植物细胞信号转导

合集下载

植物细胞的信号传导

植物细胞的信号传导

5 two major signal transduction pathway in plant
• Cytosolic Calcium • Protein kinase /phosphorylase
细胞外 细胞膜 细胞质
环 境 刺 激
胞 间 信 号
受 体
G效
蛋应 白器
酪氨酸 蛋白激

cAMP
第一节 Over view of signal transduction
1 The stream of signals is continuous and complex
2 Signal transduction network within cells, among
Cells and through the plant
接受信号主要通过蛋白受体或改变膜电位
受体位置
光反应红光受体
光敏色素组成一个蛋白质家族, 各有不同生理功能
光形态建成中信号传导效应的复杂性
第二节 植物细胞跨膜信号转导
受体(receptor):
是在效应器官细胞表面或亚细胞组分中可特异 地识别并结合信号分子—配体(ligand) ,或物理信 号(光温信号)大分子物质,多为为蛋白质。
3Finally modified gene expression
• Different signal effects Different transduction networks in different way and different place
• But finally change the gene expression pattern
Ca2+
Ca2+ 调节蛋白

东北林业大学植物生理学9-植物细胞信号转导

东北林业大学植物生理学9-植物细胞信号转导

胞内信号转导
膜上信号转换
胞间信号传递
植物体内的胞间信号可分为两类,即化学信号和物理信号。
一、胞间信号
(一) 化学信号 (chemical signals )
细胞感受刺激后合成并传递到作用部位引起生 理反应的化学物质。 植物激素是植物体主要的胞间化学信号。 如当植物根系受到水分亏缺胁迫时,根系细胞 迅速合成脱落酸 (ABA) ,ABA 再通过木质部蒸腾流 输送到地上部分,引起叶片生长受抑和气孔导度的 下降。而且ABA的合成和输出量也随水分胁迫程度 的加剧而显著增加。 这种随着刺激强度的增加,细胞合成量及向作 用位点输出量也随之增加的化学信号物质称之为正 化学信号(positive chemical signal)。 ABA 然而在水分胁迫时,根系合成和输出细胞分裂 素 (CTK) 的量显著减少,这样的随着刺激强度的增 干旱 CTK 加,细胞合成量及向作用位点输出量随之减少的化 学信号物质称为负化学信号(negative chemical signal)。
植物细胞信号转导
第一节 植物体内的信号传导
生长发育是基因在一定时间、 重力 空间上顺序表达的过程,而基因表达 Fig.1 各种 外 除受遗传信息支配外,还受环境的调 光合作用的光 部信号影响植 控。 光周期 光形态建成的光 物的生长发育 植物在整个生长发育过程中, 湿度 温度 受到各种内外因素的影响,这就需要 草食动物 风 植物体正确地辨别各种信息并作出相 应的反应,以确保正常的生长和发育。 乙烯 例如植物的向光性能促使植物 病原体 向光线充足的方向生长,在这个过程 中,首先植物体要能感受到光线,然 寄生虫 后把相关的信息传递到有关的靶细胞, 土壤微生物 土壤质地 并诱发胞内信号转导,调节基因的表 水分状况 有毒物质 矿质营养 达或改变酶的活性 光质→光受体→信号转导组分 →光调节基因→向光性反应 各种外部信号影响植物的生长发育

植物细胞信号转导

植物细胞信号转导

㈡ G蛋白(G protein)


在受体接受胞间信号分子到产生胞内信号分子之 间,往往要进行信号转换,通常认为是通过G蛋 白将转换偶联起来,故又称偶联蛋白或信号转换 蛋白。 G蛋白全称为GTP结合调节蛋白(GTP binding regulatory protein),由于其生理活性有赖于三磷酸 鸟苷(GTP)的结合以及具有GTP水解酶的活性而得 名。
㈡ 肌醇磷脂信号系统

磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol-4,5bisphosphate,PIP2)是一种分布在质膜内侧的肌 醇磷脂,占膜脂的极小部分。它是由PI(磷脂酰 肌醇,phosphatidylinositol )和PIP(磷酯酰肌醇4-磷酸,PI-4-phosphate)磷酸化而形成的。


㈠ 钙信号系统


静息态胞质Ca2+浓度小于或等于0.1mmol· L-1, 而细 胞壁、内质网和液泡中的Ca2+浓度要比胞质中的 高2~5个数量级。 细胞受刺激后,胞质Ca2+浓度可能发生一个短暂 的、明显的升高,或发生梯度分布或区域分布的 变化。
植物细胞中Ca2+的运输系统


胞外刺激信号可能直接或间接地调节这些钙离子 的运输系统,引起胞内游离钙离子浓度变化以至 影响细胞的生理生化活动。 胞内Ca2+信号通过其受体-钙调蛋白转导信号。现 在研究得较清楚的植物中的钙调蛋白主要有两种: 钙调素(calmodulin, CaM)与钙依赖型蛋白激酶。
蛋白激酶
(protein kinase)
蛋白质
蛋白磷酸脂酶
蛋白质-nPi
(protein phosphatase)

第7章植物细胞信号转导

第7章植物细胞信号转导
上章回顾:
6.1 同化物的运输
胞间、长距运输。环割的利用。形式及特点(稳定、溶解、运速)
6.2 同化物的运输机制
三种学说:压力流动说、泵动说、蛋白质收缩说
6.3.同化物的分配
代谢源、库,源库单位。分配特点:优先中心、就近同侧、在利用、功能叶间无关
6.4 影响同化物运输的因素
温度、光、水、矿
第7章 细胞信号转导
• 第一节 信号与受体结合
• 一、信号
• 对植物体来讲,环境变化就是刺激,就是信号。 根据信号分子的性质信号分为物理信号和化学信 号;光、电等刺激属于物理信号,而激素、病原 因子等属于化学信号。化学信号也称之为配体。 根据所处的位置信号,可分为胞外(胞间)信号 和胞内信号。
• 信号进入细胞后,最终引起生理生化变化和形态 反应。例如,电波就是在植物体进行传递的物理 信号。植物受到外界刺激时可产生电波,通过维 管束、共质体和外质体快速传递信息。又如,植 物根尖合成的ABA,通过导管向上运送到叶片保 卫细胞,引起气孔关闭,这个过程就是信号转导 的过程。
• 位于亚细胞组分如细胞核、液泡膜上的受 体叫做细胞内受体。一些信号(如甾类物 质)是疏水性小分子,不经过跨膜信号转 换,而直接扩散入细胞,与细胞内受体结 合后,在细胞内进一步传递和放大。
• 第二节 跨膜信号转换
• 信号与细胞表面的受体结合之后,通过受 体将信号转导进入细胞内,这个过程称为 跨膜信号转换。
• 二、受体在信号转导中的作用Fra bibliotek• 受体:是指能够特异地识别并结合信号、在细 胞内放大和传递信号的物质。细胞受体的特征是 有特异性、高亲和力和可逆性。至今发现的受体 大都为蛋白质。
• 位于细胞表面的受体称为细胞表面受体。在很多 情况下,信号分子不能跨过细胞膜,它们必须与 细胞表面受体结合,经过跨膜信号转换,将胞外 信号传入胞内,并进一步通过信号转导网络来传 递和放大信号。例如,细胞分裂素受体就是细胞 表面受体。

植物生理学 第一章细胞信号转导

植物生理学 第一章细胞信号转导

细胞质中开放的Ca 细胞质中开放的 2 +通道附 近Ca2 +的分配 颜色区表示Ca 浓度, 颜色区表示 2+浓度,红的 最高, 最高,蓝的最低
2. 钙调素(calmodulin,CaM) 钙调素( , ) 一种耐热的球蛋白(也称钙调蛋白),以两种方 种耐热的球蛋白(也称钙调蛋白),以两种方 钙调蛋白), 式起作用: 式起作用:
+的主要功能是: 细胞质中Ca2+的主要功能是:与钙结 细胞质中
合蛋白结合, 钙调素( )、钙依赖 合蛋白结合,如钙调素(CaM)、钙依赖 )、 型蛋白激酶等。 蛋白激酶等
在质膜和胞内钙库膜上:钙通道与钙泵、 在质膜和胞内钙库膜上:钙通道与钙泵、
+ 的运输方向相反。 Ca2+/H+反向运输体的运输方向相反。 反向运输体的运输方向相反
在异源三体G蛋白的 、 、 三个亚基中 三个亚基中, 亚 在异源三体 蛋白的α、β、γ三个亚基中,α亚 蛋白的 基(Gα)最大。 )最大。 在分子结构上, 蛋白与异源三体G蛋白 在分子结构上,小G蛋白与异源三体 蛋白 蛋白与异源三体 蛋白α 亚基有许多相似之处。它们都能结合GTP或GDP。 亚基有许多相似之处。它们都能结合 或 。 异源三体Ca2+) 钙离子( 钙离子 静息态的植物: 静息态的植物:
+ Ca2+浓度较低
细胞质中
细胞壁(胞外钙库) 细胞壁(胞外钙库)
+ Ca2+
内质网 线粒体 液泡中 (胞内钙库) 胞内钙库)
浓度 较高
细胞受刺激后,钙库的钙通道打开, 细胞受刺激后,钙库的钙通道打开,细 钙通道打开 胞质中Ca +浓度明显升高。 胞质中 2+浓度明显升高。
(1)直接与酶结合,使酶活化; )直接与酶结合,使酶活化;
+结合,形成Ca + 复合物, (2)与Ca2+结合,形成 2+·CaM复合物,然后再与 ) 复合物 + 酶结合使酶活化: 酶结合使酶活化:(Can2+·CaM)m·E*。 ) 。

植物细胞信号转导

植物细胞信号转导
由3种不同的亚基(α、β、γ)构成, α亚基含 有GTP结合的位点,并具有GTP水解酶的活性。 β和γ亚基一般以稳定的复合态存在。
通常情况下, G蛋白以三聚体形式存在,与GDP结合, 处于钝化状态。
当信号分子与膜上的受体结合后形成激活型受体,它可 与G蛋白结合使之构型变化, G蛋白排斥GDP,结合 GTP而活化, α与βγ解离后与效应器结合,把胞外信 号转换为胞内信号;
植物细胞信号转导
植物体的新陈代谢和生长发育受遗传信息及 环境的调控。
植物如何感受环境刺激,环境刺激又如何调 控和决定植物生理活动、生长发育,植物细 胞如何综合内外因素以控制基因表达。人们 将这些过程称为细胞的信号转导(signal transduction)。
环境刺激
胞间信号 跨膜信号转换 细胞表面
第三节、胞内信号系统
胞间信号称为第一信使(初级信号) 胞内信号称为第二信使(次级信号)
胞外刺激信号激活或抑制的具有生理调节 活性的细胞内因子称为细胞信号转导过 程中的第二信使(胞内信号)
一、钙信号系统﹡
(一)衡量钙信使的标准
(1) 细胞质的Ca2+水平必须能对 来自环境与邻近细胞的刺激有所反应; 而且Ca2+水平的变化要早于该生理反应
根据作用机理,可将细胞表面受体分为3种类型: ① G蛋白偶联受体 ②酶偶联受体 ③离子通道偶联受体
第二节 信号跨膜转换
对于细胞内受体而言,信号可以进入细胞 内部与胞内的受体结合,完成信号的直 接跨膜进入。
大多数信号分子不能通过膜,信号分子通 过与细胞表面受体结合,经过跨膜信号 转换,将胞外信号传至胞内。
而在动物视觉系统细胞光感应中起重要作用的cGMP在 植物花色素苷诱导中起决定作用,并与Ca 2+ -CaM一起 诱导PSⅠ和Cyt b6/f的合成。

植物生理学第七章:植物体内细胞信号转导

植物生理学第七章:植物体内细胞信号转导
跨膜信号转换通过细胞表面的受体与配 体结合来实现。这里着重介绍通过G蛋白 连接受体发生的跨膜信号转换。
植物生理学教研室
细胞信号转导
• G 蛋 白 全 称 为 GTP 结 合 调 节 蛋 白 (GTP binding regulatory protein),此类蛋白由 于其生理活性有赖于三磷酸鸟苷(GTP)的 结合以及具有GTP水解酶的活性而得名。 20世纪70年代初在动物细胞中发现了G蛋 白的存在,进华而南农业证大学明植物了生理G教研蛋室 白是细胞膜受 体与其所调节的相应生理过程之间的主 要信号转导者。
植物生理学教研室
细胞信号转导
华南农业大学植物生理教研室 植物生理学教研室
细胞信号转导
第一节 信号与受体结合
一、信号(理解)
• 信号是信息的物质体现形式和物理过程。 • 刺激就是信号 华南农业大学植物生理教研室 • 化学信号和物理信号,化学信号也称为配体 • 胞内信号和胞间信号 • 植物通过接受环境刺激信号而获得外界环境的
细胞信号转导
第七章 细胞信号转导
• 植物细胞信号转导: 是指细胞耦联 各种刺激信号(包括各种内外源刺 激信号)与华南其农业大引学植物起生理特教研室定生理效应之 间的一系列分子反应机制。
植物生理学教研室
细胞信号转导
分为4个步骤: 1、信号分子与细胞表面受体结合 2、跨膜信号转换 3、在细胞内华南通农业大过学植物信生理教号研室 转导网络进 行信号传递、放大与整合 4、导致生理生化变化
细胞信号转导
二、受体在信号转导中的作用(理解)
➢ 受体(receptor)是存在于细胞表面或亚细胞组分中 的天然分子,可特异地识别并结合化学信号物 质——配体,并在细胞内放大、传递信号,启动 一系列生化反应,最终导致特定的细胞反应。

植物生理学:第七章 细胞信号转导

植物生理学:第七章 细胞信号转导
胞外的信号经过跨 膜转换进入细胞后, 通常产生第二信使 并通过相应的胞内 信使系统将信号级 联放大,引起细胞 最终的生理反应。
目前植物中普遍接受的胞内第二信使系统主要有:钙 信使系统和肌醇磷脂信使系统。
对于动物中研究较为透彻的环核苷酸信使系统是否同 样存在于植物以及其在植物中存在的普遍性,尽管目前尚 有争议,但已有一部分报道在拟南芥等植物中存在并参与 了植物气孔运动、光诱导叶绿体花色素的合成等信号转导 过程。
细胞表面受体 细胞内受系统)
细胞受体的特征 (1)特异性; (2)高亲和力; (3)可逆性。
受体与配体的结合是一种分子识别 过程,靠氢键、离子键与范德华力 的作用,配体与受体分子空间结构 的互补性是特异性结合的主要因素。
在植物感受各种外界刺激的信号转导过程中,受体的功 能主要表现在两个方面:
一、Ca2+/CaM在信号转导中的作用
钙信使系统是植物细胞中重要的也是研究最多的胞内信使系统。
胞内钙梯度的存在是Ca2+信号产生的基础。正常情况下 植物细胞质中游离的静息态Ca2+水平为10-7 ~10-6 mol/L左右, 而液泡的游离钙离子水平在10-3mol/L左右,内质网中钙离子 浓度在10-6mol/L,细胞壁中的钙离子浓度也高达10-5-103mol/L。因而细胞壁等质外体作为胞外钙库,内质网、线粒 体和液泡作为胞内钙库。静止状态下这些梯度的分布是相对 稳定的,当受到刺激时,钙离子跨膜运转调节细胞内的钙稳 态(calcium homeostasis),从而产生钙信号。
Ca2+ ‧ CaM的下游靶酶包括质膜上的Ca2+-ATP酶、Ca2+通 道、NAD激酶、多种蛋白激酶等。这些酶被激活后,参与 蕨类植物的孢子发芽、细胞有丝分裂、原生质流动、植物激 素的活性、向性、调节蛋白质磷酸化,最终调节细胞生长发 育。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植物的信号分子
按作用范围分: 胞间信号分子 胞内信号分子
信号传导分子途径: ① 胞间信号传递 ② 膜上信号转换 ③ 胞内信号转导(蛋
白质可逆磷酸化) ④ 细胞反应。
图 6-25 细胞信号传导的主要分子途径
IP3.三磷酸肌醇; DG.二酰甘油; PKA.依赖 cAMP的蛋白激酶; PK Ca2+ 依赖Ca2+的蛋白 激酶; PKC.依赖Ca2+与磷脂的蛋白激酶; PK Ca2+·CaM. 依赖Ca2+·CaM的蛋白激酶从而使细
受伤西红柿植株蛋白 激酶特制物生物合成 快速诱导信导途径的 假定模式图
植物激素是植物体主要的胞间化学信号
9大类植物激素
已 知 1,3-β-D- 葡 聚 糖 、 寡聚半乳糖醛酸、富含甘 露糖的糖蛋白、聚氨基葡 萄糖等都是构成细胞壁的 主要成分,它们除了具有 支持细胞框架的功能外, 还起诱导抗性和控制发育 的信号作用,成为引人注 目的胞间信号分子。
图17.14 Albizia pulvini 背侧和腹侧的运动细胞之间的离 子流调节了小叶的开放与闭合。

产生PIs
电信号通过后去子叶
伤害
怀尔登(Wildon)等用番茄做实验,指出 由子叶伤害而引起第一真叶产生蛋白酶抑 制物PIs的过程中,动作电位是传播的主要 方式。他们采取让电信号通过后马上就除 去子叶以及使子叶叶柄致冷以阻碍筛管运 输、排除化学物质传递的试验,其结果都 证明单有电信号就可以引起PIs反应,而且 他们也首次证明了电信号可引起包括基因 转录在内的生理生化变化。
迅速合成脱落酸(ABA),ABA再通过木质部蒸腾流
输送到地上部分,引起叶片生长受抑和气孔导度的
下降。而且ABA的合成和输出量也随水分胁迫程度
的加剧而显著增加。
这种随着刺激强度的增加,细胞合成量及向作
用位点输出量也随之增加的化学信号物质称之为正
化学信号(positive chemical signal)。
以阻碍病原菌或害虫进一步侵害。
虫咬
➢如果伤害后立即除去受害叶,则其它叶 片不会产生PIs。
产生PIs
不会产生PIs
虫咬
寡聚糖 产生PIs
但如果将受害叶的细 胞壁水解片段(主要是寡聚 糖)加到叶片中,又可模拟 伤害反应诱导PIs的产生, 从而认为寡聚糖是由受伤 叶片释放并经维管束转移, 继而诱导能使PIs基因活化 的化学信号物质。
光合作用的光 光形态建成的光
温度 风
光周期 湿度 草食动物
例如植物的向光性能促使植物向
乙烯
光线充足的方向生长,在这个过程中, 病原体
首先植物体要能感受到光线,然后把
相关的信息传递到有关的靶细胞,并 诱发胞内信号转导,调节基因的表达 或改变酶的活性
土壤微生物 有毒物质
寄生虫
土壤质地 水分状况 矿质营养
胞作出反应。
胞内分子反应 胞内信号转导 膜上信号转换
胞间信号传递
植物体内的胞间信号可分为两类,即化学信号和物理信号。
一、胞间信号
(一) 化学信号 (chemical signals )
细胞感受刺激后合成并传递到作用部位引起生
理反应的化学物质。
植物激素是植物体主要的胞间化学信号。
如当植物根系受到水分亏缺胁迫时,根系细胞
此外,一些生长调节 物质如壳梭孢菌素、花生 四烯酸以及乙酰胆碱等也 都具有化学信号的功能。
(二) 物理信号(physical signal)
➢ 指细胞感受到刺激后产生的能够起传递信息作用的电信 号和水力学信号。
➢ 电信号传递是植物体内长距离传递信息的一种重要方式, 是植物体对外部刺激的最初反应。
➢ 植物的电波研究较多的为动作电波(action potential, AP), 也叫动作电位,它是指细胞和组织中发生的相对于空间 和时间的快速变化的一类生物电位。
植物细胞对水力学信号(压 力势的变化)很敏感。玉米叶片 木质部压力的微小变化就能迅速 影响叶片气孔的开度,即压力势 降低时气孔开放,反之亦然。
(三) 胞间信号的传递
1.化学信号的传递
(1) 气相中传递 易挥发性化学信号可通过植株体内的气腔 网络扩散而迅速传递,传递速度可达2mm·s-1左右。乙烯和 茉莉酸甲酯均属此类信号。 (2) 韧皮部传递 植物体内许多化学信号物质,如IAA、茉莉 酸甲酯、寡聚半乳糖、水杨酸等都可通过韧皮部途径传递。 (3) 木质部传递 化学信号可通过集流的方式在木质部内传 递。土壤干旱胁迫时,根系可迅速合成并输出ABA。合成 的 ABA 可 通 过 木 质 部 蒸 腾 流 进 入 叶 片 , 并 影 响 叶 片 中 的 ABA浓度,从而抑制叶片的生长和气孔的开放。
➢ 植物中动作电波的传递仅用短暂的冲击(如机械震击、电 脉冲或局部温度的升降)就可以激发出来,而且受刺激的 植物没有伤害,不久便恢复原状。
➢ 一些敏感植物或组织(如含羞草的茎叶、攀缘植物的卷须 等),当受到外界刺激,发生运动反应(如小叶闭合下垂、 卷须弯曲等见录像)时伴有电波的传递。
受触及的含羞草小叶在 1至2 秒钟向下弯,这 是由于电波引发叶枕运 动细胞中大量的K+和 Ca+2转运,引起膨压改 变的结果
光质→光受体→信号转导组分 →光调节基因→向光性反应
各种外部信号影响植物的生长发育
对于植物细胞 来讲,有来自相邻 细胞的刺激、细胞 壁的刺激、激素、 温度、光照等等刺 激,连接环境刺激 到植物反应的分子 途径就是信号转导 途径,细胞接受信 号并整合、放大信 号,最终引起细胞 反应
未知发育信号 温度 生长调节剂
然而在水分胁迫时,根系合成和输出细胞分裂
ABA
素(CTK)的量显著减少,这样的随着刺激强度的增 干旱
加,细胞合成量及向作用位点输出量随之减少的化
ห้องสมุดไป่ตู้
CTK
学信号物质称为负化学信号(negative chemical signal)。
正化学信号 负化学信号
➢当植物的一张叶片被虫咬伤后,会诱导
本叶和其它叶产生蛋白酶抑制物(PIs)等,
植物细胞信号转导
第一节 植物体内的信号传导
生长发育是基因在一定时间、空
间上顺序表达的过程,而基因表达除
重力
受遗传信息支配外,还受Fig环.1 境各的种调外控。 植物在整个生长发育部 物信 的 过号 生程影 长中响 发,植 育受
到各种内外因素的影响,这就需要植
物体正确地辨别各种信息并作出相应
的反应,以确保正常的生长和发育。
激素 膨压
电信号 多肽
糖、氨基酸
转播
病原体(真菌、 细菌、病毒)
壁断片 壁的机械压力 矿质
伤害

放大 发散到多个目标
这种信息在胞 间传递和胞内转导 过程称为植物体内 的信号传导
改变离 调节代 基因表 细胞骨 子流 谢途径 达调节 架改变
改变细胞生长和代谢
18.2 各种内部信号影响植物细胞的代谢、生长和发育
相关文档
最新文档