福大结构力学课后习题详细答案
结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)EIEI EI 2EI2EI1个角位移 3个角位移,1个线位移 4个角位移,3个线位移(d) (e) (f)EI 1=∞EAEIEI 1=∞3个角位移,1个线位移 2个线位移 3个角位移,2个线位移(g) (h) (i)k一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。
(a)lACD i iiq解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。
11r 11Z 3i 4i2i ii1M 图1pR 213ql216qlp M 图(2)位移法典型方程11110p r Z R (3)确定系数并解方程iql Z ql iZ ql R i r p24031831,821212111(4)画M 图2724ql 2524qlM 图218ql 216ql (b)4m ADB 10kNEI 2EI2.5kN/m EI解:(1)确定基本未知量1个角位移未知量,各弯矩图如下11r 11Z 1M 图32EI EI12EI 590p M 图(2)位移法典型方程11110pr Z R (3)确定系数并解方程1115,352pr EI R 153502EIZ 114Z EI(4)画M 图()KNm M 图2640147(c) F P解:(1)确定基本未知量一个线位移未知量,各种M 图如下11r 1M 图11Z 27EI 227EI 27EI 1243EI2243EI1243EI p M 图pF 1pR (2)位移法典型方程11110pr Z R (3)确定系数并解方程1114,243p pr EI R F 140243p EIZ F 12434Z EI(4)画M 图94pF 94pF 92p F M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z2/25EA a4/25EA a11r 1M 图25EA11r 1M 图2/25EA a 2/25EA a 简化图1p R pF pF 45a35a15a pM(2)位移法典型方程11110pr Z R (3)确定系数并解方程11126/,55p p r EA a R F 126055pEA Z F a13a Z EA(4)画M 图a 2a a 2aaEAEAABCDEFF PF PEI 1=∞图M 0.6p F ap F a1.2p F 0.6pF (e)解:(1)确定基本未知量两个线位移未知量,各种M 图如下图11Z 11r 21r 112121424EA r lEA r l1M 2EA lEA l图21Z 12r 22r 22214EA r l2M 2EA lEA lllEAABCDEAEAF P图120p p pR F R p M 1pR pF 0(2)位移法典型方程1111221211222200p pr Z r Z R r Z r Z R (3)确定系数并解方程1112212212221,44214,0pp p EA EA r r r l lEA r lR F R 代入,解得121222121212ppl Z F EA lZ F EA(4)画M 图图M 122212pF 2212pF 1212pF 7-6 试用位移法计算图示结构,并绘出M 图。
结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)7- 327- 33一个角位移,一个线位移 一个角位移,一个线位移 三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。
(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。
lll7- 34Z 1M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m4m 4m7- 35解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KNm M ⋅图(c)6m6m9m7- 36解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图7- 3794M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a2a a2aa F P7- 38图1pR pp M(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l7- 39解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M p(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程7- 4011122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。
《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March20 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
Aa a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。
2121二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。
(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。
lllZ 1M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m4m 4m解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程1115,352p r EI R ==-153502EIZ -=114Z EI=(4)画M 图()KN m M ⋅图(c) 9m解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程1114,243p p r EI R F ==-140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a 2aa2a aF P图1pR pp M(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程11126/,55p p r EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程11122122121,4414,0p p p EA r r r l l EA r l R F R ⎛⎫=+== ⎪⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。
福大结构力学课后习题详细答案[祁皑].._副本
![福大结构力学课后习题详细答案[祁皑].._副本](https://img.taocdn.com/s3/m/772b5cbb0975f46526d3e113.png)
结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。
1-1(a)解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (c)(c-1)(a )(a-1)(b )(b-1)(b-2)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二元体中有的是变了形的,分析要注意确认。
1-1 (e)解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)(d )(e )(e-1)ABCAB (e-2)(f )(f-1)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
因此,原体系为几何不变体系,且无多余约束。
结构力学习题及答案

构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。
假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。
题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。
〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。
〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。
习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。
(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。
结构力学_福州大学中国大学mooc课后章节答案期末考试题库2023年

结构力学_福州大学中国大学mooc课后章节答案期末考试题库2023年1.用矩阵位移法求解图示刚架时,其结构的综合结点荷载列阵为:{F}={40.5kN·m 31.5kN·m 72kN }T。
()【图片】答案:正确2.该体系为几何()体系,有()个多余约束,缺()必要约束。
备注:第1个空格填“不变、瞬变、可变”字样,第2个、第3个空格填数字。
三个答案之间用“,”号分隔,每空2分。
【图片】答案:不变,0,03.图示连续梁,用力矩分配法求得杆端弯矩MBC= -M/2。
()【图片】答案:错误4.用力矩分配法计算图示结构时,BC杆的分配系数是:();【图片】答案:16/25,5.在力矩分配法的计算中,当放松某个结点时,其余结点所处状态为:()答案:相邻结点锁紧6.在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。
()答案:正确7.用力矩分配法计算结构时,汇交于每一结点各杆端力矩分配系数总和为1,则表明力矩分配系数的计算绝对无错误。
()答案:错误8.结构体系的计算自由度。
答案:一定小于等于实际自由度。
9.瞬变体系不能做为常规工程结构的原因是。
答案:约束的位置不对;10.图示结构中B结点的不平衡力矩(约束力矩)为:()【图片】答案:-1kNm11.图示结构中,当结点B作用外力偶M时,用力矩分配法计算得MBA等于:()【图片】答案:2M/512.真实的结构是。
答案:可能是没有多余约束的几何不变体系,或者是有多余约束的几何不变体系。
13.图示连续梁用力矩分配法求得AB杆B端的弯矩是:()【图片】答案:6kNm14.二元体的含义是。
答案:从一个单铰出发的两个不共线的刚片,只在远端与其它体系相连。
15.该体系为几何()体系,有()个多余约束,缺()必要约束。
备注:第1个空格填“不变、瞬变、可变”字样,第2个、第3个空格填数字。
三个答案之间用“,”号分隔,每空2分。
结构力学课后习题答案[1]
![结构力学课后习题答案[1]](https://img.taocdn.com/s3/m/8c0493dc80eb6294dd886c23.png)
)e( 移位线个 1�移位角个 3 移位角个 1
)d(
)c(
。构结本基出绘并�目数量知未本基法移位的构结示图定确试 1-7
)b(
) a(
题
习
33 -7
下如图矩弯各�量知未移位角个 1 m4 m4
量知未本基定确�1� �解 C IE
m4
D Nk01
IE
B
IE2 m/Nk5.2
A )b(
图M
42 lq 2 5
图矩弯终最画�4� 得解�入代
61.53
IE
3
0 � p 2 R , 0 3 � p 1R 6 � 2 2r IE � 1 2r � 2 1r , I E 2 � 1 1r
程方解并数系定确�3�
p2
11
1
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
N K 0 3 � � p 2 R , N K 0 3 � p 1R 4 � � 2 2r 0 � 1 2r � 2 1r , i1 1 � 1 1r
p2
得解�入代
i3
程方解并数系定确�3�
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
程方型典法移位�2�
程方型典法移位�2�
0�
p1
图p M
03 � p 1R � 0 � p 1R
03
04 -7
m2
m2 数常=IE F
B E
m2
m2
D
A
m2
Nk03
C )c(
90.92 55.43
图M
81.8 19.02 54.57 02
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大刚片。这时,原体系中的其余两个链杆(图(j-5)中的虚线所示)都是在两端用铰
与这个大刚片相连,各有一个多余约束。因此,原体系为几何不变体系,有两个多余 约束。
1-2分析图示体系的几何组成。
1-2 (a)
I
(a-1)
解本例中共有11根杆件,且没有二元体,也没有附属部分可以去掉。如果将两
此,原体系为几何不变体系,且无多余约束。
1-1 (g)
(g-2)
解原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变 体系的组成规律。因此,可以将该刚片和相应的约束去掉,只分析其余部分。余下的 部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。因此,原体
系为几何不变体系,且无多余约束。
1-1 (h)
解原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。 因此,可以只分析余下部分的内部可变性。这部分(图(h-1))可视为阴影所示的两
个刚片用一个杆和一个铰相连,是一个无多余约束几何不变体系。因此,原体系为几 何不变体系,且无多余约束。
解 这是一个分析内部可变性的题目。上部结构中,阴影所示的两个刚片用一个
结构力学(祁皑)课后习题详细答案
解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。因此,原体系为几
何不变体系,且有一个多余约束。
1- 1 (b)
解 原体系依次去掉二元体后,得到一个三角形。因此ห้องสมุดไป่ตู้原体系为几何不变体系,
且无多余约束。
1-1 (c)
(c-3)
解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,
个三角形看成刚片,选择两个三角形和另一个不与这两个三角形相连的链杆作为刚片
(图(a-1))。则连接三个刚片的三铰(二虚、一实)共线,故体系为几何瞬变体系。
1-2 (b)
(b-1)
且无多余约束。
1-1 (d)
解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。因
此,原体系为几何不变体系,且无多余约束。注意:这个题的二元体中有的是变了形 的,分析要注意确认。
解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。在该体系中,阴影
所示的刚片与支链杆C组成了一个以C为顶点的二元体,也可以去掉,得到(e-2)
所示体系。在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一 个几何可变体系,缺少一个必要约束。因此,原体系为几何可变体系,缺少一个必要 约束。
1-1 (f)
解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相 连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉只分析其 余部分。很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。因
铰和一个链杆相连(图(i-1))。因此,原体系为几何不变体系,且无多余约束。
解 去掉原体系中左右两个二元体后,余下的部分可只分析内部可变性(图
(j-1))。本题中杆件比较多,这时可考虑由基本刚片通过逐步添加杆件的方法来分析。 首先将两个曲杆部分看成两个基本刚片(图(j-2))。然后,增加一个二元体(图(j-3))。