度大于时速160 km 时,必须装备列车运行控制系统(简称列控系统),以实现对列车间隔和速度的自动控制,提高运输效率,保证行车安全.要实现列车自动控制,需要解决许多关键技术问题,例如:车-地之间大容量、实时和可靠信息传输,列车定位,列车精确、安全控制等,需要车载设备、轨旁设备、车站控制、调度指挥、通信传输等系统良好的配合才能实现,以现代列车运行控制技术为核心的信号系统可以称为现代铁路信号系统.高速铁路装备了列控系统后,提高了列车运行速度和行车密度,同时对中国铁路信号技术还具有积极的促进作用,但由于发展速度太快,设备、标准、管理与养护都免不了存在一些缺陷和不足.本文作者简要阐述了中国列车运行控制系统为我国铁路发展所产生的促进作用,也对现有系统存在的若干问题进行了分析,在分析的基础上,针对今后中国列车运行控制系统的建设提出了改进建议.中国列车控制系统(CTCS)2003年,铁道部参照欧洲列车运行控制系统(ETCS)相关技术[3],根据中国高速铁路建设需求制定了5中国列车运行控制系统(CTCS)技术规范总则(暂行)6,以分级的形式满足不同线路运输需求.CTCS系统由车载子系统和地面子系统组成.地面子系统包括:应答器、轨道电路、无线通信网络(GSM-R)、列控中心(TCC)/无线闭塞中心(RBC).车载子系统包括:CTCS车载设备、无线系统车载模块等.CTCS依次分CTCS-0~CTCS-4共5个等级, 以满足不同线路速度需求.CTCS0级为既有线的现状;CTCS1级为面向160 km/h以下的区段;CTCS2级为面向干线提速区段和200~250 km/h高速铁路;CTCS3级为面向300~350 km/h及以上客运专线和高速铁路;CTCS4级为面向未来的列控系统.TCS-2级列控系统[5]是基于轨道电路和点式应答器传输列车运行许可信息,并采用目标-距离模式监控列车安全运行的控制系统.地面一般设置通过信号机,是一种点-连式列车运行控制系统.在CTCS-2级列控系统中,用轨道电路实现列车占用及完整性检查,并连续向车载设备传送空闲闭塞分区数量等信息.用应答器向车载设备传输定位、线路参数、进路参数、临时限速等信息.列控中心具有轨道电路编码、应答器报文储存和调用、区间信号机点灯控制、站间安全信息传输等功能.同时,列控中心根据轨道电路、进路状态及临时限速等信息,产生行车许可,并通过轨道电路及有源应答器将行车许可传递给列控车载设备.列控车载设备根据地面设备提供的信号动态信息、线路参数、临时限速等信息,结合动车组参数,按照目标-距离模式生成控制速度,监控列车安全运行.CTCS-3级的列控系统[6]是基于无线通信网GSM-R传输列控信息并采用轨道电路检查列车占用的连续式控制系统.CTCS-3级列控系统采取目标距离控制模式和准移动闭塞方式,地面可不设通过信号机,司机凭车载信号行车,同时具有CTCS-2级功能.CTCS-3级列控系统地面设备包括:无线闭塞中心、列控中心、轨道电路、点式应答器、GSM-R通信接口设备等.车载设备包括:车载安全计算机、GSM-R无线通信单元、轨道电路信息接收单元、应答器信息接收模块、列车接口单元等.在CTCS-3级列控系统中,无线闭塞中心根据轨道电路、联锁进路等信息生成行车许可,并通过GSM-R无线通信系统将行车许可、线路参数、临时限速传输给CTCS-3级车载设备.同时,通过GSM-R无线通信系统接收车载设备发送的位置和列车数据等信息.列控中心接收轨道电路的信息,并通过联锁系统传送给无线闭塞中心.同时,列控中心具有轨道电路编码等CTCS-2级系统列控中心功能,满足作为CTCS-3级后备系统需要.应答器向车载设备传输定位、等级转换、线路参数和临时限速等信息,满足后备系统需要.车载安全计算机根据地面设备提供的行车许可、线路参数、临时限速等信息,结合动车组参数,按照目标距离连续速度控制模式生成动态速度曲线,监控列车安全运行.尽管CTCS-2级和CTCS-3级列控系统的发展使我国铁路信号技术取得了长足进步,但由于从制定技术标准到大规模投入运行发展速度太快,设备、标准、安装工程、管理与养护都免不了存在一些缺陷和不足,需要认真总结、及时调整,避免酿成重大行车事故.。
高速铁路与铁路信号 第一讲 高速铁路促进铁路信号的发展

高速铁路 与铁路信 号
第一讲 高速铁路促进铁路信号 的发展
傅 世 善
( 北京 全路 通 信 信 号研 究设 计院有 限 公 司 ,北京 10 7 ) 0 3 0
摘 要 :高速 铁路 对 铁 路 信 号提 出 了很 多 需求 ,促 进 了铁 路 信 号 的 大发 展 ,无论 从 概 念 、 原 则 、构 成 、技 术上都 发生很 大的 变化 。
9t
Ne r a wsAb o d
国外信 息
C T 降低地铁产品寿命周期成本 BC
基 于通 信 的 列 车控 制 技 术 ( CBTC)的进 步 能 够 帮 助 主要城 市 轨道 运营 商 降低产 品寿命 周期 成 本 , 提高 服 务质量 和 运营 效率 。
— —
CBTC系 统研 发 的开 创性 工作 ,使 后 来 的城 市轨 道
关键 词 :高速 铁路 ;铁 路 信 号 ;概 念 ;原 则 ; 变化 DoI 1 .9 9 .s . 7 —4 02 1 . . 7 : 03 6 /i n1 34 4 .0 1 30 js 6 0 2
自武广 30km/h的 高速 铁路 顺 利 开通 ,以无 5
信 号为 主 ,甚 至取 消地 面信 号机 。 闭塞 方 式 从 三 显示 、四 显示 的 固定 闭塞 ,发展 为准 移 动 闭塞 。 列 车 制动 方式 从分 级制 动到 模 式 曲线一 次制动 , 制 动 控 制方 式 从 失 电制 动 发展 到得 电和 失 电制 动 优
C TC解 决 了地铁 运 营商 关注 的一 些 主要 问题 , B 它 帮 助 系统 增 强 安 全 性 ,提 高 运 行 和维 护 效 率 ,增 强 系 统 可用 性 ,并在 系 统 监 测和 干预 中提供 更大 的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速铁路与铁路信号(一)
【字号:大中小】
时间:2011-9-29来源:中国通号网作者:傅世善阅读次数:1652
高速铁路促进铁路信号的发展
自武广350 km/h 的高速铁路顺利开通,以无线通信为车地信息传输系统的中国列车运行控制系统CTCS-3得到成功运用,200 km/h 以上的高速铁路网建设也已初具规模,中国铁路和铁路信号的面貌为之一新。
高速铁路对铁路信号提出了很多需求,促进了铁路信号的大发展,无论从概念、原则、构成、技术上都发生很大的变化。
较大的变化如下。
高速铁路的铁路信号系统从传统的车站联锁、区间闭塞、调度监督,发展为列控系统、车站联锁、综合行车调度3大系统。
铁路信号从以车站联锁为中心向以列车运行控制系统为中心转化。
列车运行调度指挥从调度员—车站值班员—司机3级管理向实现由调度员直接控制移动体(列车)转化。
列车运行由以人为主确认信号和操作向实现车载设备的智能化转化。
车地信息传输从小信息量到大信息量,线路数据从车上贮存方式到地面实时上传方式。
信号显示制式从进路式、速差式,发展为目标-距离式;信号机构从地面信号机为主,发展为车载信号为主,甚至取消地面信号机。
闭塞方式从三显示、四显示的固定闭塞,发展为准移动闭塞。
列车制动方式从分级制动到模式曲线一次制动,制动控制方式从失电制动发展到得电和失电制动优化组合。
信号设备从继电、电子技术为主,发展到信号控制、计算机、通信技术的一体化。
车站联锁从继电联锁发展到计算机联锁,从传统联锁发展到信息联锁。
信号系统从孤立设备组成,发展到通过网络化、信息化构成大系统。
主流移频轨道电路的载频从600 Hz系列调整为2000 Hz,从少信息向多信息发展,数字化轨道电路的研究也取得初步成功。
轨道电路从在有砟轨道上运用,发展到在无砟轨道上运用。
站内轨道电路从叠加电码化向一体化站内轨道电路发展。
应答器和计轴设备广泛应用于信号系统。
道岔转换设备改内锁闭为外锁闭,提高转辙机功率,加大转换动程,改尖轨联动为分动,采用密贴检查器实现大号码道岔尖轨的密贴检查,对大号码道岔由单点牵引改为多点牵引,解决了可动心轨的牵引锁闭问题。
调度指挥系统从调度监督,发展到分布自律的调度集中,构建综合调度指挥系统,建设大型的客运专线调度中心。
高速铁路安全性要求更高,防灾报警系统纳入综合调度指挥系统,开始与信号发生联锁。
高速铁路要求开天窗维护,电务集中监测纳入综合调度指挥系统。
调度集中的安全等级提高,限速系统采用专门的安全通信通道。
信号系统采用的通信通道从传统的电线路,发展到光通信,从有线通信发展到无线通信,非安全通信通道用于信号安全领域。
故障- 安全理念从传统的追求绝对安全,发展到以概率论为基础的安全性系统设计。
确立以欧洲铁路标准体系为参考标准,建立安全评估机制,通过第三方进行安全认证,对系统进行综合仿真与测试。
铁路现代化、信息化扩大了“铁路信号”的内涵, 铁路信号技术向数字化、网络化、智能化和综合化方向迈进。
350 km/h的高速铁路,是当今国际铁路技术的高峰。
对铁路信号来说是一个重要的里程碑,CTCS-2和CTCS-3的成功运用,标志着中国铁路有了自已的列车运行控制系统,铁路信号重要装备水平开始进入了世界先进行列。
铁路信号为铁路高速保驾护航,铁路高速推动了铁路信号的发展。