福大结构力学课后习题详细答案..-副本

合集下载

结构力学课后习题答案

结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

lllZ 1M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m4m 4m解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程1115,352p r EI R ==-153502EIZ -=114Z EI=(4)画M 图()KN m M ⋅图(c) 9m解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程1114,243p p r EI R F ==-140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a 2aa2a aF P图1pR pp M(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程11126/,55p p r EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程11122122121,4414,0p p p EA r r r l l EA r l R F R ⎛⎫=+== ⎪⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

福大结构力学课后习题详细答案[祁皑].._副本

福大结构力学课后习题详细答案[祁皑].._副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)(c-1)(a )(a-1)(b )(b-1)(b-2)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)(d )(e )(e-1)ABCAB (e-2)(f )(f-1)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

结构力学课后习题答案

结构力学课后习题答案

结构⼒学课后习题答案附录B 部分习题答案2 平⾯体系的⼏何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。

2-2 (1)⽆多余约束⼏何不变体系;(2)⽆多余约束⼏何不变体系;(3)6个;(4)9个;(5)⼏何不变体系,0个;(6)⼏何不变体系,2个。

2-3 ⼏何不变,有1个多余约束。

2-4 ⼏何不变,⽆多余约束。

2-5 ⼏何可变。

2-6 ⼏何瞬变。

2-7 ⼏何可变。

2-8 ⼏何不变,⽆多余约束。

2-9⼏何瞬变。

2-10⼏何不变,⽆多余约束。

2-11⼏何不变,有2个多余约束。

2-12⼏何不变,⽆多余约束。

2-13⼏何不变,⽆多余约束。

2-14⼏何不变,⽆多余约束。

5-15⼏何不变,⽆多余约束。

2-16⼏何不变,⽆多余约束。

2-17⼏何不变,有1个多余约束。

2-18⼏何不变,⽆多余约束。

2-19⼏何瞬变。

2-20⼏何不变,⽆多余约束。

2-21⼏何不变,⽆多余约束。

2-22⼏何不变,有2个多余约束。

2-23⼏何不变,有12个多余约束。

2-24⼏何不变,有2个多余约束。

2-25⼏何不变,⽆多余约束。

2-26⼏何瞬变。

3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。

3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。

3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。

结构力学_福州大学中国大学mooc课后章节答案期末考试题库2023年

结构力学_福州大学中国大学mooc课后章节答案期末考试题库2023年

结构力学_福州大学中国大学mooc课后章节答案期末考试题库2023年1.用矩阵位移法求解图示刚架时,其结构的综合结点荷载列阵为:{F}={40.5kN·m 31.5kN·m 72kN }T。

()【图片】答案:正确2.该体系为几何()体系,有()个多余约束,缺()必要约束。

备注:第1个空格填“不变、瞬变、可变”字样,第2个、第3个空格填数字。

三个答案之间用“,”号分隔,每空2分。

【图片】答案:不变,0,03.图示连续梁,用力矩分配法求得杆端弯矩MBC= -M/2。

()【图片】答案:错误4.用力矩分配法计算图示结构时,BC杆的分配系数是:();【图片】答案:16/25,5.在力矩分配法的计算中,当放松某个结点时,其余结点所处状态为:()答案:相邻结点锁紧6.在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。

()答案:正确7.用力矩分配法计算结构时,汇交于每一结点各杆端力矩分配系数总和为1,则表明力矩分配系数的计算绝对无错误。

()答案:错误8.结构体系的计算自由度。

答案:一定小于等于实际自由度。

9.瞬变体系不能做为常规工程结构的原因是。

答案:约束的位置不对;10.图示结构中B结点的不平衡力矩(约束力矩)为:()【图片】答案:-1kNm11.图示结构中,当结点B作用外力偶M时,用力矩分配法计算得MBA等于:()【图片】答案:2M/512.真实的结构是。

答案:可能是没有多余约束的几何不变体系,或者是有多余约束的几何不变体系。

13.图示连续梁用力矩分配法求得AB杆B端的弯矩是:()【图片】答案:6kNm14.二元体的含义是。

答案:从一个单铰出发的两个不共线的刚片,只在远端与其它体系相连。

15.该体系为几何()体系,有()个多余约束,缺()必要约束。

备注:第1个空格填“不变、瞬变、可变”字样,第2个、第3个空格填数字。

三个答案之间用“,”号分隔,每空2分。

结构力学课后习题答案

结构力学课后习题答案

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )习题 (5)图(6) 习题(6)(a)图所示体系去掉二元体ABC 后,成为习题(6) (b)图,故原体系是几何可变体系。

( )(7) 习题(6)(a)图所示体系去掉二元体EDF 后,成为习题(6) (c)图,故原体系是几何可变体系。

( )习题 (6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题 填空(1) 习题(1)图所示体系为_________体系。

B DACEF(a)(b)(c)D习题(1)图(2) 习题(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题(3)图(4) 习题(4)图所示体系的多余约束个数为___________。

习题(4)图(5) 习题(5)图所示体系的多余约束个数为___________。

习题(5)图(6) 习题(6)图所示体系为_________体系,有_________个多余约束。

习题(6)图(7) 习题(7)图所示体系为_________体系,有_________个多余约束。

结构力学课后习题答案[1]

结构力学课后习题答案[1]

)e( 移位线个 1�移位角个 3 移位角个 1
)d(
)c(
。构结本基出绘并�目数量知未本基法移位的构结示图定确试 1-7
)b(
) a(


33 -7
下如图矩弯各�量知未移位角个 1 m4 m4
量知未本基定确�1� �解 C IE
m4
D Nk01
IE
B
IE2 m/Nk5.2
A )b(
图M
42 lq 2 5
图矩弯终最画�4� 得解�入代
61.53
IE
3
0 � p 2 R , 0 3 � p 1R 6 � 2 2r IE � 1 2r � 2 1r , I E 2 � 1 1r
程方解并数系定确�3�
p2
11
1
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
N K 0 3 � � p 2 R , N K 0 3 � p 1R 4 � � 2 2r 0 � 1 2r � 2 1r , i1 1 � 1 1r
p2
得解�入代
i3
程方解并数系定确�3�
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
程方型典法移位�2�
程方型典法移位�2�
0�
p1
图p M
03 � p 1R � 0 � p 1R
03
04 -7
m2
m2 数常=IE F
B E
m2
m2
D
A
m2
Nk03
C )c(
90.92 55.43
图M
81.8 19.02 54.57 02

结构力学课后习题答案

结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】「习题11】【习题12】【习题13】【习题14】【参考答衆】习题22-1〜2-14试对图示体系进行儿何组成分析,如果是只有多余联系的儿何不变体系,则应指出多余联系的数目。

d5∑° X 厂^τ"βH题2-2图ΓΛ题2-3图题2-5图题2-6图题2-1图H 2-9 图题2-10图题2-11图题2-12图题2-13图习题3试作图示多跨挣定梁的M及Q图。

(a) (b)题3-1图3-2试不计算反力而绘出梁的M图。

题3-2图习题44-1作图示刚架的M、Q、N图。

40fcN 40kN20kNm4-2作图示刚架的M图。

2OkN m SkN mSkXm 40fcN题4-1图4-3作图示三狡刚架的M图。

4-4作图示刚架的M图。

AEmJnIAr lD1题4-2图4-5己知结构的M图•试绘出荷载。

题4-4图3IOkNnlJ^1.5mC(a)题4-3日6erIB9 9题5-1图5-2带拉杆拱,拱轴线方程y= il(l-χ)χ,求截面K 的弯矩。

题5-2图5-3试求图示带拉杆的半圆三狡拱截面K 的内力・4-6检査F 列刚架的M 图,并予以改正。

题4-5图ω∙I ∣ULL∏ ∏ ⅛)题4-6图习题5图示抛物纟戈三铁拱轴线方程y = ff(l-x)x ,试求D 截面的内力。

IkNm15m [ 5m [ ICm 1=3OmC题5-3图习题6 6-1判定图示桁架中的零杆。

题6-1图6-2用结点法计算图示桁架中各杆内力。

(a) FGH月Λ4x4m=16m题6-2图6-3用截面法计算图示桁架中指定各杆的内力。

40kN题6-3图6-4试求图示组介结构中齐链杆的轴力并作受弯杆件的Q图。

2m ] 2m ]lm]lπ⅝] 2m [题6-4图6-5用适宜方法求桁架中指定杆内力。

题6-6图习题88-1试作图示悬臂梁的反力V B 、MB 及内力Q C 、MC 的影响线。

结构力学课后习题答案

结构力学课后习题答案

结构力学课后习题答案结构力学是一门研究结构在外力作用下的内力、变形和稳定性的学科。

课后习题是帮助学生巩固理论知识和提高解题技巧的重要环节。

以下是一些结构力学课后习题的参考答案,供学习者参考:第一章:结构力学基础1. 静定结构与超静定结构的区别:静定结构是指在已知外力作用下,其内力和位移可以通过静力平衡方程和几何关系唯一确定的结构。

超静定结构则是指静力平衡方程和几何关系不足以唯一确定其内力和位移的结构。

2. 弯矩图的绘制方法:绘制弯矩图首先需要确定结构的支反力,然后通过截面平衡条件,逐步求出各截面的弯矩值,并将其绘制成图形。

第二章:静定梁的内力分析1. 简支梁的内力计算:对于简支梁,可以通过静力平衡条件和截面平衡条件来计算梁的内力,包括剪力和弯矩。

2. 悬臂梁的内力计算:悬臂梁的内力计算需要考虑梁端的外力和力矩,通过静力平衡条件求解。

第三章:静定桁架的内力分析1. 节点法的应用:节点法是通过在桁架的节点上施加平衡条件来求解节点的反力,进而求得杆件的内力。

2. 截面法的应用:截面法是通过选取桁架的某一截面,对该截面进行平衡分析,求得截面两侧杆件的内力。

第四章:静定拱的内力分析1. 三铰拱的内力计算:三铰拱的内力计算通常需要利用静力平衡条件和几何关系,计算出拱的反力和弯矩。

2. 双铰拱和无铰拱的内力特点:双铰拱和无铰拱的内力计算更为复杂,需要考虑更多的平衡条件和几何关系。

第五章:超静定结构的内力分析1. 力法的应用:力法是通过建立力的平衡方程来求解超静定结构的内力,通常需要引入多余未知力。

2. 位移法的应用:位移法是通过建立位移的平衡方程来求解超静定结构的内力,通常需要引入位移未知数。

第六章:结构的稳定性分析1. 欧拉临界载荷的计算:欧拉临界载荷是指细长杆件在轴向压力作用下失稳的临界载荷,可以通过欧拉公式计算。

2. 非线性稳定性分析:对于非线性问题,稳定性分析需要考虑材料的非线性特性和几何非线性,通常需要采用数值方法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)(d-1)(d-2)(d-3)解原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)解原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C组成了一个以C为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)解原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

1-1 (h)解原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。

因此,可以只分析余下部分的内部可变性。

这部分(图(h-1))可视为阴影所示的两个刚片用一个杆和一个铰相连,是一个无多余约束几何不变体系。

因此,原体系为几何不变体系,且无多余约束。

1-1 (i)(i-1)解这是一个分析内部可变性的题目。

上部结构中,阴影所示的两个刚片用一个铰和一个链杆相连(图(i-1))。

因此,原体系为几何不变体系,且无多余约束。

1-1 (j)解去掉原体系中左右两个二元体后,余下的部分可只分析内部可变性(图(j-1))。

本题中杆件比较多,这时可考虑由基本刚片通过逐步添加杆件的方法来分析。

首先将两个曲杆部分看成两个基本刚片(图(j-2))。

然后,增加一个二元体(图(j-3))。

最后,将左右两个刚片用一个铰和一个链杆相连(图(j-4)),组成一个无多余约束的大刚片。

这时,原体系中的其余两个链杆(图(j-5)中的虚线所示)都是在两端用铰与这个大刚片相连,各有一个多余约束。

因此,原体系为几何不变体系,有两个多余约束。

1-2分析图示体系的几何组成。

1-2 (a)解本例中共有11根杆件,且没有二元体,也没有附属部分可以去掉。

如果将两个三角形看成刚片,选择两个三角形和另一个不与这两个三角形相连的链杆作为刚片(图(a-1))。

则连接三个刚片的三铰(二虚、一实)共线,故体系为几何瞬变体系。

1-2 (b)解体系中有三个三角形和6根链杆,因此,可用三刚片规则分析(图(b-1)),6根链杆构成的三个虚铰不共线,故体系为几何不变体系,且无多余约束。

1-2 (c)Ⅰ解本例中只有7根杆件,也没有二元体或附属部分可以去掉。

用三刚片6根链杆的方式分析,杆件的数目又不够,这时可以考虑用三刚片、一个铰和4根链杆方式分析(图(c-1)),4根链杆构成的两个虚铰和一个实铰不共线,故体系为几何不变体系,且无多余约束。

1-2 (d)ⅢⅠ解本例中有9根杆件,可考虑用三刚片6根链杆的方式分析。

因为体系中每根杆件都只在两端与其它杆件相连,所以,选择刚片的方案比较多,如图(d-1)和(d-2)所示。

因为三个虚铰共线,体系为瞬变体系。

第2章习题2-1 试判断图示桁架中的零杆。

2-1(a)解 静定结构受局部平衡力作用,平衡力作用区域以外的构件均不受力。

所有零杆如图(a-1)所示。

2-1 (b)解 从A 点开始,可以依次判断AB 杆、BC 杆、CD 杆均为无结点荷载作用的结点单杆,都是零杆。

同理,从H 点开始,也可以依次判断HI 杆、IF 杆、FD 杆为零杆。

最后,DE 杆也变成了无结点荷载作用的结点D 的单杆,也是零杆。

所有零杆如图(b-1)所示。

2-1(c)解该结构在竖向荷载下,水平反力为零。

因此,本题属对称结构承受对称荷载的情况。

AC、FG、EB和ML均为无结点荷载作用的结点单杆,都是零杆。

在NCP三角形中,O结点为“K”结点,所以F N OG=-F N OH(a)同理,G、H结点也为“K”结点,故F N OG=-F N GH(b)F N HG=-F N OH(c)由式(a)、(b)和(c)得F N OG=F N GH=F N OH=0同理,可判断在TRE三角形中F N SK=F N KL=F N SL=0D结点也是“K”结点,且处于对称荷载作用下的对称轴上,故ID、JD杆都是零杆。

所有零杆如图(c-1)所示。

第3章EI为常解由图(a)、(b)可知结构在单位力和荷载作用下的内力都是对称的,所以可只对一半进行积分然后乘以2来得到位移。

令内侧受拉为正,则()P P sin 0,21cos 2M R F M R θπθθ⎧=⎪⎡⎤∈⎨⎢⎥=-⎣⎦⎪⎩代入公式,得()()P P203P P 2d 2d 2sin 1cos d • 22Bx MM MM s sEI EIF F R R R R EI EIππ∆θθθ==⋅=⋅-=→∑⎰⎰⎰* 3-2 图示柱的A 端抗弯刚度为EI ,B 端为EI /2,刚度沿柱长线性变化。

试求B 端水平位移。

解 以左侧受拉为正,则[]30P 0,6M x x l q x M l ⎧=⎪∈⎨=⎪⎩代入公式,得3400P001d d 630ll Bxq x q l MM s x x EI EI l EI ∆==⋅⋅⋅=⎰⎰第4章4-1 试确定下列结构的超静定次数。

解去掉7根斜杆,得到图(a-1)所示静定结构。

因此,原结构为7次超静定。

解 去掉一个单铰和一个链杆,得到图(b-1)所示静定结构。

因此,原结构为3次超静定。

第5章5-1 试确定图示结构位移法的基本未知量。

解5-2 试用位移法作图示刚架的M 图。

第六章 习题6-1用静力法作图示梁的支杆反力3R R2R1F F F 、、及内力k M 、Q N K K F F 、的影响线。

第8章8-1 试确定图示体系的动力分析自由度。

除标明刚度杆外,其他杆抗弯刚度均为EI 。

除(f)题外不计轴向变形。

1M 图习题 8-1图解(a)3,(b)2,(c)1,(d)2,(e)4,(f)4,(g)3,(h)1,(i)48-2 试确定图示桁架的自由度。

习题8-2图解 7P 1F x解:(1)反力影响线R323()52F x l l =-R1R 2(4)5xF F l==- (2)K 截面的内力影响线R3R3Q R3N 33123553130K K K F lx l M x l x l F x l F F x lF ≤⎧⎪=⎨-+>⎪⎩-≤⎧=⎨->⎩=第7章8-1 试确定图示体系的动力分析自由度。

除标明刚度杆外,其他杆抗弯刚度均为EI。

除(f)题外不计轴向变形。

习题 8-1图解(a)3,(b)2,(c)1,(d)2,(e)4,(f)4,(g)3,(h)1,(i)48-2 试确定图示桁架的自由度。

习题8-2图解 7第一章 平面体系的几何组成分析一、是非题1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。

2、图中链杆1和2的交点O可视为虚铰。

123453、在图示体系中,去掉1—5,3—5, 4—5,2—5,四根链杆后, 得简支梁12 ,故该体系为具有四个多余约束的几何不变体系 。

1234 54、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系 ,因而可以用作工程结构。

5、有多余约束的体系一定是几何不变体系。

6、图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。

7、计算自由度W小于等于零是体系几何不变的充要条件。

8、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。

9、在图示体系中,去掉其中任意两根支座链杆后,所余下部分都是几何不变的。

二、选择题图示体系的几何组成为:A.几何不变,无多余约束; B.几何不变,有多余约束;C.瞬变体系; D.常变体系。

1、 2、3、 4、三、分析题:对下列平面体系进行几何组成分析。

1、 2、ACDBACDB5、 6、ACD BEABCDGEF7、 8、ABCDEA BCDEFGHK9、 10、13、 14、15、 16、17、 18、1245321、 22、123456781234523、 24、12345625、 26、29、 30、31、 32、33、 34、BA CFDE四、在下列体系中添加支承链杆或支座,使之成为无多余约束的几何不变体系。

1、 2、A3、第一章平面体系的几何组成分析(参考答案)一、是非题:1、(O)2、(X)3、(X)4、(X)5、(X)6、(X)7、(X)8、(O)9、(X)二、选择题:1、(B)2、(D)3、(A)4、(C)三、分析题:3、6、9、10、11、12、14、17、18、19、20、22、23、25、27、28、30、31、32、33、34均是无多余约束的几何不变体系。

1、2、4、8、13、29 均是几何瞬变体系。

5、15 均是几何可变体系。

7、21、24、26 均是有一个多余约束的几何不变体系。

16 是有两个多余约束的几何不变体系。

第二章静定结构内力计算一、是非题1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。

2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。

3、静定结构的几何特征是几何不变且无多余约束。

4、图示结构||MC=0。

5、图示结构支座A转动ϕ角,M AB= 0,R C = 0。

B Ca aAϕ2a26、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。

7、图示静定结构,在竖向荷载作用下,AB是基本部分,BC是附属部分。

A B C8、图示结构B支座反力等于P/2()↑。

9、图示结构中,当改变B点链杆的方向(不通过A铰)时,对该梁的影响是轴力有变化。

AB10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。

11、图示桁架有9根零杆。

12、图示桁架有:N1=N2=N3= 0。

相关文档
最新文档