七年级下册数学经典练习题
七年级下册数学小练

七年级下册数学小练一、有理数的运算。
1. 计算:(-3)+5 (-2)嘿呀,这有理数的加减法就像在数字的小世界里玩游戏呢。
先看这个-3 + 5,就好比你欠了3块钱,然后又赚了5块钱,那你现在就有2块钱啦,也就是(-3)+5 = 2。
再看后面的(-2),这两个负号就像两个小磁铁,碰到一起就变成正的了,所以就相当于加2。
那最后的结果就是2 + 2 = 4。
2. 计算:(-2)×3 (-4)÷2咱先算乘法和除法。
(-2)×3呢,就像你有2个倒霉事,每个倒霉事的程度是3,那你就一共倒霉了6,也就是(-2)×3=-6。
再看(-4)÷2,你有4个东西,要平均分给2个人,每人就得到2个,但是因为是负数除以正数,所以结果是-2。
最后把这两个结果相减,-6 (-2),又遇到这两个负号变正号的情况啦,就相当于-6 + 2,那就是欠了6块钱,还了2块钱,还欠4块钱,所以结果是-4。
二、整式的加减。
1. 化简:3a + 2b 5a b这整式的加减就像是整理小盒子里的东西。
先看有3a和-5a,这就像有3个红色小球和5个蓝色小球(假设红色代表正,蓝色代表负),合起来就是-2a。
再看2b和-b,2个大糖果和1个小糖果(同样大的代表正,小的代表负),合起来就是b。
所以最后化简的结果就是-2a + b。
2. 先化简,再求值:(2x² 3xy + 4y²)-3(x² xy + (5)/(3)y²),其中x = -2,y = 1首先来化简这个式子。
把括号打开就像拆礼物盒一样。
第一个括号里的东西都不用变,第二个括号里的每一项都要乘以3,就变成了2x² 3xy + 4y²-3x²+3xy 5y²。
然后再把同类项合并,2x²和-3x²是同类项,合起来就是-x²;-3xy和3xy就像两个一样大但是方向相反的力,互相抵消了;4y²和-5y²合起来就是-y²。
七年级下册数学题100道计算题

由于数学题的字符是要输入的,因此无法计算题目字符数量。
我可以为您提供一些数学题,但无法保证您要求的数量。
以下是一些七年级下册的数学题:1.计算:18+4÷2=2.简化:12÷6×4=3.求解:3x+5=14,求x的值。
4.计算:32-17÷3=5.简化:24÷8×2=6.求解:4y-6=10,求y的值。
7.计算:15+8-6=8.简化:18÷9×5=9.求解:2m+9=25,求m的值。
10.计算:75-12+9=11.简化:36÷6×7=12.求解:5n-8=22,求n的值。
13.计算:18-3×2=14.简化:9÷3×5=15.求解:7p+4=25,求p的值。
16.计算:24-5+3=17.简化:45÷9×6=18.求解:8q+7=39,求q的值。
19.计算:32÷8×4=20.简化:28÷7×3=21.求解:6r+2=20,求r的值。
22.计算:28-4×3=23.简化:48÷6×2=24.求解:9s+6=33,求s的值。
25.计算:54-7+8=26.简化:63÷9×5=27.求解:7t+3=38,求t的值。
28.计算:36-4×5=29.简化:72÷9×4=30.求解:4u+14=42,求u的值。
这只是其中的一部分题目,如果您还需要更多题目,请告知我需要的数量。
七年级下册计算题50道

七年级下册计算题50道1. 计算:公式解析:同号两数相加,取相同的符号,并把绝对值相加。
公式2. 计算:公式解析:减去一个数,等于加上这个数的相反数。
公式3. 计算:公式解析:两数相乘,异号得负,并把绝对值相乘。
公式4. 计算:公式解析:先通分,化为同分母分数再相加。
公式5. 计算:公式解析:负数的奇次幂是负数,底数不变,指数相乘。
公式6. 计算:公式解析:先算乘方,再算减法。
公式7. 计算:公式解析:先求绝对值,再计算减法。
公式8. 计算:公式解析:两数相除,同号得正,并把绝对值相除。
公式9. 计算:公式解析:先算乘方,再算乘法,最后算加减。
公式10. 计算:公式解析:通分计算。
公式11. 计算:公式解析:两数相乘,同号得正,并把绝对值相乘。
公式12. 计算:公式解析:先算乘方,再算除法。
公式13. 计算:公式解析:通分计算。
公式14. 计算:公式解析:任何非零数的 2020 次幂都是 1,0 加任何数都得原数。
公式15. 计算:公式解析:先求绝对值,再计算减法。
公式16. 计算:公式解析:先算乘方,再算乘法。
公式17. 计算:公式解析:两数相乘,异号得负,并把绝对值相乘。
公式18. 计算:公式解析:除以一个数等于乘以这个数的倒数。
公式19. 计算:公式解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
公式20. 计算:公式解析:先算乘方,再算减法。
公式。
江苏盐城中学七年级数学下册第七章【平面直角坐标系】经典习题(培优专题)

一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 2.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)3.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( ) A .(-3,6) B .(-6,3) C .(3,-6) D .(8,-3) 4.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交5.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,6.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)8.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5) D.(1,3)或(5,1)9.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2), ,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部四号暗堡的坐标为(2,4)的位置大约是()A.A处B.B处C.C处D.D处10.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A .44B .45C .46D .4711.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.14.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.15.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 18.已知点A(3a ﹣6,a+4),B(﹣3,2),AB ∥y 轴,点P 为直线AB 上一点,且PA =2PB ,则点P 的坐标为_____.19.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.20.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__. 21.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题22.已知:△A 1B 1C 1三个顶点的坐标分别为A 1(﹣3,4),B 1(﹣1,3),C 1(1,6),把△A 1B 1C 1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC ,且点A 1的对应点为A ,点B 1的对应点为B ,点C 1的对应点为C .(1)在坐标系中画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求点P 的坐标.23.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标24.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,56.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上8.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上 9.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)10.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____. 16.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.17.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__18.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.三、解答题22.在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点'A 的坐标是()2,2-,现将三角形ABC 平移,使点A 变换为点'A ,点'B 、'C 分别是B 、C 的对应点.(1)请画出平移后的三角形'''A B C (不写画法),并写出点'B 、'C 的坐标; (2)求三角形ABC 的面积.23.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)25.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)3.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 4.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 11.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行 D .平行、垂直相交二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.平面直角坐标系中,已知点P到x轴的距离为2,到y轴的距离为3,且点P在第二象限,则点P的坐标是__________.14.在x轴上方的点P到x轴的距离为3,到y轴距离为2,则点P的坐标为________.15.如图所示的坐标系中,单位长度为1 ,点B的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上,点P 也在格点上,ADP△的面积与四边形ABCD 的面积相等,写出所有点P 的坐标_____________.(不超出格子的范围)16.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.17.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.19.点3(2,)A -到x 轴的距离是__________.20.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?24.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.。
初一下册数学练习题及答案

初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方根是3,那么这个数是______。
答案:27三、计算题1. 计算下列各题,并写出计算过程。
(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。
证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。
2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。
2. 一个水池的长是15米,宽是10米,求水池的面积。
答案:水池的面积为长×宽=15×10=150平方米。
通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。
希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。
七年级下册数学练习题精选

七年级下册数学练习题七年级下册数学练习题精选一、选择题1、取质量相同的砂土、粘土和壤土,分别放入大烧杯中加水搅拌,其中颗粒沉降最快( )A、砂土B、粘土C、壤土2、在农业措施中,排灌对土壤的( )影响最大。
A、矿物质B、腐殖质C、水分D、空气3、下列土壤中肥力最大的是( )A、砂土B、粘土C、壤土4、土壤形成时具有下列哪个特征( )A、岩石风化B、最低等生物出现C、有地衣、苔藓植物出现D、森林和草原的出现5、占土壤固体物质质量约5%的是( )A、矿物质B、腐殖质C、水分D、空气6、植物最容易发生缺水现象的土壤是( )A、砂土B、粘土C、壤土7、下列关于砂土叙述正确的是( )A、通气性能好,保水性能差B、通气性能差,保水性能好C、通气性能差,保水性能差D、通气性能好,保水性能好8、长期单一使用化肥会破坏土壤,下列不属于使用单一化肥引起的是( )A、团粒结构破坏B、土壤容易板结C、腐殖质得到补充D、土壤容易积水9、关于植物对土壤的保护作用叙述错误的是( )A、植物的根能把土壤颗粒紧紧地粘在一起B、植物的树冠能减缓雨水对土壤的冲击C、茎叶能减缓土壤的腐殖质形成D、植物能减小风力对土壤的侵蚀10、下列不属于黄土高原水土治理的措施是( )A、开荒种地B、退耕还草C、打坝淤地D、修筑梯田11、下列不属于塑料地膜有害影响的是( )A、土壤渗水透气B、作物根系生长C、保持土壤温度D、机械作业12、下列防治土壤污染的措施中,正确的'是( )A、控制和消除工业“三废”的排放B、禁止化学农药的使用C、只能少量使用化学肥料D、禁止污水灌溉二、填空题1、土壤中的矿物质由形成的,腐殖质由在土壤表层中经过一系列复杂的分解,转化而成的。
2、我国耕地质量总体不高,分析下列土壤要以通过改变什么成分来提高土壤质量。
⑴发生龟裂的土壤;⑵沼泽地;⑶缓坡上的梯田。
3、人类开垦利用土壤,栽种各种作物,获得及各种工农业生产的。
4、高山、平原、洼地、沿海和内陆的不同地区生长着不同的天然植物,这说明植物与土壤有怎样的关系。
七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
(2) 求一年中进入该园林至少超过多少次时,购买 A 类年票比较合算。
例 1 某班有 50 人,其中三好学生 10 人,优秀学生干部 5 人,在扇形统计
图上表示三好学生和优秀学生干部人数的圆心角分别是 (
)
A . 720 , 360
B . 1000 , 500
相邻的一个内角的 2 倍,则这个三角形各角的度数为 ( ) 。
A .450、 450、900 B .300、 600、900
C.250、 250、1300 D .360、 720、 720
例4
已知如图, 求∠A+∠B+∠C+∠D+∠E+∠F 的度
数。
B
C
D
1
A
2
E B
A F
E
C D
例5
如图,AB∥ CD,EF分别与 AB、CD交于 G、H,MN⊥AB于 G,∠CHG=124
个数是(
) 个.
(A)1
(B)2
(C)3
(D)4
例 5 在直角坐标系中,已知 A(-4 ,0) 、B(1, 0)、 C(0, -2) 三点.请按以 下要求设计两种方案:作一条与 轴不重合,与△ ABC的两边相交的直线,使
截得的三角形与△ ABC相似,并且面积是△ AOC面积的 .分别在下面的两个 坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。
七年级下册数学经典练习题
例5
已知关于 x、y 的
的解满足二元一次
例1 当x
时,代数代 2-3x 的值是正数。
例 2 一元一次不等式组的
解集是 (
)
A.-2 < x<3
B .-3
<x<2
C. x <
-3
D. x
<2
例 3 已知方程组
的解为负数,求 k 的取值范围。
例4
某种植物适宜生长在温度为 18℃~20℃的山区,已知山区海拔每升
例4
如图,面积为 12cm2的△ABC向 x 轴正方向平移至△ DEF的位置,相
应的坐标如图所示( a, b 为常数),
(1)、求点 D、E 的坐标
(2)、求四边形 ACED的面积。
七年级下册数学经典练习题
例5
过两点 A(3,4) ,B(-2 , 4)作直线 AB,则直线 AB( )
A、经过原点
B
C . 1200 ,
600
D .800, 400
例 2 某音乐行出售三种音乐 CD ,即古典音乐、流行音乐、民族音乐,为了
表示这三种音乐唱片的销售量的百分比,应该用 (
)
A.扇形统计图
B .折线统计图
C .条形统计图
D .以上都可
七年级下册数学经典练习题
以 例 3 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的 频数分布表:
⑴已知最后一组( 89.5-99.5 )出现的频率为 15 %,则这一次抽样调查的容 量是________ .
⑵第三小组( 69.5~79.5 )的频数是 _______,频率是 ________. 例 4 如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列 问题:
⑴病人的最高体温是达多少? ⑵什么时间体温升得最快?
、平行于 y 轴
C、平行于 x 轴
D 、以上说法都不对
例 2 如图,结合图形作出了如下判断或推理:
①如图甲, CD⊥ AB,D为垂足,那么点 C到 AB的距离等于 C、D两点间
的距离;
②如图乙,如果 AB∥CD,那么∠ B=∠D ; ③如图丙,如果∠ ACD=∠ CAB,那么 AD∥ BC;
④如图丁,如果∠ 1=∠2,∠D=120°,那么∠ BCD=60°.其中正确的
七年级下册数学经典练习题
例 1 如图,直线 AB,CD,EF相交于点 O,∠AOE=5°4 ,∠EOD=9°0 ,求∠EOB, ∠ COB的度数。
例 2 如图 AD平分∠ CAE,∠B = 350°,∠ DAE=600°,
E A
那么∠ACB等于多少?
B
C
D
例 3 三角形的一个外角等于与它相邻的内角的 4 倍,等于与它不
例 5 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的 频数分布表:
七年级下册数学经典练习题
⑴已知最后一组( 89.5~99.5 )出现的频率为 15 %,则这一次抽样调查的容 量是________ .
七年级下册数学经典练习题
三、经典例题 例 1 用加减消元法解方程组,
例2
如果
A 、 =-3, =2
=2, =-3
C 、 =-2, =3
=3, =-2
例 3 计算:
是同类项,则 、 的值是(
) B、
D、
例 4 王大伯承包了 25 亩土地, 今年春季改种茄子和西红柿两种大棚蔬菜, 用去了 44000 元。其中种茄子每亩用了 1700 元,获纯利 2400 元;种西红柿每 亩用了 1800 元,获纯利 2600 元。问王大伯一共获纯利多少元?
A、B、C 三类: A 类年票每张 120 元,持票者进入园林时,无需再用门票; B
类年票每张 60 元,持票者进入该园林时,需再购买门票,每次 2 元;C 类年
票每张 40 元,持票者进入该园林时,需再购买门票,每次 3 元。
(1) 如果你只选择一种购买门票的方式,并且你计划在一年中用
80 元花在
高 100 米,气温下降 0。5℃,现在测出山脚下的平均气温为 22℃,问该植物
种在山的哪一部分为宜?(假设山脚海拔为 0 米)
七年级下册数学经典练习题
例5
某园林的门票每张 10 元,一次使用,考虑到人们的不同需求,也为
了吸引更多的游客, 该园林除保留原来的售票方法外, 还推出了一种 “购买个
人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分
,0 则∠EGM等于多少度?
M E
A
GB
CH F
N
D
七年级下册数学经典练习题
例1
一个机器人从 O点出发,向正东方向走 3 米到达 A1点,再向正北方
向走 6 米到达 A2点,再向正西方向走 9 米到达 A3 点,再向正南方向走 12 米
到达 A4 点,再向正东方向走 15 米到达 A5? 点,如果 A1 求坐标为( 3, 0),
求点 A5? 的坐标。
例2
如图是在方格纸上画出的小旗图案,若用 (0 ,0) 表示 A 点,(0 ,4)
表示 B 点,那么 C点的位置可表示为 ( )
B
A、(0 ,3) B 、(2 ,3) C 、 (3, 2) D 、 (3, 0)
C
A
例2
例3
如图 2,根据坐标平面内点的位置,写出以下各点的坐标:
A( ) ,B( ) , C( ) 。