平行线的性质教学设计 人教版(优秀教案)

合集下载

人教版七年级下册5.3.1平行线的性质教学设计

人教版七年级下册5.3.1平行线的性质教学设计

人教版七年级下册5.3.1平行线的性质教学设计一、教学背景这一章节是初中数学中的重要内容,是初中阶段固有内容之一。

本节内容是平行线的性质,是进一步提高学生的几何学习水平,培养学生学习几何并进行运用的能力,为高中学习打下基础。

二、教学目标1.了解平行线及其性质2.掌握平行线的判定方法3.理解平行线性质在实践中的运用三、教学方法1.启发法。

通过生活实例与学生交流、讨论、分析问题,引导学生主动发现规律,理解和掌握性质。

2.演示法。

通过画图、举例、模拟等方式,使学生清楚而直观地感受到性质的本质和基本概念。

3.交互式教学法。

在课堂授课中,让学生发现问题,教师及时给予引导和反馈,互相探讨,加深印象。

四、教学过程1. 导入1.蓝色背景幻灯片呈现问题:一本书和一支笔在实物上是不可能同时摆放在同一个平面内的。

请用你的观察能力,试着解释一下。

2.学生进行思考和讨论,教师及时引导,引出平行性质,并与上节课内容对接。

2. 深化1.展示两条不相交的直线和一条横截直线的图形,引导学生描绘其几何形状。

2.教师引导学生观察直线和横线的相对位置。

学生回答“这两条直线可能会有什么关系?” 并予以深入探究。

3.教师呈现两条相交的直线的图形。

蓝色背景幻灯片呈现问题:如何判断两条直线平行?4.启发式教学清晰阐明平行性质,加深对平行性质的认识。

学生自主探索得到假设,教师引导得出定义。

5.通过生活实例和多个角度的讲解掌握平行线的判定方法,梳理学习过的知识点,梳理几何优秀思路,解决学生的疑惑与困惑。

3. 总结1.举例,让学生思考这些性质的应用场景和方法。

2.教师引导学生用不同的方法总结、概括平行性质。

4. 课堂作业请学生人自己动手从生活中找出化解问题的方法,更加深入理解平行线性质,提高维度。

五、教学评估通过课堂练习、课堂互动、互相探讨、小组交流以及单独创造等多种评价方式,检验学生学习效果。

教师班长进行作业的检查和评估,判定教学质量和效果。

人教版数学七年级下册5.3.1《平行线的性质》教学设计3

人教版数学七年级下册5.3.1《平行线的性质》教学设计3

人教版数学七年级下册5.3.1《平行线的性质》教学设计3一. 教材分析《平行线的性质》是人教版数学七年级下册第五章第三节的内容,本节课主要让学生掌握平行线的性质,通过探究同位角、内错角和同旁内角的关系,引导学生理解并证明平行线的性质。

本节课的内容是学生进一步认识直线和圆的基础,对于学生形成完善的空间观念和几何思维具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的概念,以及平行线的概念和判定。

在此基础上,学生需要进一步探究平行线的性质,理解并证明同位角、内错角和同旁内角的关系。

由于本节课的内容较为抽象,学生可能对一些概念和证明过程的理解存在困难,因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,引导学生进行思考和探究。

三. 教学目标1.理解平行线的性质,掌握同位角、内错角和同旁内角的关系。

2.能够运用平行线的性质解决一些实际问题。

3.培养学生的空间观念和几何思维,提高学生的动手操作能力和数学表达能力。

四. 教学重难点1.平行线的性质2.同位角、内错角和同旁内角的关系3.运用平行线的性质解决实际问题五. 教学方法1.引导探究法:教师引导学生通过观察、操作、思考、讨论等方式,自主探究平行线的性质,培养学生的探究能力和合作精神。

2.案例分析法:教师通过列举实例,让学生理解和运用平行线的性质,提高学生的应用能力。

3.讲解法:教师对一些难点和重点内容进行讲解,帮助学生理解和掌握知识。

六. 教学准备1.教学课件:制作课件,展示平行线的性质和相关的实例。

2.教学素材:准备一些与平行线性质相关的习题,用于巩固和拓展学生的知识。

3.板书设计:设计板书,突出本节课的重点内容。

七. 教学过程1.导入(5分钟)教师通过复习直线、射线、线段的概念,以及平行线的概念和判定,为学生引入本节课的内容。

2.呈现(10分钟)教师展示课件,引导学生观察一些图片,如铁路、公路等,让学生找出其中的平行线。

平行线的性质(教学设计)七年级数学下册同步备课系列(人教版)

 平行线的性质(教学设计)七年级数学下册同步备课系列(人教版)

5.3.1平行线的性质教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.3.1平行线的性质,内容包括:平行线的性质;平行线的判定和性质综合应用.2.内容解析《平行线的性质》人教版七年级数学下册的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的.这节课是空间与图形领域的基础知识,在以后的学习中经常要用到.它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。

在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一性质进行验证,再通过课件的演示对学生进行讲解,使学生加深对这一知识点的理解.基于以上分析,确定本节课的教学重点为:掌握平行线的性质,会运用两条直线是平行关系判断角相等或互补二、目标和目标解析1.目标(1)掌握平行线的性质,会运用两条直线是平行关系判断角相等或互补;(2)能够根据平行线的性质进行简单的推理.2.目标解析探索并掌握平行线的性质;能用平行线的性质定理进行简单的计算、证明;知道对平行线的性质和判定进行的区别;经历探索直线平行的性质的过程掌握平行线的三条性质,并能用它们进行简单的推理和计算;经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力;通过生活实际让学生自己发现问题、提出问题,然后进行建模解决问题;通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系;通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认识他人.三、教学问题诊断分析在本节课学习之前,学生已经学习了平行线的判定,了解到研究平行线与两条直线被第三条直线所截所形成的角,学生很自然地会想到研究平行线性质也要研究同位角、内错角、同旁内角的关系,所以本节课定理的学习,学生学起来会比较轻松.但独立思考和探究能力还有待培养和提高.从认知结构的角度看,学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识.学生已经学了平行线的判定,具备了探究平行线性质的基础,但在逻辑思维和合作交流的意识方面发展不够均衡.重视学生的自主探究和合作交流以及创新意识的培养,充分利用七年级学生好奇、好强、好胜的心理特点,激发学生勇于探索和合作交流的学习气氛.基于以上学情分析,确定本节课的教学难点为:平行线的判定和性质综合应用.四、教学过程设计复习回顾根据右图,填空:①如果∠1=∠C,那么____∥____()②如果∠1=∠B,那么____∥____()③如果∠2+∠B=180°,那么____∥____()问题:通过上题可知平行线的判定方法是什么?思考:反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?合作探究探究:利用坐标纸上的直线或者用直尺和三角尺画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,度量所形成的8个角的度数,把结果填入下表:猜一猜:两条平行线被第三条直线所截,同位角______,内错角______,同旁内角______.能力提升平行线的性质性质1两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言:性质1:∵a∥b∴∠1=∠3性质2:∵a∥b∴∠2=∠4性质3:∵a∥b∴∠2+∠3=180°自学导航思考:如图,你能根据性质1,说出性质2成立的道理吗?∵a∥b(已知)∴∠1=∠2(_______________________)又∵∠1=____(对顶角相等)∴∠2=∠3(_________)如图,你能根据性质1,说出性质3成立的道理吗?∵a∥b(已知)∴∠1=∠2(两直线平行,同位角相等)又∵∠1+∠3=180°(邻补角定义)∴∠2+∠3=180°(等量代换)能力提升思考:平行线三个性质的条件是什么?结论是什么?它与判定有什么区别?考点解析考点1:平行线的性质1例1.如图,D,E,F分别是三角形ABC三条边上的点,EF//AC,DF//AB,∠B=45°,∠C=60°.则∠EFD等于()A.80°B.75°C.70°D.65°解析:∵EF//AC,∴∠EFB=∠C=60°(两直线平行,同位角相等)∵DF//AB,∴∠DFC=∠B=45°(两直线平行,同位角相等)∴∠EFD=180°-∠EFB-∠DFC=180°-60°-45°=75°.【迁移应用】1.如图,已知直线a//b,c为截线,若∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.150°2.如图,直线a//b,将一把三角尺的直角顶点放在直线b上,若∠1=50°,则∠2的度数是()A.20°B.30°C.40°D.50°3.如图,已知AB//CD,BC是∠ABD的平分线,若∠2=64°,则∠3=______.考点2:平行线的性质2例2.如图,已知AD//BC,∠B=40°,∠DEC=70°,求∠BDE的度数.解:∵AD//BC,∠B=40°,∠DEC=70°∴∠ADB=∠B=40°,∠ADE=∠DEC=70°(两直线平行,内错角相等)∴∠BDE=∠ADE-∠ADB=70°-40°=30°【迁移应用】1.如图,平行线AB,CD被直线EF所截,FG平分∠EFD,若∠EFD=70°则∠EGF的度数是()A.35°B.55°C.70°D.110°2.如图,直线a//b,点C,A分别在直线a,b上,AC⊥BC,若∠1=50°,则∠2的度数为______.3.如图,AB//CD//EF,∠A=54°,∠C=26°,则∠AFC=_______.考点3:平行线的性质3例3.如图,若AB//DE,BC//EF,求∠B+∠E的度数.解:∵AB//DE(已知),∴∠B=∠BCE(两直线平行,内错角相等)∵BC//EF(已知),∴∠BCE+∠E=180°(两直线平行,同旁内角互补)∴∠B+∠E=180°(等量代换)【迁移应用】1.如图,直线m//n,其中∠1=40°,则∠2的度数为()A.130°B.140°C.150°D.160°2.如图,直线a//b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC.若∠1=130,则∠2的度数是()A.30°B.40°C.50°D.70°3.如图,已知AB//CD,∠1=∠2,∠EFD=56°,求∠D的度数.解:∵AB//CD,∠EFD=56°∴∠BEF=180°-∠EFD=124°∵∠1=∠2∴∠2=12∠BEF=62°∵AB//CD∴∠D=∠2=62°考点4:利用平行线的性质解决折叠问题例4.如图,将一张长方形纸片(其中AD//BC)沿EF折叠后,使得点A,B分别落在点A′B′的位置.若∠2=56°,求∠1的度数.解:∵AD//BC,∴∠B'FC=∠2=56°(两直线平行,同位角相等)由折叠的性质可知∠1=∠B′FE,又∠1+∠B'FE+∠B′FC=180°∴∠1=∠B'FE=12(80°-∠B′FC)=12×(180°-56°)=62°.【迁移应用】1.如图,将一长方形纸片沿AB折叠,已知∠ABC=36°,则∠D1AD=()A.48°B.66°C.72°D.78°2.如图,把一张对边平行的纸条沿EF折叠,点B,C分别落在点H,G处.若∠FEH=124°,则∠1=______.3.如图,把一张长方形纸片ABCD沿EF折叠,点D,C分别落在点D′,C′的位置上,ED′与BC相交于点G.若∠EFG=55°,求∠1与∠2的度数.解:∵∠EFG=55°,AD//BC,∴∠DEF=∠EFG=55°由折叠的性质得∠DEG=2∠DEF=110°∴∠1=180°-∠DEG=70°∵AD//BC∴∠2=∠DEG=110°考点5:利用平行线的性质解决实际问题例5.一个大门栏杆的平面示意图如图所示,BA垂直于地面AE于点A,CD平行于地面AE.若∠BCD=10°则∠ABC=_______.【解析】如图,过点B作BG//CD,∴∠BCD+∠CBG=180°∴∠CBG=180°-∠BCD=180°-150°=30°∵BA⊥AE,∴∠BAE=90°∵CD//AE,BG//CD,∴BG//AE∴∠ABG+∠BAE=180°∴∠ABG=180°-∠BAE=90°∴∠ABC=∠ABG+∠CBG=90°+30°=120°.【迁移应用】1.如图是超市购物车的侧面示意图,扶手AB与车底CD平行,∠1=100°,∠2=48°,则∠3的度数是()A.52°B.48°C.42°D.62°2.如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=40°时,∠DCN的度数为(提示:由反射角=入射角,可得∠OBC=∠ABM,∠DCN=∠BCO)() A.40° B.50° C.60° D.80°3.如图是我们生活中经常接触的小刀,刀柄是一个直角梯形(挖去一个半圆),刀片上下是平行的,转动刀片时会形成∠1,∠2,则∠1+∠2=______.考点6:平行线的判定和性质的综合应用例6.如图,已知CE⊥AB,MN⊥AB,∠EDC+∠ACB=180°.试说明:∠1=∠2.解:∵CE⊥AB,MN⊥AB,∴∠CEB=∠MNB=90°,∴MN//CE,∴∠2=∠BCE.∵∠EDC+∠ACB=180°,∴ED//BC,∴∠1=∠BCE,∴∠1=∠2.例7.如图,点F在线段AB上,点E,G在线段CD上,AB//CD.(1)若BC平分∠ABD,∠D=100°,求∠ABC的度数;(2)若∠1=∠2,试说明:AE∥FG.解:(1)∵AB//CD,∴∠ABD+∠D=180°∵∠D=100°,∴∠ABD=180°-∠D=80°.∵BC平分∠ABD∴∠ABC=∠ABD=40°(2)∵AB//CD∴∠1=∠FGC.又∠1=∠2∴∠FCC=∠2∴AE//FG.【迁移应用】1.如图,点Р在直线CD上,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.解:∠BAP+∠APD=180°,∴AB//CD,∴∠BAP=∠APC.又∠1=∠2,∠3=∠BAP-∠1,∠4=∠APC-∠2,∴∠3=∠4,∴AE//PF,∴∠E=∠F.2.如图,AB//CD,点F在CD上,延长BC,AF交于点E,∠1=∠2,∠3=∠4.试说明:AD//BE.解:∵AB//CD,∴∠4=∠BAE∵∠3=∠4∴∠3=∠BAE∵∠1=∠2∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD∴AD//BE.3.如图,∠1+∠2=180°.(1)试说明:AB∥EF;(2)若CD平分∠ACB,∠DEF=∠A,∠BED=60°,求∠EDF的度数.解:(1)∵∠1与∠EFD是邻补角,∴∠1+∠EFD=180°又∠1+∠2=180°∴∠2=∠EFD∴AB//EF.(2)∵AB//EF,∴∠DEF=∠BDE.又∠DEF=∠A∴∠A=∠BDE∴DE//AC∴∠ACB=∠BED=60°∵CD平分∠ACB∴∠ACD=1∠ACB=30°2∵DE//AC∴∠EDF=∠ACD=30°.。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。

2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等。

(2)平行线之间的夹角相等。

(3)平行线与截线所形成的内错角相等。

(4)平行线与截线所形成的同位角相等。

三、教学重点与难点1. 教学重点:平行线的性质及其应用。

2. 教学难点:平行线性质的推理和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。

2. 利用几何画板等软件,直观展示平行线的性质。

3. 组织小组讨论,培养学生的合作能力。

五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。

2. 自主探究:学生独立观察、操作,发现平行线的性质。

3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。

4. 教师讲解:总结平行线的性质,并进行推理和证明。

5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。

6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。

7. 作业布置:布置适量作业,巩固所学知识。

六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。

2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。

3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。

3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。

人教版数学七年级下册:5.3.1平行线的性质(教案)

人教版数学七年级下册:5.3.1平行线的性质(教案)
二、核心素养目标
1.培养学生的空间想象力和直观想象力,通过观察和操作,理解平行线的性质,提高对几何图形的认识。
2.培养学生的逻辑推理能力,通过探索平行线的判定定理,学会运用严密的数学语言进行推理和证明。
3.培养学生的数学抽象素养,从具体实例中抽象出平行线的性质,理解几何图形之间的关系。
4.培养学生的数学建模素养,运用平行线性质解决实际问题,提高将数学知识应用于现实情境的能力。
在新课讲授过程中,我注意到大部分同学能够跟上课程节奏,理解同位角、内错角、同旁内角等概念。然而,也有一些同学在理解判定定理时显得吃力。为此,我采用了多媒体演示和实物模型,帮助他们直观地理解这些概念。在今后的教学中,我还需要针对这部分同学进行更有针对性的辅导,以确保他们能够真正掌握这些知识点。
实践活动环节,同学们分组讨论和实验操作都表现得相当积极。他们通过实际操作,对平行线的性质有了更深刻的认识。但在小组讨论过程中,我发现部分同学过于依赖同伴,自己思考不够。因此,在接下来的教学活动中,我要注重培养同学们的独立思考能力,鼓励他们勇于表达自己的观点。
学生小组讨论环节,大家围绕平行线在实际生活中的应用展开了热烈的讨论。我感到很高兴的是,同学们能够将所学知识与社会生活联系起来,发挥了自己的想象力。但在引导同学们思考问题时,我发现有些问题设置得不够明确,导致部分同学思考方向出现偏差。为此,我将在以后的课堂中,更加注意问题的设置,使同学们能够更好地展开讨论。
1.加强对重点、难点知识的讲解和辅导,确保每位同学都能够理解并掌握。
2.注重培养同学们的独立思考能力,鼓励他们勇于表达自己的观点。
3.优化问题设置,让同学们在讨论过程中能够有针对性地思考,提高课堂效果。
-难点四:证明平行线的逻辑推理过程。学生可能不熟悉如何构建严密的数学证明。

人教版初中数学平行线的性质教案

人教版初中数学平行线的性质教案

人教版初中数学平行线的性质教案第一篇:人教版初中数学平行线的性质教案2.3 平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是‚空间与图形‛的重要组成部分。

二、教学目标:1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

三、教学重、难点:重点:平行线的性质难点:‚性质1‛的探究过程四、教学方法:‚引导发现法‛与‚动像探索法‛五、教具、学具:教具:多媒体课件学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。

内容:①火车行驶在铁轨上;②游泳池;③横格纸。

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。

①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。

(二)数形结合,探究性质 1.画图探究,归纳猜想任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。

问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同位角∠1 ∠5 角的度数数量关系学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。

教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。

教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。

但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。

三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:平行线的性质。

2.难点:如何引导学生观察、思考、总结平行线的性质。

五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。

2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。

3.通过实例讲解,使学生能将所学知识应用于实际问题中。

六. 教学准备1.准备相关课件,展示平行线的性质。

2.准备实例,让学生观察、思考、总结平行线的性质。

3.准备练习题,巩固所学知识。

七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。

呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。

操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。

教师巡回指导,解答学生疑问。

巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。

2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。

3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。

二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线互相平行。

(2)平行线与横穿它们的直线相交,交角相等。

(3)平行线之间的距离相等。

三、教学重点与难点1. 教学重点:平行线的概念及性质。

2. 教学难点:平行线性质的理解和应用。

四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。

2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。

3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。

五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。

2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。

(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。

3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。

(2)设置练习题,让学生运用平行线的性质解决问题。

4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。

(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。

5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。

六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。

2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。

3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。

七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。

2. 针对学生的学习情况,调整教学策略,提高教学效果。

3. 关注学生的学习需求,不断优化教学内容,提升教学质量。

八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质
一、学生知识状况分析
学生技能基础:在学习本课之前,学生对平行线的性质已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础.
活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.
二、教学任务分析
在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《为什么它们平行》和本节课安排的《如果两条直线平行》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,为此,本课时的教学目标是:
.认识平行线的三条性质。

.能熟练运用这三条性质证明几何题。

.进一步理解和总结证明的步骤、格式、方法.
.了解两定理在条件和结构上的区别,体会正逆的思维过程.
. 进一步发展学生的合情推理能力,培养学生的逻辑思维能力。

三、教学过程分析
本节课的设计分为四个环节:情境引入——探索与应用——反馈练习——反思与小结
第一环节:情境引入
活动内容:
一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠是°,第二次拐的角∠是多少度?
说明:这是一个实际问题,要求出∠的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.
活动目的:
通过对一个实际问题的解决,引出平行线的性质。

教学效果:
由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题。

第二环节:探索与应用
活动内容:
①画出直线的平行线,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?
②平行公理:两直线平行同位角相等.
③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
∵∥(已知),
∴∠=∠(两条直线平行,同位角相等)
∵∠=∠(对顶角相等),
∴∠∠(等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.
∵∥(已知)
∴∠∠(两直线平行,同位角相等)
∵∠+∠°(邻补角定义)
∴∠∠=°(等量代换)
即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:
∵∥,
∴∠∠(两直线平行,同位角相等).
∵∥(已知),
∴∠=∠(两直线平行,内错角相等).
∵∥(已知),
∴∠∠=°.(两直线平行,同旁内角互补)
(板书在三条性质对应位置上)
活动目的:
通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性。

教学效果:
在前面复习引入的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
第三环节:课堂练习
活动内容:
①已知平行线、被直线所截
()若∠°,可以知道∠是多少度吗?为什么?
()若∠°,可以知道∠是多少度吗?为什么?
()若∠°,可以知道∠是多少度吗,为什么?
②变式训练:如图是梯形有上底的一部分,已知量得∠°,∠=°,梯形另外两个角各是多少度?
解:∵∥(梯形定义),
∴∠∠=°.∠+∠=°(两直线平行,同旁内角互补),
∴∠°∠=°°°.
∴∠=°∠=°°°.
③变式练习:如图,已知直线经过点,∥,∠=°,∠=°
()∠等于多少度?为什么?
()∠等于多少度?为什么?
()∠、∠+∠+∠各等于多少度?
④如图,、、、在同一直线上,∥.
()∠=°时,∠、∠各等于多少度?为什么?
()∠°时,∠、∠各等于多少度?为什么?
活动目的:
通过学生对证明的螺旋式上升的认识,更认识到数学严密性与证明的必要性,做到每一步都有根有据。

教学效果:
在教师不给任何提示的情况下,学生独立完成,把理由写成推理格式.对于学习困难一点的同学允许他们相互之间讨论后,再试着在练习本上写出解题过程.对学生中出现的不同解法给予肯定,培养学生的解题能力.
第四环节:课堂反思与小结
活动内容:
①归纳两直线平行的判定与性质
②总结证明的一般思路及步骤
活动目的:
使学生认识到平行线的判定与性质是一对互逆定理,并由感性认识上升到理性认识,归纳总结出证明题的一般思路及步骤。

教学效果:
应让学生积极讨论,说出平行线的判定及性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质,能通过具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同,总结证明的一般步骤,养成严谨的推理习惯.
课后练习:课本第页的习题第,,题
四、教学反思
语言是思维的工具,要学好证明,必须学会语言的表达和运用,初学几何证明题时,学生对于几何语言不甚清楚,几何语言分为文字语言、符号语言和图形语言,老师有必要强调:将图形语言和符号语言相结合是学好证明的基本功,画图时按要求将符合题意的图形画出来。

但要注意以下几点:
()注意所画图形的多种情况;
()能根据题意画出简单的图形,掌握“题”与“图”的对应关系,一般图形不要画成特殊图形,否则就意味着人为增加了已知条件,反之,特殊图形也不要画成一般图形,这两种做法都没有真实的表达题意;
()图形力求准确,便于观察,有利于解题。

相关文档
最新文档