实验准确度及精确度评估方法
物理实验技术使用中的实验误差与精确度评估

物理实验技术使用中的实验误差与精确度评估引言:在物理实验中,实验误差是一种不可避免的现象。
实验误差的存在来源于实验条件不完美,仪器精度有限,以及操作人员的技术水平等多种因素。
了解实验误差的特点和评估精确度的方法能够提高实验数据的可靠性,并对实验结果做出准确的判断和分析。
一、实验误差的分类实验误差一般可以分为系统误差和随机误差两种。
1.系统误差:系统误差指由于实验条件的限制或仪器设备本身的缺陷所导致的误差。
例如,仪器的零点偏移、非线性和灵敏度等问题都可能引起系统误差。
系统误差的特点是重复实验时误差具有一定的规律性,可通过校正来减小或消除。
2.随机误差:随机误差是由于种种因素的随机变化所引起的误差,通常呈现出无规律性。
例如,实验操作的粗糙度、测量仪器的震动以及观察记录时的视觉限制等都可能导致随机误差。
随机误差可以通过多次实验取平均值来减小。
二、实验精确度的评估方法为了评估实验结果的精确度,我们可以采用以下方法:1.重复实验:重复实验是评估实验结果精确度的一个重要手段。
通过多次独立进行的实验,可以检验实验结果的一致性和稳定性。
如果多次实验的结果相差较小,则说明实验结果较为可靠。
2.误差分析:对于测量实验,误差分析是非常重要的一环。
可以通过确定每个测量值的测量不确定度来评估实验结果的可靠性。
测量不确定度的计算通常包括随机误差的估计、仪器误差的考虑以及各种不确定度的组合等步骤。
3.参比值对照:参比值对照方法是通过与已知参考值进行比对,来评估实验结果的准确性。
例如,在测量温度时,可以使用标准温度计进行比对,从而确定实验结果的准确程度。
4.仪器误差的校正:系统误差可以通过仪器误差的校正来减小。
校正的方法通常是在实验前或实验过程中加以考虑,并根据实验情况进行相应的调整。
校正后的仪器能够提高实验结果的准确性。
结论:在物理实验技术使用中,实验误差是普遍存在的,但可以通过一系列评估精确度的方法来提高实验结果的可靠性。
化学分析中的精确度和准确度

化学分析中的精确度和准确度在化学分析领域中,精确度和准确度是两个非常重要的概念。
精确度指的是分析结果的稳定性和重现性,而准确度则表示结果与真实值之间的接近程度。
在进行化学实验和分析过程中,确保精确度和准确度是保证结果可靠性和数据有效性的关键。
I. 精确度的定义和评估精确度是指在一系列重复试验或测量中,结果的接近程度。
它反映了实验的准确程度和数据的稳定性。
为了评估分析的精确度,可以采用以下几种方法:1. 重复性:进行多次实验或测量,比较结果的变化范围。
如果结果之间的差异较小,则说明实验的重复性较好,具有较高的精确度。
2. 平均值和标准偏差:计算多次实验或测量的平均值和标准偏差。
平均值反映了数据的集中趋势,而标准偏差表示数据的离散程度。
较小的标准偏差意味着较高的精确度。
3. 控制样品:使用已知浓度的控制样品进行重复测量。
通过比较测量结果和真实值之间的差异来评估精确度。
II. 准确度的定义和评估准确度是指分析结果与真实值之间的接近程度。
在化学分析中,确定分析方法的准确度十分重要,特别是在质量控制和质量保证方面。
准确度评估的方法包括:1. 标准品测定:使用已知浓度的标准品进行测定,并比较结果与真实值之间的差异。
较接近真实值的结果表示准确度较高。
2. 加标回收率:向待测样品中加入已知浓度的标准品,再进行测定。
通过计算样品中标准品回收的百分比,评估准确度。
3. 外部验证:将分析结果与其他实验室或方法进行比较,以确定准确度。
与其他结果相一致的结果具有较高的准确度。
III. 精确度和准确度的重要性精确度和准确度是保证化学分析结果可靠性的关键因素。
只有进行精确度的控制,才能确保实验数据的可重复性和稳定性。
而准确度的控制则保证了实验结果与真实值之间的接近程度。
准确的分析结果对于科学研究、质量控制、环境监测等领域至关重要。
它们直接影响到决策的准确性和过程的可控性。
例如,在药物研发中,仅有准确的分析结果才能确保药物的有效性和安全性。
实验结果的可靠性与可信度评估

实验结果的可靠性与可信度评估实验对于科学研究、工程技术以及产品开发等领域起着重要的作用。
然而,实验结果的可靠性与可信度评估是一个关键的问题。
只有在保证实验结果的可靠性和可信度的基础上,才能得出科学准确的结论。
本文将探讨实验结果的可靠性与可信度评估所涉及的方法和考虑因素。
一、实验结果的可靠性评估方法1. 重复性实验证明重复性实验是评估实验结果可靠性的基础。
通过多次独立重复实验,如果实验结果能够得到相同的结论,那么该实验结果的可靠性就较高。
重复性实验可以排除个别实验误差或突发情况对结果的影响,提高实验结果的可靠性。
2. 精确度与准确度评估实验结果的精确度和准确度是评估可靠性的重要指标。
精确度是指实验结果的相对稳定性和一致性,通过计算实验数据的标准差、方差等指标,可以评估实验结果的精确度。
准确度是指实验结果与真实值之间的接近程度,在实验中引入标准样品或参考样品进行对比分析,可以评估实验结果的准确度。
二、实验结果的可信度评估方法1. 数据来源与采集方式验证在评估实验结果的可信度时,需要考虑数据来源和采集方式。
数据来源应该具有权威性和可信度,可以通过查阅文献、专业报告等方式确保数据的可信性。
同时,采集数据的方法应当科学合理、规范且可操作,以保证数据采集的准确性和可靠性。
2. 实验条件的统一与控制实验条件的统一与控制对于实验结果的可信度评估至关重要。
在实验设计中,需要尽可能统一实验条件,控制可能影响结果的外部因素。
例如,温度、湿度等环境因素应在实验过程中保持稳定,不同实验组的处理条件应相同,以确保实验结果的可信度。
三、注意事项与评估策略1. 样本容量与代表性样本容量对于实验结果的可靠性和可信度有着重要的影响。
样本容量越大,代表性越强,从而提高了实验结果的可靠性。
因此,在实验设计中应合理确定样本容量,确保样本具有代表性。
2. 实验结果的合理解释实验结果的解释需要基于科学原理和理论基础,并结合实验的具体情况进行合理分析。
物理实验仪器的精度与灵敏度检测方法

物理实验仪器的精度与灵敏度检测方法在物理实验中,仪器的精度和灵敏度是非常重要的指标。
仪器的精度决定了测量结果的准确性,而灵敏度则决定了仪器对微小变化的响应能力。
为确保实验结果的可靠性和精度,科学家们开发了各种方法来检测仪器的精度和灵敏度。
一、精度检测方法1. 重复性与一致性检测:在实验中,同一台仪器测量相同物理量的结果应该是一致的。
重复性检测可以通过多次测量同一物理量的方式进行,理想情况下,各次测量结果之间的差异应该非常小。
另外,一致性检测可以通过将同一样本分别送至不同的仪器进行测试,结果应该是相近的。
借助这两种方法,可以评估仪器的测量结果的可靠性和稳定性。
2. 精度评估方法:仪器的精度可以通过对比已知准确值的标准样本进行测量来评估。
如果仪器的测量结果与标准值非常接近,则说明仪器的精度很高。
3. 不确定度分析:不确定度是指测量结果的范围,因为任何测量都会存在误差。
对于物理实验仪器,不确定度的分析是评估精度的重要方法。
不确定度分析可以通过计算测量结果的标准差来进行。
较小的标准差意味着仪器的精度较高。
二、灵敏度检测方法1. 小量级物理量的测量方法:有些物理量非常微小,例如微弱的电流或微小的功率。
这种情况下,仪器的灵敏度非常重要。
为检测仪器的灵敏度,可以在实验室制造非常小的电流或功率,并使用仪器进行测量。
如果仪器能够准确地测量这些微小物理量,则说明其灵敏度较高。
2. 噪声检测方法:在实验中,仪器会受到各种干扰,例如外部电磁场或机械振动。
这些干扰产生的信号被称为噪声。
为检测仪器的灵敏度,可以将仪器安装在无干扰的环境中,并测量噪声水平。
仪器灵敏度较高时,其能够检测到低噪声水平。
3. 极限检测方法:灵敏度还可以通过测定仪器能够识别的最低或最高测量值来评估。
如果仪器能够检测到非常微小或非常大的物理量,则说明其灵敏度很高。
三、仪器精度与灵敏度的选择依据在实验设计中,选择合适的仪器以确保结果的准确性至关重要。
精度和灵敏度的要求取决于实验所需的测量范围和精度。
方法准确度和精密度的计算公式

方法准确度和精密度的计算公式
在科学研究和实验中,准确度和精密度是非常重要的概念。
准确度指的是测量结果与真实值之间的接近程度,而精密度则是指多次测量结果之间的一致性。
在实验中,我们需要使用一些方法来计算准确度和精密度,以确保我们的实验结果是可靠的。
准确度的计算公式为:
准确度 = (测量值的平均值 - 真实值) / 真实值 × 100%
其中,测量值的平均值是多次测量结果的平均值,真实值是我们所期望的值。
准确度的计算公式可以帮助我们评估测量结果与真实值之间的差异程度。
如果准确度为0,则表示测量结果与真实值完全一致。
精密度的计算公式为:
精密度 = (标准偏差 / 测量值的平均值) × 100%
其中,标准偏差是多次测量结果与平均值之间的差异程度的度量。
精密度的计算公式可以帮助我们评估多次测量结果之间的一致性。
如果精密度为0,则表示多次测量结果完全一致。
在实验中,我们需要同时考虑准确度和精密度。
如果实验结果的准确度和精密度都很高,则说明实验结果非常可靠。
如果实验结果的
准确度和精密度都很低,则说明实验结果不可靠。
准确度和精密度是科学研究和实验中非常重要的概念。
通过使用准确度和精密度的计算公式,我们可以评估实验结果的可靠性,并确保我们的实验结果是准确和精确的。
分析办法的准确度和精密度

分析办法的准确度和精密度要分析一种方法的准确度和精密度,我们需要先了解这两个概念的含义。
准确度是指测量值与真实值之间的接近程度。
在实际应用中,我们难以获得真实值,因此准确度通常是通过与已知参考值的比较来评估的。
准确度高表示测量值与真实值非常接近,准确度低则表示相差较大。
精密度是指测量结果的重复性和一致性。
换句话说,对于相同样本进行重复测量,如果结果非常接近,则意味着具有高精密度。
精密度高的方法可以得到稳定的、可重复的结果,精密度低则表示结果的波动范围较大。
为了评估一个方法的准确度和精密度,以下是一些可以采取的具体步骤:1.确定测试目标:首先需要明确要测试的目标是什么,是其中一种物理量、化学成分、数据模型等等。
2.确定参考值:如果有已知的参考值可用,可以将该值作为真实值来评估方法的准确度。
如果无法获得参考值,则可以考虑与其他已发布的相似方法进行比较。
3.设计实验:选取一组样本,根据方法的要求进行测试,记录每次测试的结果。
4.分析数据:根据实验结果,计算方法的平均值和标准偏差。
平均值反映了方法的准确度,标准偏差则用于评估方法的精密度。
5.与参考值比较:如果有参考值可用,将实验结果与参考值进行比较。
可以计算偏差或误差来衡量方法的准确度。
对于物理量或化学成分,还可以计算百分比误差。
6.重复性测试:对同一组样本进行多次测试,计算结果的标准偏差。
标准偏差越小,说明方法的精密度越高。
7.讨论结果:根据分析的结果,对方法的准确度和精密度进行评估。
如果准确度和精密度都达到要求,则可以认为该方法是可靠和精确的。
需要注意的是,仅仅通过准确度和精密度的分析来评估方法的优劣可能不够全面。
还需要考虑实际应用的要求、成本效益等因素来综合评估。
此外,在分析准确度和精密度时,还要注意排除实验误差和人为因素对结果的影响。
总之,通过以上步骤的分析,可以评估出一个方法的准确度和精密度,并据此判断其可靠性和适用性。
方法学验证的7个技术指标详解

方法学验证的7个技术指标详解我们平时做了理化分析, 出来数据后如何对这场实验进行评估?评估的结果有哪几个维度?这就包括准确度、精密度、线性、检测限和定量限、特异性、耐变性、不确定度。
今天小编就和大家一起复习一下, 深度理解了这几个技术指标, 不仅对实验有了整体把握, 写学术论文也不再是难题。
一、准确度准确度是反映方法系统误差和随机误差的综合指标。
检验准确度可参考以下3个维度:1.使用标准参考物质进行分析测定, 比较测定值与保证值, 其绝对误差或相对误差应符合方法规定的要求。
通常应完成1~2个浓度水平的有证标准物质的测定, 每个浓度水平要求采用至少6份同样的标准物质进行测定, 计算测定结果的平均值、标准偏差与相对标准偏差。
准确度(%)=平均检测浓度/标示浓度×100%2.在没有有证标准物质情况下, 应在样品基质中添加分析物测定回收率。
应至少选择3个添加浓度, 并且包含一定的浓度范围, 定量限或靠近定量限的浓度为必选浓度, 如果样品具有容许限, 该容许限也是必选浓度。
每个浓度水平至少平行测定6次, 计算测量结果的平均值、标准偏差与相对标准偏差。
对于元素分析, 回收率指标应在90%~110%之间。
回收率(%)=(加标试样测定值一试样测定值)/添加浓度×100%3.对同一样品用不同原理的分析方法测试比对。
不同待测物浓度范围内回收率要求不同。
二、精密度精密度是指在规定条件下, 相互独立的测试结果之间的一致程度。
精密度包括方法重复性和方法重现性两个分指标。
重复性: 是在重复性条件下, 相互独立的测试结果之间的一致程度。
重复性条件是指在同一实验室, 由同一操作者使用相同设备, 按相同的测试方法, 并在短时间内对同一被测对象取得相互独立测试结果的条件。
重复性表征了该方法实验室内的精密度。
制定的标准方法必须进行方法的精密度试验, 以考察其是否精确可靠。
重复性试验过程中, 选择3个不同浓度水平样品, 每个浓度水平至少6次平行测定, 计算出平均值、标准偏差和相对标准偏差, 其相对标准偏差应符合表2要求。
物理实验技术的精确度与可靠性评估方法

物理实验技术的精确度与可靠性评估方法在物理研究领域中,实验技术的精确度和可靠性评估是非常重要的。
精确度反映了实验结果与真实数值之间的接近程度,而可靠性则指的是实验结果的稳定性和重复性。
本文将探讨物理实验技术的精确度与可靠性评估方法,以及相关的应用。
一、误差分析与控制误差是影响实验结果精确度和可靠性的主要因素之一。
误差可以分为系统误差和随机误差。
系统误差是由于实验仪器、环境条件、测量方法等引起的固定的偏差,而随机误差是指实验结果的不确定性,主要来源于实验数据的变动性和测量不确定度。
为了对误差进行评估和控制,可以采取以下方法:1. 重复测量:通过多次重复测量同一物理量,可以减小随机误差对实验结果的影响。
通过对数据进行平均处理,可以降低随机误差,提高结果的可靠性。
2. 校正与校准:实验仪器可能存在固有的系统误差,可以通过校正和校准来减小系统误差的影响。
对仪器进行校准可以消除固有误差,并获得更准确的测量结果。
3. 环境控制:实验结果可能会受到外界环境条件的影响,如温度、湿度等。
通过控制实验环境的稳定性,可以降低环境引起的误差,提高实验结果的可靠性。
二、不确定度评估与传递不确定度是对物理量测量结果的不确定程度进行量化的指标。
不确定度的评估是对实验结果精确度的判定,也是实验结果传递过程中可靠性的保障。
评估不确定度的常见方法包括:1. 通过仪器的精确度和分辨率来评估。
2. 使用统计方法,如标准偏差和方差,来评估实验结果的不确定度。
3. 利用不确定度传递公式,将仪器测量误差、标准偏差等进行计算和传递。
在实际应用中,不确定度的传递非常重要。
当多个测量值相互依赖时,需要将每个测量值的不确定度传递给最终结果。
这可以通过使用不确定度传递公式和不确定度传递规则来实现。
三、实验设计与优化实验设计是指为了获得精确度和可靠性较高的实验结果而进行的科学规划和安排。
合理的实验设计可以提高实验的效率和可靠性。
在实验设计与优化中,需要考虑以下因素:1. 指标选择:确保所研究的物理量是明确、具体的,并且能够反映实验目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IntroductionThis document is designed to help our clients understand the quality control requirements and limitations of data reporting. There are three sections to this document. The first section will help to determine data usability. The second section will discuss the regulatory and methodology limitations. The final section deals with hold time and preservation requirements. Click on the bookmarks to the left for more information.The following definitions may help you better understand the components of the data report.The Quality Control Section of ESS Laboratory's analytical report is located after the Sample Results. It is used to determine the data usability of the samples.The Method Blank is an analyte free matrix, (reagent water, clean sand, sodium sulfate), which is carried through the complete preparation and analytical procedure. The Method Blank is used to evaluate contamination resulting from the complete preparation and analytical procedure.The Blank Spike (LCS) is an interference free matrix (same used for the Method Blank) spiked with known concentrations of the analytes of interest. It is analyzed to determine, without sample matrix, if the procedure is working within established control limits. Like the Method Blank it is carried through the complete preparation and analytical procedure. It is routinely performed in duplicate as the BSD (LCSD). The recoveries of the spiked analytes are evaluated to determine accuracy. Comparison of the BS to the BSD will yield a precision measurement.The Matrix Spike is a separate aliquot of the sample spiked with known concentrations of the analytes of interest. It is analyzed to determine, including the matrix interferences, if the procedure is working within established control limits. Like the Blank Spike it is carried through the complete preparation and analytical procedure. It is routinely performed in duplicate as the MSD. The recoveries of the spiked analytes are evaluated to determine accuracy in a given matrix. Comparison of the MS to the MSD will yield a precision measurement in a given matrix.The Duplicate is a separate aliquot of the sample carried through the complete preparation and analytical procedure. Comparison of the Sample to the Duplicate will yield a precision measurement in a given matrix.See Blank Spike/Matrix Spike for Blank Spike Duplicate and Matrix Spike Duplicate definitions. The Standard Reference Material is a third party standard with known concentrations in matrix similar to the sample.Surrogate Standards are analytes added to a sample at a known concentration in order to determine extraction efficiency. Surrogate Standards are analytes chemically similar to those being extracted.An Internal Standard is an analyte or group of analytes added to a sample at a constant concentration, for calibration and quantitation. The internal standard is an analyte chemically similar to those being evaluated. It is typically added in GC/MS methods to correct analyte concentrations during analysis.The Continuing Calibration Verification is a check standard used to determine if the sample analysis is within control limits.Quality Control SectionThe quality control section of the report is separated by analysis and then batches within the analysis. A batch of samples consists of samples that were prepared at the same time using the same preparation method. A batch can consist of up to 20 field samples prepared with a Method Blank (BLK), Blank Spike (BS), Blank Spike Duplicate (BSD), Matrix Spike (MS) and Duplicate (DUP)/Matrix Spike Duplicate (MSD). These samples are designated as Batch#-Abbreviation (ie BG92407-BLK1). A sheet is attached to show the relationship between batch numbers and samples.Method BlankThe Method Blank can show contamination that may have occurred during the preparation step. If the level of the blank is less than 10% of the sample or the sample is significantly below the regulatory limit, sample will be flagged appropriately. This level of contamination would not be considered significant and would not affect data usability.Blank SpikeThe Blank Spike is a measure of the accuracy of the test procedure. If an analyte for any Blank spikes is outside of criteria, that particular analyte needs to be evaluated. If Blank Spikes are above criteria, there is possibility of a high bias; below criteria, there is a possibility of a low bias for the analytes being evaluated. High bias would not be of concern for samples under a regulatory limit. Low bias would be of concern for samples that are under a regulatory limit depending on proximity to the limit. Extrapolation based on percent recovery would be advisable, however extremely low recoveries would affect data usability.Matrix SpikeThe Matrix Spike is a measure of accuracy with regards to matrix effect. It is evaluated in the same way as the Blank Spike. The difference being that analytes that are outside of criteria in the Matrix Spike and not in the Blank Spike are showing matrix effects. Again extrapolation can be used however extremely low recoveries affect data usability.Blank Spike Duplicate, Duplicate andMatrix Spike DuplicateThe Blank Spike Duplicate, Duplicate and Matrix Spike Duplicate are measures of precision. The Blank Spike Duplicate tests the precision of the procedure; the other two test the precision in regards to matrix. If the Duplicate and/or Matrix Spike Duplicate are outside of criteria, while the Blank Spike Duplicate is acceptable, it is assumed that the sample is non-homogeneous. This data would represent a range more than a finite point.Standard Reference MaterialThe Standard Reference Material is a measure of the accuracy of the test procedure for a particular matrix. If an analyte for any Standard Reference Material is outside of criteria, that particular analyte needs to be evaluated. If any Standard Reference Material analytes are above criteria, there is possibility of a high bias; below criteria, there is a possibility of a low bias for the analytes being evaluated. High bias would not be of concern for samples under a regulatory limit. Low bias would be of concern for samples that are under a regulatory limit depending on proximity to the limit. Extrapolation based on percent recovery would be advisable, however extremely low recoveries would affect data usability.Surrogate RecoveriesSurrogate recoveries represent the extraction efficiency for groups of analytes within a sample. Each surrogate represents a group of analytes. If surrogate recoveries are above criteria, a high bias is assumed for that group of analytes; below criteria, a low bias is assumed. High bias would not be of concern for analytes that are under a regulatory limit. Low bias would be of concern for analytes that are under a regulatory limit depending on proximity to the limit. Extrapolation based on percent recovery would be advisable, however extremely low recoveries would affect data usability. See Table for relationship between analytes and the surrogates.SVOA Surrogate Information VOA Surrogate Information EPH Surrogate InformationUCM/CoelutionIt may not be possible to calculate Surrogate Recoveries due to unresolved complex mixture (UCM/Coelution). The surrogate peak can not be distinguished or separated from the mixture of components that are present in the sample.Internal Standards (IS)Internal Standards (IS) are used to quantify a group of analytes. If Internal Standard recoveries are outside of criteria, the analytes represented by that particular Internal Standard need to be evaluated. If the matrix has coeluted with the Internal Standard to create a higher result, the data would have a low bias. Otherwise Internal Standards outside of criteria have caused the data to be adjusted more than the method allows for but does not necessarily create a bias one way or the other. This data is suspect and should not be used for important decision making. See Table for relationship between analytes and the internal standards.SVOA Internal Information VOA Internal InformationContinuing Calibration Verifications (CCVs) Continuing Calibration Verifications (CCVs) are used for analyses that do not require a daily calibration. If CCV recoveries are above criteria, a high bias is assumed for that analyte; below criteria, a low bias is assumed. High bias would not be of concern for analytes that are under a regulatory limit. Low bias would be of concern for analytes that are under a regulatory limit depending on proximity to the limit. Extrapolation based on percent recovery would be advisable, however extremely low recoveries would affect data usability.Elevated Method Reporting Limits Samples are diluted when an analyte exceeds the highest level calibration standard. If the level of the analyte does not cause the run to be unusable, the original run and diluted run can be reported. If the level of the analyte causes the run to be unusable (saturates the detector), only the diluted run will be reported and flagged for Elevated Method Reporting Limits.Matrix InterferencesSamples are also diluted when there is a large matrix interference that cannot be cleaned up prior to running the sample. The sample must be diluted so that the interference does not mask the analyte(s). Once the interference has been negated, the analyte(s) can be reported. This may cause the Method Reporting Limit to exceed the regulatory limit. In this case, the sample will be flagged accordingly.Diluted BelowIt is not always possible to evaluate surrogate and matrix spike recoveries in a diluted sample. If the dilution is large enough, the concentrations will be diluted below the Method Reporting Limits. These samples will be flagged accordingly.Matrix Masked/CoelutionSamples with high target values or matrix interferences can mask the recovery of the analytes or co-elute with the analytes. The analytes can not be accurately distinguished or separated from the existing concentrations of target analytes or other unknown components that are present in the sample. These samples will be flagged accordingly.Quadratic RegressionsQuadratic Regressions are an allowable form of calibration for organic compounds. This calibration should be kept to a minimum. A large number of quadratic regressions indicate that the instrument is not running properly. Analytes using quadratic regression should not be evaluated outside of the calibration range (no “E” flags or “J” flags should be used).Dual Column ConfirmationSome organic analysis using GC (Pesticides, PCBs, etc) requires dual column confirmation of all reportable results. Samples are run on two different columns and results should agree to within 40%. Results outside of 40% are reviewed by analysts for interference or coelution and flagged accordingly. The result reported is the value considered to have the best chromatography.Benzidine/Pentachlorophenol Tailing Factor Tailing factor is used to evaluate the performance of the SVOA Mass Spec instrument. When the tailing factor is >2, the columns are showing some signs of deterioration which will occur with continual use. The tailing factor must be narrated and instrument maintenance will be performed as necessary. This may affect the chromatography of all analytes, however, it does not add bias to the data reported.Cartridge ContaminationUnrelated cartridge contamination occurs during the fractionation step of the EPH procedure. The cartridge that the laboratory uses contains plasticizers which extract into the F2 Fraction. The method allows for contaminant subtraction as long as the laboratory identifies and quantifies the contamination by Mass Spec. The laboratory must narrate this subtraction. The results reported have already been corrected for the contamination.Initial Calibration VerificationThe Initial Calibration Verification is a second source standard used to verify the calibration curve. While the CAM allows for some failures, the analytes that fail may have a low or high data bias.Estimated ValueWhen an analyte is reported above the high point of the calibration curve, the analyte is considered an Estimated value and qualified accordingly.Potential Presence of PCBsThe PP Qualifier is used when the chromatogram shows the potential presence of PCBs in a sample. While the peaks and patterns may not be exact, the analyst has determined that the PCB may be present in a weathered state.Reducing ConditionsThe eH-pH data is used to determine whether Chromium could exist in the Hexavalent state in a particular sample. The R qualifier is used to explain the low matrix spike recoveries in a sample when it is not possible for Hexavalent Chromium to exist.Serial DilutionThe Serial Dilution is used to determine matrix interference in Metals samples. For samples containing analytes greater then 50 times the reporting limit, the serial dilution should be within 10%. Results greater then 10% would indicate a low bias for that analyte.CAM Method Limitations8260 Aqueous1,2-Dibromoethane (EDB) – must use 8011 to achieve GW1 and RCGW1 limits.1,4-Dioxane – must use 8270 with isotope dilution to achieve GW1 and RCGW1 limits.8260 SoilMust use Low Level method to achieve S1GW1, S2GW2 and RCS1 limits for:1,1,2,2-Tetrachloroethane1,4-Dioxane4-Methyl-2-Pentanonecis-1,3-DichloropropeneDibromochloromethaneChlorideMethylenetrans-1,3-DichloropropeneIn addition, must use Low Level method to achieve S1GW2, S2GW2, S2GW3 and RCS2 limits for:1,1,2,2-TetrachloroethaneDibromochloromethaneMeeting required limits will also be affected by sample size, dilution and percent solids. The laboratory will make the best effort to compensate and meet all limits. However, some samples will not be able to be reported below required limits. Use the Data Checker EDD to review limit exceedances.RCP Method Limitations8260 Aqueous1,2-Dibromoethane (EDB) – must use 8011 to achieve GA GWPC criteria.8260 SoilMust use Low Level method to achieve Residential:(EDB)1,2-DibromoethaneMust use Low Level Method to achieve GA and GAA Mobility:1,1,1,2-Tetrachloroethane1,1,2,2-Tetrachloroethane(EDB)1,2-Dibromoethane1,2-DichloroethaneAcrylonitrileBenzeneBromodichloromethaneChloromethanecis-1,3-DichloropropeneDibromochloromethaneChlorideMethyleneTrans-1,3-DichloropropeneChlorideVinylMust use Low Level Method to achieve GB Mobility:Acrylonitrile8081 Pesticides AqueousThe laboratory can not achieve the Dieldrin limit in Groundwater. Meeting required limits will also be affected by sample size, dilution and percent solids. The laboratory will make the best effort to compensate and meet all limits. However, some samples will not be able to be reported below required limits. Use the Data Checker EDD to review limit exceedances.ESS Laboratory’s Guide to Sample Handling and PreparationPreservative Hold Time Vol pH AnalysisAqueous Soil Water Soil ml checkChlorine (TRC) Dissolved Oxygen pH Sulfite4oC 50 300 50 N/ATemperature N/A Immediate N/A NO24 hrs 28 d Chromium (VI) Coliform Iodide Odor Plate Count 4o C 24 hours 50 100100100100NO BOD – 5 dayColorNitrateNitrite OrthophosphateSettleable SolidsSurfactants (MBAS)Turbidity4oC 48 hours200 50 25 25 25 1000 250 50 NO Sulfide TOX (VOA vial) Zn Ace/NaOH - 4o C H 2SO 4 or HCl - 4o C 4oC4oCFlash/Reactivity NP - 4o C NP - 4o CTDS/TS/TSS/TVS 4o C 4oC 7 days 50 40 100 NO 4oC 4oC NO4o C 4oC ***Acidity/Alkalinity TX (VOA vial)Cyanide (Amenable) Cyanide (Total)NaOH - 4o C NaOH - 4o C NP - 4o C NP - 4oC 14 days 100 400 100 100 NP - 4oC 6 months100Yes4oCMetals* (Total/Diss.)-Except Cr(VI) and Mercury Mercury* (Total/Diss.) HNO 3 - 4oC4o CHNO 3 - 4oCNP - 4oC 28 days 50 YesAmmonia CODKjeldahl Nitrogen (Total) Nitrate-Nitrite4oCOil & Grease/TPH Glass only Phenol Glass onlyPhosphorous (Tot/Hyde) TOC (VOA vial) H 2SO 4 NP 250 25 250 251000 2505040 YesPaint Filter Asbestos None Required Bromide Chloride Fluoride 4oCSalinity SilicaSpec. Conductivity Sulfate 4oC SiloxaneNP - 4o C MeOH - 4o C 28 daysN/AN/A N/A25 255050 50501000 NO Yes SVOA (625/8270/PAH) DRO/TPH-GC (8100M) EPHHerbicides (8151) PCB (608, 8082) Pesticide (608, 8081)NP - 4o C HCl - 4o C HCl - 4o C NP - 4o C NP - 4o C 5-9 pH - 4o C NP - 4oC NP - 4oC NP - 4oC NP - 4oC NP - 4oC NP - 4oC 7 d 7 d 14 d 7 d 7 d 7 d 14 d 14 d 7 d 14 d 14 d 14 d 2000 1000 1000 1000 1000 1000 ***Volatile Organics (524.1, 601, 624, 5035, 8260) EDB & DBCP GRO 4o C Na 2S 2O 3 - 4o C HCL - 4o C MeOH** - 4o CNP - 4oC NP - 4oC14 d 14 d 3 vial YesVPH HCL - 4o C MeOH** - 4oC 14 d 28 d 3 vial* Dissolved metals must be field filtered before preservation or brought to lab unpreserved and filtered in lab within 24 hours. ** Samples are to be preserved in the field with methanol.***These parameters must be tested in sample receiving for pH – Cyanide, Pesticide (608)。