化工原理第四章第三节讲稿.ppt
合集下载
《化工原理》四章 非均相物系的分离

第二节 过滤
3.过滤介质 过滤过程所用的多孔性介质称为过滤介质。性能优良 的过滤介质除能够达到所需分离要求外,还应具有足够的 机械强度,尽可能小的流过阻力,较高的耐腐蚀性和一定 的耐热性,最好表面光滑,滤饼剥离容易。 工业常用过滤介质主要有织物介质、多孔性固体介质 和微孔滤膜等。 (1)织物介质 是由天然或合成纤维、金属丝等编织而 成的筛网、滤布,适于滤饼过滤,一般可截留的粒径5μ m 以上的固体微粒。
第二节 过滤
4.滤饼的压缩性和助滤剂 (1)滤饼的压缩性 若构成滤饼的颗粒是不易变 形的坚硬固体颗粒,则当滤饼两侧压力差增大时, 颗粒形状和颗粒间空隙不发生明显变化,这类滤饼 称为不可压缩滤饼;有的悬浮颗粒比较软,所形 成的滤饼受压容易变形,当滤饼两侧压力差增大时, 颗粒的形状和颗粒间的空隙有明显改变,这类滤饼 称为可压缩滤饼。滤饼的压缩性对过滤效率及滤 材的可使用时间影响很大,是设计过滤工艺和选择 过滤介质的依据。
第二节 过滤
图4-3板框压滤机 1-固定头;2-滤板;3-滤框;4-滤布;5-压紧装置
第二节 过滤
滤板和滤框一般制成正方形,其构造如图4-4所示。 板和框的角端均开有圆孔,装合、压紧后即构成供滤浆、 滤液和洗涤液流动的通道。滤框两侧覆以滤布,空框和滤 布围成了容纳滤浆及滤饼的空间。板又分为洗涤板和过滤 板两种,为便于区别,常在板、框外侧铸有小钮或其它标 志,通常,过滤板为一钮,框为二钮,洗涤板为三钮(如 图4-4所示)。装合时即按钮数1-2-3-2-1-2-3-2-1……… 的顺序排列板和框。压紧装置的驱动可用手动、电动或液 压传动等方式。 板框压滤机为间歇操作,每个操作周期由装配、压紧、 过滤、洗涤、坼开、卸料、处理等操作组成,板框装合完 毕,开始过滤。过滤时,悬浮液在指定的压力下经滤浆通 道,由滤框角端的暗孔进入框内,滤液分别穿过两侧滤布, 再经邻板板面流到滤液出口排走,固体则被截留于框内, 待滤饼充满滤框后,即停止过滤。
化工原理课件第4章:过滤

单位体积颗粒床层中空隙的体积为床层的空隙率ε ,即:
ε反映了床层中颗粒堆集的紧密程度,其大小与颗粒的形状、粒度分 布、装填方法、床层直径、所处的位置等有关。 球形:0.26~0.48 乱堆:0.47~0.7
壁效应
化工原理——流体通过颗粒层的流动
ε的测量方法:
充水法: 称量法:
V水
V
V G
p
V
不适于多孔性颗粒
K 2P1s
r0
化工原理——流体通过颗粒层的流动
4.5.2 间歇过滤的滤液量与过滤时间的关系 1. 恒速过滤方程
若Ve=0,则? K虽为变量,但应为τ时刻的过滤常数值。
化工原理——流体通过颗粒层的流动
2. 恒压过滤方程
若Ve=0,则?
若V=Ve ? qe2 K e
q qe 2 K e
求Ve,τe
(1
- 3
)a
ρu 2
P' L
'
(1- )a 3
u2
单位床层高度的压降, Pa
模型参数
化工原理——流体通过颗粒层的流动
4.3.3 模型的检验和模型参数的估计
1. 康采尼(Kozeny)方程
在流速较低, Re'<2时(层流),
'
K' Re'
其中:
Re'
deu1
u a(1 )
实验测得
K ' 5.0
p
p (1)
化工原理——流体通过颗粒层的流动
流入的量=流出的量+累积量
总量衡算: V悬=V LA
固体量衡算: V悬 LA(1 ) 由上两式可得: L q
1
一般,<<, L q 1
ε反映了床层中颗粒堆集的紧密程度,其大小与颗粒的形状、粒度分 布、装填方法、床层直径、所处的位置等有关。 球形:0.26~0.48 乱堆:0.47~0.7
壁效应
化工原理——流体通过颗粒层的流动
ε的测量方法:
充水法: 称量法:
V水
V
V G
p
V
不适于多孔性颗粒
K 2P1s
r0
化工原理——流体通过颗粒层的流动
4.5.2 间歇过滤的滤液量与过滤时间的关系 1. 恒速过滤方程
若Ve=0,则? K虽为变量,但应为τ时刻的过滤常数值。
化工原理——流体通过颗粒层的流动
2. 恒压过滤方程
若Ve=0,则?
若V=Ve ? qe2 K e
q qe 2 K e
求Ve,τe
(1
- 3
)a
ρu 2
P' L
'
(1- )a 3
u2
单位床层高度的压降, Pa
模型参数
化工原理——流体通过颗粒层的流动
4.3.3 模型的检验和模型参数的估计
1. 康采尼(Kozeny)方程
在流速较低, Re'<2时(层流),
'
K' Re'
其中:
Re'
deu1
u a(1 )
实验测得
K ' 5.0
p
p (1)
化工原理——流体通过颗粒层的流动
流入的量=流出的量+累积量
总量衡算: V悬=V LA
固体量衡算: V悬 LA(1 ) 由上两式可得: L q
1
一般,<<, L q 1
hgyl四非均相物系的分离PPT课件

计算通式
2019/9/20
20
2、阻力系数
阻力系数反映颗粒运动时
流体对颗粒的曳力,所以又称
曳力系数。
Re t
dut
式中通:过d量—纲颗分粒析的可直推径导;出,
阻动201及9/力时9/20粘系雷度,数诺;是准—流数流体的体与函的颗数密粒,度相即对运 21
与Ret的具体关系式也 很难得到,将大量的实验结
2019/9/20
11
§4-2-1 重力沉降速度
一、重力沉降 1、概念 重力沉降:在重力沉降。
即借地球引力场的作用而实现的沉降就是重力 沉降。
2019/9/20
12
2、分类
重力沉降分为自由沉降和干 扰沉降。
自由沉降:非均相物系中的固
(3) 湍流区(Newton
区):103<Ret<2×105
2019/9/20
24
(1)滞流区(Stokes 区):1u0t - 4d<2(R1e8s t<)1g
计各 算区
(2)过渡区(Allen 区):ut 01.2<7 Rde(t<s10)3Ret0.6
公沉 式降
速
(3) 湍流区(Newton
2019/9/20
8
三、非均相物系分离的目的
主要有三个的目的:
1、回收有用物质:主要回
收物系中的分散相。
如颗粒催化剂的回收。从
催化反应器出来的气体中,往
2019/9/20
9
比如硫酸的生产过程中,
原料气(炉气)中含有大量
灰尘,在SO2的催化氧化工序 之前,必须把大量灰尘除去,
否则除降低催化剂的活性外,
第二阶段为等速运动。
2019/9/20
20
2、阻力系数
阻力系数反映颗粒运动时
流体对颗粒的曳力,所以又称
曳力系数。
Re t
dut
式中通:过d量—纲颗分粒析的可直推径导;出,
阻动201及9/力时9/20粘系雷度,数诺;是准—流数流体的体与函的颗数密粒,度相即对运 21
与Ret的具体关系式也 很难得到,将大量的实验结
2019/9/20
11
§4-2-1 重力沉降速度
一、重力沉降 1、概念 重力沉降:在重力沉降。
即借地球引力场的作用而实现的沉降就是重力 沉降。
2019/9/20
12
2、分类
重力沉降分为自由沉降和干 扰沉降。
自由沉降:非均相物系中的固
(3) 湍流区(Newton
区):103<Ret<2×105
2019/9/20
24
(1)滞流区(Stokes 区):1u0t - 4d<2(R1e8s t<)1g
计各 算区
(2)过渡区(Allen 区):ut 01.2<7 Rde(t<s10)3Ret0.6
公沉 式降
速
(3) 湍流区(Newton
2019/9/20
8
三、非均相物系分离的目的
主要有三个的目的:
1、回收有用物质:主要回
收物系中的分散相。
如颗粒催化剂的回收。从
催化反应器出来的气体中,往
2019/9/20
9
比如硫酸的生产过程中,
原料气(炉气)中含有大量
灰尘,在SO2的催化氧化工序 之前,必须把大量灰尘除去,
否则除降低催化剂的活性外,
第二阶段为等速运动。
化工原理 第四章

第二节 过滤
若滤饼需要洗涤,可将洗水压人洗水通道,经洗涤板 角端的暗孔进入板面与滤布之间。此时,应关闭洗涤板下 部的滤液出口,洗水便在压力差推动下穿过一层滤布及整 个厚度的滤饼,然后再横穿另一层滤布,最后由过滤板下 部的滤液出口排出,这种操作方式称为横穿洗涤法,其作 用在于提高洗涤效果。洗涤结束后,旋开压紧装置并将板 框拉开,卸出滤饼,清洗滤布,重新组合,进入下一个操 作循环。 板框压滤机优点是构造简单,制造方便、价格低;过 滤面积大,可根据需要增减滤板以调节过滤能力;推动力 大,对物料的适应能力强,对颗粒细小而液体较大的滤浆 也能适用。缺点是间歇操作,生产效率低;卸渣、清洗和 组装需要时间、人力,劳动强度大,但随着各种自动操作 的板框压滤机的出现,这一缺点会得到一定程度的改进。
第二节 过滤
(2)多孔性固体介质 是素瓷、金属或玻璃的烧结物、 塑料细粉粘结而成的多孔性塑料管等, 适用于含粘软性 絮状悬浮颗粒或腐蚀性混悬液的过滤,一般可截留粒径1~ 3μm的微细粒子。 (3)粒状介质 是由各种固体颗粒(砂石、木炭、石棉) 或非编织纤维(玻璃棉等)堆积而成。适用于深层过滤,如 制剂用水的预处理。 (4)微孔滤膜,是由高分子材料制成的薄膜状多孔介 质。适用于精滤,可截留粒径0.01μm以上的微粒,尤其适 用于滤除0.02~10μm的混悬微粒。
第二节 过滤
图4-4 滤板和滤框
第二节 过滤
2.转鼓真空过滤机 转筒真空过滤机为连续式真空过滤设备,如图4-5所示。 主机由滤浆槽、篮式转鼓、分配头、刮刀等部件构成。篮 式转鼓是一个转轴呈水平放置的圆筒,圆筒一周为金属网 上履以滤布构成的过滤面,转鼓在旋转过程中,过滤面可依 次浸入滤浆中。转筒的过滤面积一般为5~40m2,浸没部分 占总面积的30%~40%,转速约为0.1~3r/min。转鼓内沿径 向分隔成若干独立的扇形格,每格都有单独的孔道通至分 配头上。转鼓转动时,籍分配头的作用使这些孔道依次与 真空管及压缩空气管相通,因而,转鼓每旋转一周,每个扇 形格可依次完成过滤、洗涤、吸干、吹松、卸饼等操作。
化工原理第四章对流传热41页PPT

Re
lu
普兰德数 (Prandtl number)
Pr c p
表示惯性力与粘性力之比, 是表征流动状态的准数
表示速度边界层和热边界层 相对厚度的一个参数,反映
与传热有关的流体物性
影响 较大的物性常数有:,, Cp ,。 (1)的影响 ; (2)的影响 Re ;
(3)Cp的影响 Cp 则单位体积流体的热容量大,
则较大; (4)的影响 Re 。
2020/3/29
3、流动型态 【层流】主要依靠热传导的方式传热。由于流体的
导热系数比金属的导热系数小得多,所以热阻大。
【湍流】由于质点充分混合且层流底层变薄,较大
2020/3/29
2、有效膜模型
(1)流体与固体壁面之间存在一个厚度为bt的虚拟 膜(流体层),称之为有效膜; (2)有效膜集中了传热过程的全部传热温差的以及 全部热阻,在有效膜之外无温差也无热阻存在(所 有的热量传递均产生在有效膜内); (3)在有效膜内,传热以热传导的方式进行。
2020/3/29
2020/3/29
二、对流传热速率方程 1、什么是模型法
【定义】把复杂问题简单化、摒弃次要的条件,抓 住主要的因素,对实际问题进行理想化处理,构建 理想化的物理模型,获得某一过程的有关规律。具 体方法为: (1)对过程进行合理的简化; (2)获得物理模型(构象); (3)对物理模型进行数学描述,获得有关规律。
过程的因素都归结到了当中。
2020/3/29
三、影响对流传热系数的因素
1、引起流动的原因 【自然对流】由于流体内部存在温差引起密度差形
成的液体内部环流,一般u较小,也较小。
【强制对流】在外力作用下引起的流动运动,一般u
较大,故较大。因此:
化工原理4PPT课件

d' PC
1 N d PC
可沉降出更细的颗粒。
第20页/共86页
4.沉降室的计算
由层流区的计算式
d pc
18 p
g ut c
18 qVs ( p )g WL
可分为三类计算问题: (1) 已知气体处理量qVs, 物性数据(ρ, μ, ρp ), 临界粒径 dpc ,
求底面积WL; (2) 已知底面积WL, 物性数据, 临界粒径 dpc , 求气体处理
6
d
p 3 r
2
p
4
d
2 p
u
2
2
0
第27页/共86页
此时,颗粒在径向上相对于流体的速度,就是它在这个
位置上的离心沉降速度
dr
d
ur
4d p p r2 3
比较,重力沉降速度
ut
4dP ( p)g 3
g r 2
在一定的条件下,重力沉降速度是一定的,而离心 沉降速度随着颗粒在半径方向上的位置不同而变化。
量qVs ; (3) 已知气体处理量qVs, 物性数据 , 底面积WL, 求临界粒
径 dpc ;
第21页/共86页
例3-2 用高2m 、宽2.5m、长5m的重力降尘室分离空气中的粉尘。 在操作条件下空气的密度为0.779kg/m3,黏度为2.53×10-5Pa.s, 流量为5.0×104m3/h。粉尘的密度为2000 kg/m3。试求粉尘的临界 粒径。
悬浮液 — 含有颗粒直径较大的液体; 溶胶 — 含有颗粒直径小于1 μ m的液体。
为了促进细小颗粒絮凝成较大颗粒以增大沉降速度, 可往溶胶中加入少量电解质。
絮凝剂---凡能促进溶胶中微粒絮凝的物质。 常用的有:明矾(KAl(SO4).12H2O),三氧化铝,
化工原理4-3

① 流体在管束外强制垂直流动
排列 方式
直列 错列
三角形直列 正方形直列
三角形错列 正方形错列
化工原理课件
YANTAI UNIVERSITY
αϕ ——局部对流传热系数 α ——平均对流传热系数
αϕ / α
1.8
Re = 1×104
1.6
1.4
0
180
1.2
90 1.0
0.8
0.6
0.4
0.2 0 30 60 90 120 150 180
♣ 凯恩(Kern)法
Nu
=
0.36Re
0.55
Pr
1/
3ϕ
0.14
µ
应用范围: Re =2×103~106 定性尺寸:当量直径de
YANTAI UNIVERSITY
化工原理课件
定性温度:µW取壁温,其余 t f = (t1 + t2 ) / 2
当量直径可根据管子排列的情况别用不同
式子进行计算:
do
YANTAI UNIVERSITY
解:定性温度:t f
=
20 + 80 2
=
50 ℃
查得该温度下空气的物性:
µ = 1.96×10−5 Pa ⋅ s
化工原理课件
λ = 2.83×10−2W /(m ⋅ ℃ )
Pr = 0.698
u=
Vs 0.785d12
=
60 3600 × 0.785 × 0.052
流体的膨胀系数:β
=
1 V1
( ∂V ∂T
)p
=
1 V1
⋅V' ∆t
V2 = V1 + βV1∆t ;
排列 方式
直列 错列
三角形直列 正方形直列
三角形错列 正方形错列
化工原理课件
YANTAI UNIVERSITY
αϕ ——局部对流传热系数 α ——平均对流传热系数
αϕ / α
1.8
Re = 1×104
1.6
1.4
0
180
1.2
90 1.0
0.8
0.6
0.4
0.2 0 30 60 90 120 150 180
♣ 凯恩(Kern)法
Nu
=
0.36Re
0.55
Pr
1/
3ϕ
0.14
µ
应用范围: Re =2×103~106 定性尺寸:当量直径de
YANTAI UNIVERSITY
化工原理课件
定性温度:µW取壁温,其余 t f = (t1 + t2 ) / 2
当量直径可根据管子排列的情况别用不同
式子进行计算:
do
YANTAI UNIVERSITY
解:定性温度:t f
=
20 + 80 2
=
50 ℃
查得该温度下空气的物性:
µ = 1.96×10−5 Pa ⋅ s
化工原理课件
λ = 2.83×10−2W /(m ⋅ ℃ )
Pr = 0.698
u=
Vs 0.785d12
=
60 3600 × 0.785 × 0.052
流体的膨胀系数:β
=
1 V1
( ∂V ∂T
)p
=
1 V1
⋅V' ∆t
V2 = V1 + βV1∆t ;
化工原理第四章讲稿PPT课件

2020/9/30
17
3、间壁式换热
间壁式换热的特点是冷、热流体被一固体隔开,分别在壁 的两侧流动,不相混合,通过固体壁进行热量传递。 传热过程可分为三步: •热流体将热量传给固体壁面(对流传热) •热量从壁的热侧传到冷侧(热传导) •热量从壁的冷侧面传给冷流体(对流传热) 壁的面积称为传热面,是间壁式换热器的基本尺寸。
q t1 t3
b1
1
r0
b2
2
接触热阻与接触面的材料,表面 粗糙度及接触面上压强等因素有 关。
2020/9/30
42
2020/9/30
39
2、多层平壁的稳定热传导
Q
1S
t1
t2 b1
t1 b1
1S
t1 R1
2S
t2 b2
t3
t2 b2
t2 R2
2S
3S
t3
t4 b3
t3 b3
t3 R3
3S
2020/9/30
40
t1 QR1,t2Q2R,t3 QR3
Qt1t2 t3 R1R2 R3
b1
SdLn
d——管径可分别用管内径di,管外径d0或平均直径dm来表示。 则对应的传热面积分别为管内侧面积Si,外侧面积S0或平均面 积Sm
2020/9/30
25
六、传热速率与热通量
传热速率(热流量 )Q :
单位时间内通过传热面的热量,单位为w。
热通量(又称为热流密度或传热速度)q :
单位传热面积的传热速率。单位为w/m2
35
2、固体的导系数
纯金属的导热系数一般随温度的升高而降低, 金属的导热系数大都随纯度的增加而增大。 非金属的建筑材料或绝热材料的导热系数随密度增加而增 大,也随温度升高而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果用 T 表示贴壁处流体的温度梯度,
n n0
则 dQ dS T 与牛顿冷却定律 dQ dST联立:
n n0
2020/12/9
T
T n n0
——理论上计算对流传热系数的基础
表明:对一定的流体,当流体与壁面的温度差一定时,对 流传热系数之取决于紧靠壁面流体的温度梯度。
热边界层的厚薄,影响层内温度分布,因而影响温度梯度 。当边界层内、外的温度差一定时,热边界层越薄,温度梯 度越大,因而α也就上升。因此通过改善流动状况,使层流 底层厚度减小,是强化传热的主要途径之一。
第四章 传热
第三节 对流传热
一、对流传热的分析 二、壁面和流体的对流传 热速率 三、热边界层
2020/12/9
一、对流传热的分析
滞流内层 流体分层运动,相邻层间没有流体的
宏观运动。在垂直于流动方向上不存
在热对流,该方向上的热传递仅为流
流体沿固体 壁面的流动
体的热传导。该层中温度差较大,即 温度梯度较大。 缓冲层 热对流和热传导作用大致相同,在该层
2020/12/9
律可以表示为:Q St
2、对流传热系数
对流传热系数a定义式: Q
St
表示单位温度差下,单位传热面积的对流传热速率。 单位W/m2.k。 反映了对流传热的快慢,对流传热系数大,则传热快。
2020/12/9
三、热边界层与换热微分方程式
热边界层(温度边界层) :
壁面附近因换热而使流体温度发生了变化的区域 。
对流传热速率
对流体间的温度差
阻力:影响因素很多,但与壁面的表面积成反比。
对流传热速率方程可以表示为:
Q T Tw 1
dS
2020/12/9
(T Tw)dS
——牛顿冷却定律
在换热器中,局部对流传热系数α随管长而变化,但在 工程计算中,常使用平均对流传热系数,此时牛顿冷却定
规定 Tw T 0.99(Tw T ) 处为热边界层的界限,
热边界层的厚度常用 T 表示。
温度边界层内的温度分布与流动边界层内流体的流动情况 有关: • 在靠近壁的层流内层中流动为层流,热量传递通过导热进 行。温度分布曲线的斜率大(温度梯度大)。
2020/12/9
•在缓冲层内,由于对 流传热的作用,温度 梯度变小。 •在湍流核心,质点湍 动强烈,对流很快, 温度梯度更小。
内温度发生较缓慢的变化。
湍流主体 温度梯度很小,各处的温度基本相同。
2020/12/9
对流传热是集对流和热传导于一体的综合现象。 对流传热的热阻主要集中在滞流内层。减薄滞流内层的厚 度是强化对流传热的主要途径。
2020/12/9
二、壁面和流体间的对流传热速率
1、对流传热速率表达式
据传递过程速率的普遍关系,壁面和流体间的对流传热速率:
n n0
则 dQ dS T 与牛顿冷却定律 dQ dST联立:
n n0
2020/12/9
T
T n n0
——理论上计算对流传热系数的基础
表明:对一定的流体,当流体与壁面的温度差一定时,对 流传热系数之取决于紧靠壁面流体的温度梯度。
热边界层的厚薄,影响层内温度分布,因而影响温度梯度 。当边界层内、外的温度差一定时,热边界层越薄,温度梯 度越大,因而α也就上升。因此通过改善流动状况,使层流 底层厚度减小,是强化传热的主要途径之一。
第四章 传热
第三节 对流传热
一、对流传热的分析 二、壁面和流体的对流传 热速率 三、热边界层
2020/12/9
一、对流传热的分析
滞流内层 流体分层运动,相邻层间没有流体的
宏观运动。在垂直于流动方向上不存
在热对流,该方向上的热传递仅为流
流体沿固体 壁面的流动
体的热传导。该层中温度差较大,即 温度梯度较大。 缓冲层 热对流和热传导作用大致相同,在该层
2020/12/9
律可以表示为:Q St
2、对流传热系数
对流传热系数a定义式: Q
St
表示单位温度差下,单位传热面积的对流传热速率。 单位W/m2.k。 反映了对流传热的快慢,对流传热系数大,则传热快。
2020/12/9
三、热边界层与换热微分方程式
热边界层(温度边界层) :
壁面附近因换热而使流体温度发生了变化的区域 。
对流传热速率
对流体间的温度差
阻力:影响因素很多,但与壁面的表面积成反比。
对流传热速率方程可以表示为:
Q T Tw 1
dS
2020/12/9
(T Tw)dS
——牛顿冷却定律
在换热器中,局部对流传热系数α随管长而变化,但在 工程计算中,常使用平均对流传热系数,此时牛顿冷却定
规定 Tw T 0.99(Tw T ) 处为热边界层的界限,
热边界层的厚度常用 T 表示。
温度边界层内的温度分布与流动边界层内流体的流动情况 有关: • 在靠近壁的层流内层中流动为层流,热量传递通过导热进 行。温度分布曲线的斜率大(温度梯度大)。
2020/12/9
•在缓冲层内,由于对 流传热的作用,温度 梯度变小。 •在湍流核心,质点湍 动强烈,对流很快, 温度梯度更小。
内温度发生较缓慢的变化。
湍流主体 温度梯度很小,各处的温度基本相同。
2020/12/9
对流传热是集对流和热传导于一体的综合现象。 对流传热的热阻主要集中在滞流内层。减薄滞流内层的厚 度是强化对流传热的主要途径。
2020/12/9
二、壁面和流体间的对流传热速率
1、对流传热速率表达式
据传递过程速率的普遍关系,壁面和流体间的对流传热速率: