晶体硅太阳能电池结构与原理

合集下载

晶体硅太阳能电池结构及原理

晶体硅太阳能电池结构及原理

晶体硅太阳能电池的性能特点
晶体硅太阳能电池具有高效率、可靠性和长寿命的特点。它们在各种气候条 件下都能发电,并且能够在户用、商用和工业领域广泛应用。
晶体硅太阳能电池的发展趋势
晶体硅太阳能电池的发展正朝着更高效、更薄、更柔性和更具可持续性的方向发展。新的技术和材料正在被研 发,以提高晶体硅太阳能电池的性能并降低成本。
晶体硅太阳能电池的工作原理
晶体硅太阳能电池通过光电效应将太阳光转化为电能。当光子击中电池的表 面时,它们会激发硅中的电子。这些激发的电子会被电场收集,并沿电池的 电路产生电流。
晶体硅太阳能电池制造过程
晶体硅太阳能电池的制造过程包括多个步骤,如硅晶片的生长、切割和抛光,抗反射涂层的涂覆,电极的薄膜 沉积和加工,以及最终的封装和测试。
晶体硅太阳能电池的市场前景
随着对可再生能源的需求不断增加,晶体硅太阳能电池在未来的市场前景非 常广阔。它们被广泛应用于建筑、交通、通信和电力原理
晶体硅太阳能电池是最常见和广泛应用的太阳能电池类型之一。本节将介绍 晶体硅太阳能电池的基本结构和工作原理,以及其在能源行业的重要性和应 用。
晶体硅太阳能电池的基本结构
晶体硅太阳能电池由多个层次的组件构成,包括抗反射涂层、正极电极、硅 基底、负极电极和保护层。每个组件在电池的工作中扮演着不同的角色,使 得太阳能电能可以高效地转化为电能。

晶硅太阳能电池制造工艺-工艺流程以及工序简介

晶硅太阳能电池制造工艺-工艺流程以及工序简介
7.丝网印刷背电场
2)、工序简介
目前硅太阳能电池制造工序主要有:
制绒清洗工序 扩散工序 PECVD工序 丝网印刷工序 烧结工序 Laser刻蚀工序 测试分选工序
1. 制绒清洗工序
(a).单晶制绒---捷佳创
目的与作用:
(1)去除单晶硅片表面的机械损伤层和氧 化层。
(2)为了提高单晶硅太阳能电池的光电转 换效率,根据单晶硅的各向异性的特性, 利用碱(KOH)与醇(IPA)的混合溶液在单 晶硅表面形成类似“金字塔”状的绒面, 有效增强硅片对入射太阳光的吸收,从而 提高光生电流密度。
1)、硅太阳能电池的制造工艺流程:
清洗制绒
扩散
周边刻蚀
印刷电极PECVD去磷玻璃烧结分选测试
检验入库
1.原料硅片清洗制绒 12.测试分选
11.激光 10.烧 结 9.丝网印刷正电极 8.烘 干
2.高温扩散(液态扩散) 3.去磷硅玻璃(去PSG) 4.沉积减反射膜(PECVD)
5.丝网印刷背电极 6.烘 干
去除磷硅玻璃的目的、作用:
1. 磷硅玻璃的厚度在扩散中工艺难控制,且其工艺窗口太小,不稳 定。
2. 磷硅玻璃的折射率在1.5左右,比氮化硅折射率(2.07左右)小, 若磷硅玻璃较厚会降低减反射效果。
3. 磷硅玻璃中含有高浓度的磷杂质,会增加少子表面复合,使电池 效率下降。
2. 扩散(POCl3液态扩散)
(b). 多晶制绒---RENA InTex
3Si 2HNO3 18HF 3H2SiF6 0.45NO 1.35NO2 0.1N2O 4.25H2 2.75H2O
目的与作用:
(1)去除单晶硅片表面的机械损 伤层和氧化层。
(2)有效增加硅片对入射太阳光 的吸收,从而提高光生电流密度,提高 单晶硅太阳能电池的光电转换效率。

晶体硅太阳电池制造工艺原理

晶体硅太阳电池制造工艺原理

晶体硅太阳电池制造工艺原理晶体硅太阳电池的制造过程可谓是一场奇妙的科学之旅,真是让人眼花缭乱。

想象一下,阳光洒在大地上,能量在悄悄地流动。

我们要把这些阳光转化为电力,让我们的生活变得更加美好。

听起来是不是很神奇?晶体硅太阳电池就是这个过程的主角,仿佛是一个超级英雄,默默无闻却改变着世界。

今天就来聊聊这个小小电池的制造工艺,轻松有趣,不那么严肃。

咱们得从原料说起。

晶体硅,顾名思义,就是硅材料。

你可能会问,硅是什么?硅就是你手机里、电脑里那种闪闪发光的半导体材料。

它的来源可不少,地壳中硅的含量可是相当丰富,真的是取之不尽,用之不竭。

听起来好像很简单,但制作晶体硅可不是件容易事。

需要把原材料经过高温加热、熔炼,变成高纯度的硅。

这就像你在厨房做菜,火候掌握得当,才能做出一道美味的菜肴。

咱们要把这些高纯度的硅变成晶体。

通常有两种方法,分别是“Czochralski法”和“区熔法”。

这两个名字听起来高大上,其实也就是把硅加热到液态,然后慢慢冷却,让它自己结晶。

这个过程简直像是在看一场魔术表演,硅在温度的变化中,一点一点地形成晶体结构,犹如冰雪在阳光下融化成水,再慢慢结成冰。

晶体的质量和纯度直接关系到电池的效率,所以这个环节马虎不得。

晶体硅被切割成小小的硅片。

想象一下,厚厚的硅锭被切割得像切蛋糕一样,一片一片的,切得整整齐齐。

每一片都像是小小的太阳能接收器,准备好迎接阳光的洗礼。

切割后,硅片会被放入一个特殊的清洗池,彻底洗净,确保没有任何杂质。

这就像你在出门前认真打理自己的形象,确保看起来光鲜亮丽。

之后,硅片要经过一系列的掺杂工艺,这就像是在给电池“调味”。

掺杂就是在硅中加入一些其他的元素,像磷和硼,来改变它的电导性能。

这一步非常重要,因为晶体硅的电池能否高效工作,全靠这一招。

这种“调味”让硅片的电流变得更加流畅,简直就像是给水管疏通,让水流得更顺畅。

硅片就要涂上薄薄的一层抗反射膜,防止阳光反射出去。

听起来简单,但这可是个技术活,涂得太厚了反而不好,太薄了又不够用。

高效晶体硅太阳能电池介绍

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1)PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究的高效电池。

它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。

由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。

为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。

然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。

另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。

为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。

这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。

后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。

1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。

定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。

经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。

孔间距离也进行了调整,由2 mm缩短为250 µm,大大减少了横向电阻。

如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。

1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。

太阳电池的结构、工作原理及电性能表征参数

太阳电池的结构、工作原理及电性能表征参数

太阳电池的结构、工作原理及电性能表征参数院系XX学院班级XX姓名XX学号XXX太阳电池的结构、工作原理及电性能表征参数关键词:结构工作原理性能参数一、太阳电池的结构1、根据基质材料和扩散杂质的不同,太阳能电池基本结构分为两类:①基质材料为p型半导体光电材料:在p型基质材料表面形成n 型材料,制备p-n结,n型材料为受光面。

②基质材料为n型半导体光电材料:在n型基质材料表面形成p 型材料,制备p-n结,p型材料为受光面。

2、根据所用材料的不同,太阳能电池还可分为:晶硅电池、非晶硅电池、其他电池。

①晶硅电池在晶硅电池中,又有单晶硅电池和多晶硅电池。

其中单晶硅太阳能电池转换效率最高,技术也最为成熟。

高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。

现在单晶硅的电池工艺己近成熟,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。

相比之下,多晶硅薄膜太阳能电池节省了材料,使用的硅远较单晶硅少,又无效率衰退问题,其成本远低于单晶硅电池。

②非晶硅电池基于晶体硅的太阳能电池发展历史较早且技术比较成熟,在装机容量一直占据领先地位。

但是晶体硅太阳能电池降低成本的空间相当有限,很难达到人们期望值。

因此非晶硅太阳能电池益发得到世界国的重视。

非晶硅电池一般采用PECVD(等离子增强型化学气相沉积)方法使高纯硅烷等气体分解沉积而成的。

由于沉积分解温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积薄膜,易于大面积化生产,成本较低。

③其他电池除了晶硅和非晶硅电池以外,还有铜铟镓硒( CIGS)电池、砷化镓(GaAs)电池、碲化镉(CdTe)电池、染料敏化电池等。

二、工作原理1、p-n结一个掺入5价杂质的4价半导体,称为n型半导体。

其空穴数目很少,称为少数载流子;而电子数目很多,称为多数载流子。

一个掺入3价杂质的4价半导体,称为p型半导体。

《晶体硅太阳电池》课件

《晶体硅太阳电池》课件
晶体硅太阳电池在新能源 汽车领域用于充电设备和 车载电池充电。
晶体硅太阳电池存在的问题
成本高
目前晶体硅太阳电池的生产成本较高,限制了其大规模应用。
能源密度低
相比其他能源存储方式,晶体硅太阳电池的能源密度较低。
不能使用在阴天
晶体硅太阳电池对光线的依赖性较强,无法在阴天等光线较暗的环境中高效工作。
结论
《晶体硅太阳电池》PPT 课件
欢迎来到本课程《晶体硅太阳电池》的PPT课件。本课程将带您深入了解晶体 硅太阳电池的定义、特点、工作过程、应用以及存在的问题和发展前景。
什么是晶体硅太阳电池?
晶体硅太阳电池是一种利用硅材料制造的太阳能电池。它通过光的吸收、电 子释放、电子流动和电荷收集等过程将太阳能转化为电能。
1 晶体硅太阳电池是目前太阳能行业最主要的产品
晶体硅太阳电池作为最主要的太阳能电池产品,具有稳定性高、效率高、寿命长和可靠 性强的特点。
2 技术发展的不断提升
随着技术的不断发展,晶体硅太阳电池的性能将会不断提升,进一步推动太阳能行业的 发展。
晶体硅太阳电池的特点
稳定性高
晶体硅太阳电池具有较高的稳定性,能够在不同 环境条件下长时间稳定工作。
寿命长
晶体硅太阳电池的寿命长,能够持续工作多年, 不易损坏。
效率高
相比其他太阳能电池技术,晶体硅太阳电池具有 较高的电能转换效率。
可靠性强
晶体硅太阳电池具有较高的可靠性,能够适应各 种复杂的工作环境。
日本
日本在晶体硅太阳电池的研究 和生产方面处于领先地位。
中国
中国是全球最大的晶体硅太阳 电池生产国,具有较高的生产 能力。
晶体硅太阳电池的应用
1 光伏发电
晶体硅太阳电池广泛应用 于光伏发电系统,为清洁 能源供电。

晶硅单结电池-概述说明以及解释

晶硅单结电池-概述说明以及解释

晶硅单结电池-概述说明以及解释1.引言1.1 概述晶硅单结电池是一种基于晶体硅材料制造的太阳能电池,它利用光的能量转化为电能。

晶硅单结电池具有高效转化太阳能的特点,被广泛应用于太阳能发电系统中。

晶硅单结电池的工作原理基于光电效应。

当光线照射到晶硅单结电池的表面时,光子会激发晶体硅中的电子。

这些被激发的电子会从材料中释放出来,并在电场的作用下形成电流。

通过将两个不同掺杂的硅层连接在一起,形成一个p-n结。

当光子通过p-n结时,会产生电子和空穴对,并形成电流。

这样,晶硅单结电池就能将太阳能转化为电能。

制备晶硅单结电池的方法具有一定的复杂性。

首先,需要选择高质量的硅材料作为基底。

然后,通过在硅基底上加热和涂覆一层掺杂层,形成p-n结。

接下来,使用电子束蒸发或物理气相沉积等技术,在硅基底上镀上金属电极,以提供电流的输出通路。

最后,通过对制备好的晶硅单结电池进行分选和封装,保证其性能和稳定性。

晶硅单结电池在太阳能领域具有广泛的应用前景。

它可以作为光伏组件,广泛应用于屋顶太阳能发电系统、太阳能道路照明系统、太阳能灯饰等领域。

由于其高效能转换和长时间稳定工作的特点,晶硅单结电池也被用于航天器、卫星等领域的能源供应。

对于晶硅单结电池的展望,人们正在不断研究改进其制备工艺和提高其转换效率。

还有一些新型太阳能电池技术的出现,如多晶硅电池、钙钛矿太阳能电池等,对晶硅单结电池提出了一些竞争。

然而,晶硅单结电池作为已经商业化和应用广泛的太阳能电池技术,预计仍将持续发展和完善,为人类的清洁能源需求做出更大贡献。

1.2文章结构文章结构部分的内容可以包括以下内容:2. 文章结构本文共分为三个部分,即引言、正文和结论。

2.1 引言部分介绍了本文要讨论的主题——晶硅单结电池,并包含了概述、文章结构和目的三个小节。

2.2 正文部分着重介绍了晶硅单结电池的原理和制备方法,通过对其原理进行深入剖析和对制备方法进行介绍,使读者对晶硅单结电池有一个全面的了解。

晶体硅太阳能电池结构及原理

晶体硅太阳能电池结构及原理

晶体硅太阳能电池结构及原理1.衬底层:通常采用硅衬底,它是一个薄而坚固的基底,用于支撑整个电池。

2.P-N结:位于衬底层上方的是一个P-N结,它由P型硅层和N型硅层组成。

P型硅层向上注入杂质,使之成为P型半导体,N型硅层向下注入杂质,使之成为N型半导体。

P-N结的形成是通过在硅层中引入不同杂质原子,使得两侧形成不同的杂质浓度,从而形成P-N结。

3.金属网格:位于P型硅层和N型硅层之间的金属网格,通常采用铝作为材料。

金属网格的作用是收集通过P-N结产生的电子和空穴。

4.导电层:覆盖在金属网格上方的是导电层,它通常由透明的氧化锡或氧化铟锡薄膜组成,用于将电流导出。

5.防反射层:位于导电层上方的是防反射层,它通常由二氧化硅薄膜或其他适当的材料制成,用于提高光的吸收效率。

1.吸收光能:当光线照射到晶体硅太阳能电池上时,大部分光线将被引导进入P-N结内部,与P型硅层和N型硅层的杂质原子相互作用。

光能会使杂质原子中的电子被激发,跃迁到更高的能级上,形成自由电子和自由空穴。

2.分离电荷:自由电子和自由空穴会在P-N结内部被分离出来。

由于P型硅层中的杂质原子的排列方式,自由电子将被吸引到N型硅层,并向金属网格中流动,而自由空穴则被吸引到P型硅层,并向另一面流动。

3.电流输出:自由电子和自由空穴的运动形成了电流,这个电流可以通过金属网格和导电层导出。

通过在金属网格和导电层上连接线路,可以将电流输出到外部设备或储存电池中。

总之,晶体硅太阳能电池利用光的能量将其转化为电能。

通过P-N结的形成和光的吸收、电子和空穴的分离,最终形成电流输出。

这种电池结构简单、稳定,且具有较高的转化效率,因此被广泛应用于太阳能发电系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行。除了某些特殊情况外,晶向要求不十分严格。制成绒面太阳能电 池需要晶向为(100)的单晶硅片,在不要求太阳电池有很高转换效率的 场合下,位错密度和少子寿命不做严格要求。 4. 形状、尺寸、厚度
空间应用的硅太阳电池都为方形,以减少组合方阵的表面积。随着工 艺的进步,向大面积、薄厚度、高效率方向发展,目前标准的电池尺寸 是2x2cm2或2x4cm2等,基板厚度约为0.2mm.
原子序数14,相对原子质量28.09,有无定形和晶体两种同素异形体,属
于元素周期表上IVA族的类金属元素。
14Si
晶体硅为钢灰色,密度2.4 g/cm3,熔点1420℃,沸点2355℃,晶体硅属 于原子晶体,硬而有光泽,有半导体性质。

3.1 结晶硅太阳能电池的种类和结构
硅的基本性质 常温下,只与强碱、氟化氢、氟气反应
3. 结晶硅太阳能电池结构与原理
1
本章主要内容与学习目标
本章介绍典型晶体硅太阳能电池的结构及其原理。通过学习本章,学 生应了解以下内容:
1. 晶硅太阳能电池结构及其原理。 2. 晶硅太阳能电池高效结构设计及其原理。 3. 晶体硅高效率硅太阳能电池的发展。
2
3.1 结晶硅太阳能电池的种类和结构
硅的基本性质
10
3.1.2 结晶硅太阳能电池的结构
一般是P型衬底。P型衬底中的少数载流子电子的扩散系数与扩散距离 比N型中的少数载流子空穴要长,使用P型衬底可以得到较佳的光电流
2.电阻率 由原理可知,开路电压随着
硅基板电阻率的下降(掺杂浓 度的提高)而增加。
11
3.1.2 结晶硅太阳能电池的结构
3. 晶向、位错、寿命 一般要求单晶沿(111)晶向生长,切割下的硅片表面与(111)单晶
(100)硅片的各向异性腐蚀导致在表面产生许多密布的表面为 (111)面的四面方锥体。形成绒面的硅表面。
3.1.2 结晶硅太阳能电池的结构
可通过不同途径实现表面织 构化:晶体硅可通过腐蚀晶 面的刃面来实现织构化 如果晶体硅表面是沿内部原 子排列的,则织构化表面类 似金字塔。商业单晶硅电池 常用的手段。 另一种形式的织构化:倒金 字塔。
结晶硅电池的结构是一个具有PN结的光电器件。包括硅衬底、PN结结 构、支构面、防反射层、导电电极与背面电极
9
3.1.2 结晶硅太阳能电池的结构
衬底:衬底的作用是作为太阳能电池的承载。硅太阳能电池是以硅半 导体材料为底材衬底。 衬底的选择:一般来说,除了价格成本和来源难易外,根据不同用途,可 从以下几方面选择: 1. 导电类型 P型硅用B作为掺杂元素,制成n+/p型太阳能电池; n型硅用P(或As) 为掺杂元素,制成p+/n型太阳能电池; 两类电池性能相当,但n+/p型太阳能电池耐辐照性能优于p+/n型太阳 能电池,更适合空间应用。
①Si+2F2=SiF4 ②Si+4HF=SiF4 ↑+2H2↑ ③Si+ 2NaOH + H2O = Na2SiO3 +2H2↑
高温下,较活泼
3.1 结晶硅太阳能电池的种类征载流子浓度:
ni 1.07 1010 cm3
12
3.1.2 结晶硅太阳能电池的结构
PN结结构
N+/P结的作用是形成一个最简单的半导体器件。在光照条件下,电子/ 空穴的形成与移动与该N+/P结的特性有极大关系。
N+与P层的掺杂量是很重要的器件设计参数,因为 ① N+与P层的掺杂量会决定耗尽层的大小及其电场强度 ② 若N+与P层的掺杂量小,则表面再结合速率可以减小,但与电极的接
多晶硅效率较低的原因
① 晶粒与晶粒间存在晶界,形成复 合中心,减少自由电子数量
② 晶界的硅原子键合较差,易受紫 外线破坏而产生更多的悬挂键, 随使用时间增加,悬挂键的数目 增加,造成光电效率劣化
③本身杂质比单晶硅多,且多半 聚集在晶粒边界,杂质的存在 使得自由电子与空穴不易移动
8
3.1.2 结晶硅太阳能电池的结构
6
3.1.1 结晶硅太阳能电池的种类
单晶硅太阳能电池特点: ① 完整的结晶,易得到高效率 ② 不容易产生光致衰退 ③ 发电特性稳定,约有20年的耐久性 ④ 硅原料丰富 ⑤ 承受应力强
7
3.1.1 结晶硅太阳能电池的种类
多晶硅太阳能电池
多晶硅太阳能电池的效率为13~ 16%,是目前市场上最主流的产品
3.1.2 结晶硅太阳能电池的结构
对于多晶硅来说,不能采用上述两种形式的织构化,因为多晶硅表面 不是完整的<111>晶面。 但可采取照相平版印刷、用激光机械雕刻前表面等方式实现织构化 (下图为照相平版印刷织构化多晶硅表面):
3.1.2 结晶硅太阳能电池的结构
防反射层
防反射层的功能是减少入射的可见光在硅器件的表面反射。需要防反 射层的原因是由于硅材料在可见光到红外线波段400~1100nm的区域 内有相对于空气较大的折射率3.5~6.0.也就是说,在可见光区域有接 近50%,红外线区域内有30%的反射损失。在三层物质的界面的电磁 波反射系数R为:
触电阻会变大从而增加串联电阻 ③ 若N+与P层的掺杂量大,与电极的接触电阻会变小从而降低串联电阻
值,但表面再结合速率会变大
13
3.1.2 结晶硅太阳能电池的结构
支构面
支构面的作用是通过光的散射与多重反射,提供更长的光路径。因此, 光子的吸收数目可以增多,以提供更多的电子-空穴对。
14
3.1.2 结晶硅太阳能电池的结构
支构面通常通过在硅表面以化学侵蚀液形成(111)面微小四面体金 字塔来构成组织构造。 各向异性腐蚀就是腐蚀速度随单晶主要的不同晶向而变化,一般来说, 晶面间的共价键密度越高,则该晶面族的各晶面连接越牢,也就越难 腐蚀,因此在该晶面族的垂直方向上腐蚀速度越慢。反之,越容易腐 蚀。由于(100)面的共价键密度比(111)面低,所以(100) 面腐蚀 比(111) 面快。
轻掺杂 掺杂浓度为1017 cm-3
中度掺杂 掺杂浓度为1017~1019 cm-3
重掺杂 掺杂浓度大于1019 cm-3
3.1.1 结晶硅太阳能电池的种类
结晶硅太阳能电池可以分为单晶硅太阳能电池和多晶硅太阳能电池
单晶硅太阳能电池
一般来说一个电池的输出电压为0.5V左右,最大输出功率与有效面积有关,一个 效率为15%的电池输出功率为1.5W左右, 为满足需要,把很多电池并联或串联在 一起,形成模组,若想得到更大效率输出,则需要阵列。
相关文档
最新文档