2017-2018学年天津市红桥区八年级上期末数学试卷(含答案解析)

合集下载

2017-2018学年天津市八年级上期末数学试卷(有答案)

2017-2018学年天津市八年级上期末数学试卷(有答案)

2017-2018学年天津市八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠34.(3分)计算x3•x2的结果是()A.x6B.x5C. x2 D.x5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣D.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.6 B.8 C.10 D.12二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x= 时,分式的值为零.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为.12.(3分)分解因式:27x2+18x+3= .13.(3分)若关于x的分式方程无解,则m的值是.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB 上,且满足DF=DE,则∠DFB的度数为.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH= .三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+3019.(8分)解分式方程: +=1.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?2017-2018学年天津市河北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)【解答】解:(A)x2+2x﹣1≠(x﹣1)2,故A不是因式分解,(B)a2﹣b2=(a+b)(a﹣b),故B不是因式分解,(D)a x2﹣a=a(x2﹣1)=a(x+1)(x﹣1),故D分解不完全,故选:C.3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选:D.4.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x【解答】解:x3•x2=x3+2=x5.故选:B.5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣D.【解答】解:∵点P(a,3)、Q(﹣2,b)关于y轴对称,∴a=2,b=3,则==﹣.故选:C.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④【解答】解:式子:①,②,③,④,其中是分式的有:①,④.故选:B.7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即: =+10,故选:B.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S=BC•AD=×4×AD=16,解得AD=8,△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x= ﹣3 时,分式的值为零.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为 2.3×10﹣5..【解答】解:0.000023=2.3×10﹣5,故答案为:2.3×10﹣5.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为12 .【解答】解:x2m﹣n=(x m)2÷x n=36÷3=12.故答案为:12.12.(3分)分解因式:27x2+18x+3= 3(3x+1)2.【解答】解:27x2+18x+3,=3(9x2+6x+1),=3(3x+1)2.13.(3分)若关于x的分式方程无解,则m的值是 3 .【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是20°.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B的度数是20°.故答案为20°.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB 上,且满足DF=DE,则∠DFB的度数为50°或130°.【解答】解:如图,DF=DF′=DE;∵BD平分∠ABC,由图形的对称性可知:△BDE≌△BDF,∴∠DFB=∠DEB;∵DE∥AB,∠ABC=50°,∴∠DEB=180°﹣50°=130°;∴∠DFB=130°;当点F位于点F′处时,∵DF=DF′,∴∠DF′B=∠DFF′=50°,故答案是:50°或130°.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH= .【解答】证明:延长FB到点M,使BM=DG,连接CM∵△ABD是等边三角形,∴AD=BD,∠A=∠ABD=60°,在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴∠ADE=∠DBF,∵∠CDG=∠ADC﹣∠ADE=120°﹣∠ADE,∠CBM=120°﹣∠DBF,∴∠CBM=∠CDG,∵△DBC是等边三角形,∴CD=CB,在△CDG和△CBM中,∴△CDG≌△CBM,∴∠DCG=∠BCM,CG=CM,∴∠GCM=∠DCB=60°,∴△CGM是等边三角形,∴CG=GM=BG+BM=BG+DG,∵(a+b)2=a2+b2+2ab=9,∴a+b=3,∴CG=3,∴GH=CG=.故答案为:.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)【解答】解:(1)(﹣2a)3﹣(﹣a)•(3a)2=﹣8a3﹣(﹣a)•9a2=﹣8a3+9a3=a3;(2)(2a﹣3b)2﹣4a(a﹣2b)=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2.18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+30【解答】解:原式=•=,当x=()﹣1+30=3+1=4时,原式==2.19.(8分)解分式方程: +=1.【解答】解:去分母得:x2﹣x﹣2=x2﹣3x,解得:x=1,经检验x=1是分式方程的解.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.【解答】解:AE=CD,AC=BC,∴EC=BD;∵△ABC为等边三角形,∴∠C=∠ABC=60°,AB=BC,在△BEC与△ADB中,,∴△BEC≌△ADB(SAS),∴∠EBC=∠BAD;∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∵∠BPQ是△ABP外角,∴∠ABP+∠BAP=60°=∠BPQ,又∵BQ⊥AD,∴∠PBQ=30°,∴PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得, =﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?【解答】解:(1)△OBC≌△ABD.证明:∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.。

八年级上册天津数学期末试卷测试卷(含答案解析)

八年级上册天津数学期末试卷测试卷(含答案解析)

八年级上册天津数学期末试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.2.如图,在ABC∆中,ACB∠为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB AC=,90BAC∠=︒①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;②当点D在线段C的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC≠,90BAC∠≠︒,45BCA∠=︒,点D在线段BC上运动,试探究CF与BD的位置关系.【答案】(1)①CF⊥BD,证明见解析;②成立,理由见解析;(2)CF⊥BD,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF⊥BD.【详解】解:(1)①∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF⊥BD;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE 是等腰直角三角形,∴AC=AE ,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD ,在△ACF 和△AED 中,∵AC=AE ,∠CAF=∠EAD ,AD=AF ,∴△ACF ≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF ⊥BD .【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.3.如图,在平面直角坐标系中,A 、B 坐标为()6,0、()0,6,P 为线段AB 上的一点.(1)如图1,若P 为AB 的中点,点M 、N 分别是OA 、OB 边上的动点,且保持AM ON =,则在点M 、N 运动的过程中,探究线段PM 、PN 之间的位置关系与数量关系,并说明理由.(2)如图2,若P 为线段AB 上异于A 、B 的任意一点,过B 点作BD OP ⊥,交OP 、OA 分别于F 、D 两点,E 为OA 上一点,且PEA BDO =∠∠,试判断线段OD 与AE 的数量关系,并说明理由.【答案】(1)PM=PN ,PM ⊥PN ,理由见解析;(2)OD=AE ,理由见解析【解析】【分析】(1)连接OP .只要证明△PON ≌△PAM 即可解决问题;(2)作AG ⊥x 轴交OP 的延长线于G .由△DBO ≌△GOA ,推出OD=AG ,∠BDO=∠G ,再证明△PAE ≌△PAG 即可解决问题;【详解】(1)结论:PM=PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P 为AB 的中点,∴OP=12AB=PB=PA ,OP ⊥AB ,∠PON=∠PAM=45°, ∴∠OPA=90°,在△PON 和△PAM 中, ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC=___cm ;(用含t 的式子表示)(2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53v =【解析】【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =∵12BC cm =∴()122PC BC BP t cm =-=-故答案为:()122t -(2)∵ABP DCP ∆≅∆∴BP CP =∴2122t t =-解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∴PC=AB=5∴BP=BC-PC=12-5=7∵2BP tcm =∴2t=7解得t=3.5∴CQ=BP=7,则3.5v=7解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆∵12BC cm = ∴162BP CP BC cm === ∵2BP tcm =∴26t = 解得3t =∴3CQ vcm =∵5AB CQ cm ==∴35v = 解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.5.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.6.如图,ABC ∆是等边三角形,点D 在边AC 上( “点D 不与,A C 重合),点E 是射线BC 上的一个动点(点E 不与点,B C 重合),连接DE ,以DE 为边作作等边三角形DEF ∆,连接CF .(1)如图1,当DE 的延长线与AB 的延长线相交,且,C F 在直线DE 的同侧时,过点D 作//DG AB ,DG 交BC 于点G ,求证:CF EG =;(2)如图2,当DE 反向延长线与AB 的反向延长线相交,且,C F 在直线DE 的同侧时,求证:CD CE CF =+;(3)如图3, 当DE 反向延长线与线段AB 相交,且,C F 在直线DE 的异侧时,猜想CD 、CE 、CF 之间的等量关系,并说明理由.【答案】(1)证明见详解;(2)证明见详解;(3)CF =CD +CE ,理由见详解.【解析】【分析】(1)由ABC ∆是等边三角形,//DG AB ,得∠CDG=∠A=60°,∠ACB=60°,CDG ∆是等边三角形,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论;(2)过点D 作DG ∥AB 交BC 于点G ,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论;(3)过点D 作DG ∥AB 交BC 于点G ,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论.【详解】(1)∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠GDF=∠EDF-∠GDF ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF EG =;(2)过点D 作DG ∥AB 交BC 于点G ,如图2,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠CDE=∠EDF-∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE =,∴CD CG CE GE CE CF ==+=+(3)CF =CD +CE ,理由如下:过点D 作DG ∥AB 交BC 于点G ,如图3,∵ABC∆是等边三角形,//DG AB,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG∆是等边三角形,∴DG=DC=GC.∵DEF∆是等边三角形,∴DE=DF,∠EDF=60°,∴∠CDG+∠CDE=∠EDF+∠CDE,即:∠GDE=∠CDF,在∆ GDE和∆ CDF中,∵DE DFGDE CDFDG DC=⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE≅∆ CDF(SAS),∴CF GE==GC+CE=CD+CE.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.7.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC∆、111A B C∆均为锐角三角形,且11AB A B=,11BC B C=,1C C∠=∠.求证:111ABC A B C∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.8.如图,A (0,4)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒1个单位长度,以P 为直角顶点在第一象限内作等腰Rt △APB .设P 点的运动时间为t 秒.(1)若AB ∥x 轴,如图1,求t 的值;(2)设点A 关于x 轴的对称点为A ′,连接A ′B ,在点P 运动的过程中,∠OA ′B 的度数是否会发生变化,若不变,请求出∠OA ′B 的度数,若改变,请说明理由.(3)如图2,当t =3时,坐标平面内有一点M (不与A 重合)使得以M 、P 、B 为顶点的三角形和△ABP 全等,请直接写出点M 的坐标.【答案】(1)4;(2)∠OA ′B 的度数不变,∠OA ′B =45︒,理由见解析;(3)点M 的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE ∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.9.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE ;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【答案】(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45 ()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.10.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=12∠ADB,∠AEC=12∠AEB,∴∠ADC+∠AEC=1(ADB AEB)2∠+∠=45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、八年级数学轴对称解答题压轴题(难)11.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.12.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.13.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(2)AF 与BD 在(1)中的结论成立,理由如下:如图2中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.14.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC 中,∠A=36°,直线BD 平分∠ABC 交AC 于点D ,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.15.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110° ,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18° ,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75° ,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x y x ααβ=+⎧⎨=-+⎩①② -②得,2α﹣β=0,∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴+y x y x ααβ=+⎧⎨=+⎩①② -①得,α=β﹣α,∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y x y x αβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.16.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.。

【精选3份合集】2017-2018年天津市八年级上学期数学期末质量检测试题

【精选3份合集】2017-2018年天津市八年级上学期数学期末质量检测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个图案中,不是轴对称图案的是( )A .B .C .D .【答案】B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A 、是轴对称图案,故本选项不符合题意;B 、不是轴对称图案,故本选项符合题意;C 、是轴对称图案,故本选项不符合题意;D 、是轴对称图案,故本选项不符合题意.故选:B .【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.2.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【详解】A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选C .3.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3 【答案】C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.已知等腰三角形的周长是22,其中一边长为8,则其它两边的长度分别是( )A .3和11B .7和7C .6和8或7和7D .3和11或7和7【答案】C【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.【详解】解:等腰三角形的周长是22. ∴当8为腰时,它的底边长=22-8-8=6,8+6>8,能构成等腰三角形.当8为底时,它的腰长=(22-8)2=7÷,7+7>8,能构成等腰三角形.即它两边的长度分别是6和8或7和7.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.5.若2310a a -+=,则12a a +-的值为( )A 1B .1C .-1D .-5【答案】B 【分析】先将2310a a -+=变形为130a a -+=,即13a a+=,再代入求解即可. 【详解】∵2310a a -+=,∴130a a -+=,即13a a+=, ∴12321a a +-=-=.故选B. 【点睛】本题考查分式的化简求值,解题的关键是将2310a a -+=变形为13a a+=. 6.下列因式分解正确的是( )A .256(5)6m m m m -+=-+B .2241(21)m m -=-C .2244(2)m m m +-=+D .241(21)(21)m m m -=+-【答案】D 【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【详解】A 没有把256m m -+化为因式积的形式,所以A 错误,B 从左往右的变形不是恒等变形,因式分解是恒等变形,所以B 错误,C 变形也不是恒等变形所以错误,D 化为几个因式的积的形式,是因式分解,所以D 正确.故选D .【点睛】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.7.下列各式从左到右的变形正确的是( )A .211a a a+=+ B .2222255102a b ab c abc -=- C .b a a b b a a b--=--+ D .29133m m m -=-+ 【答案】C 【分析】由分式的加法法则的逆用判断A ,利用约分判断B ,利用分式的基本性质判断C ,利用约分判断D . 【详解】解:由22111a a a a a a a+=+=+,所以A 错误, 由2222225555105(2)2a b ab a a ab c ab bc bc --•==--•-,所以B 错误, 由()()b a b a a b b a b a a b----==-----+,所以C 正确, 由29(3)(3)333m m m m m m -+-==+--,所以D 错误. 故选C .【点睛】本题考查分式加减运算的逆运算与分式的基本性质,掌握运算法则与基本性质是关键,8.如图,在ABC ∆中,68BAC ∠=︒,36C ∠=︒,AD 平分BAC ∠,M 、N 分别是AD 、AB 上的动点,当BM MN +最小时,BMN ∠的度数为( )A .34︒B .68︒C .76︒D .90︒【答案】B 【分析】在AC 上截取AE=AN ,先证明△AME ≌△AMN (SAS ),推出ME=MN .当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,可求出∠NME 的度数,从而求出∠BMN 的度数.【详解】如图,在AC 上截取AE=AN ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,AE AN EAM NAM AM AM ⎧⎪∠∠⎨⎪⎩===,∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME ,当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,∴MN ⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B .【点睛】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN 进行转化,利用垂线段最短解决问题.9.分式方程3121x x =-的解为( ) A .1x =B .2x =C .3x =D .4x =【答案】C【解析】两边同乘2x (x-1),得1(x-1)=2x ,整理、解得:x=1.检验:将x=1代入2x (x-1)≠0,∴方程的解为x=1.故选C10.在实数227-、0、、506、π、5.75中,无理数的个数是( ) A .2个B .3个C .4个D .5个 【答案】A【解析】根据无理数的定义,即即可得到答案.【详解】∵、π是无理数,227-、0、506、5.75是有理数, ∴无理数有2个,故选A .【点睛】本题主要考查无理数的定义,掌握无理数的定义,是解题的关键.二、填空题11.己知一次函数21y x =+的图象与x 轴、y 轴分别交于A 、B 两点,将这条直线进行平移后交x 轴、y 轴分别交于C 、D ,要使点A 、B 、C 、D 构成的四边形面积为4,则直线CD 的解析式为__________.【答案】23y x =-或2y x =+【分析】先确定A 、B 点的坐标,利用两直线平移的问题设直线CD 的解析式为2y x b =+,则可表示出(2b C -,0),(0,)D b ,讨论:当点C 在x 轴的正半轴时,利用三角形面积公式得到11()(1)4222b b -+⨯-=,当点C 在x 轴的负半轴时,利用三角形面积公式得到111142222b b -⨯⨯=,然后分别解关于b 的方程后确定满足条件的CD 的直线解析式.【详解】解:一次函数21y x =+的图象与x 轴、y 轴分别交于A 、B 两点,1(2A ∴-,0),(0,1)B , 设直线CD 的解析式为2y x b =+,(2b C ∴-,0),(0,)D b , 如图1,当点C 在x 轴的正半轴时,则0b <,依题意得:11()(1)4222b b -+⨯-=, 解得5b =(舍去)或3b =-,此时直线CD 的解析式为23y x =-;如图2,当点C 在x 轴的负半轴时,则0b >, 依题意得:111142222b b -⨯⨯=, 解得17b =-(舍去)或17b =,此时直线CD 的解析式为217y x =+,综上所述,直线CD 的解析式为23y x =-或217y x =+故答案为:23y x =-或217y x =+【点睛】本题考查了一次函数图象与几何变换:求直线平移后的解析式时要注意平移时k 的值不变.也考查了三角形面积公式.12.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.【答案】1【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为604x +,乙做40个所用的时间为40x,列方程为:604x +=40x, 解得:x=1,经检验:x=1是原分式方程的解,且符合题意, 所以乙每小时做1个,故答案为1.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.13.已知点(32,1)P a a +-在x 轴上,则点P 的坐标为______.【答案】(5,0)【解析】根据x 轴上点的纵坐标为0列方程求出a 的值,再求解即可.【详解】解:∵点P(3a+2,1−a)在x 轴上,∴1−a=0,解得a=1,∴3a+2=3×1+2=5,∴点P 的坐标为(5,0);故答案为:(5,0).【点睛】本题主要考查了点的坐标,掌握点的坐标是解题的关键.14.已知:如图,在平面直角坐标系xOy 中,一次函数y =34x+3的图象与x 轴和y 轴交于A 、B 两点将△AOB 绕点O 顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.【答案】443y x =-+ 【分析】根据y =34x+3求出点A 、B 的坐标,得到OA 、OB 的值,即可求出点A′(0,4),B′(3,0),设直线A′B′的解析式为y =kx+b ,代入求值即可.【详解】由=34x+3,当y=0时,得x=-4,∴(﹣4,0),当x=0时,得y=3,∴B(0,3),∴OA=4,OB=3,∴OA′=OA=4,OB′=OB=3,∴A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,∴304k bb+=⎧⎨=⎩.解得434kb⎧=-⎪⎨⎪=⎩.∴直线A′B′的解析式是443y x=-+.故答案为:443y x=-+.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,待定系数法求一次函数的解析式.15.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△PAB是等腰三角形,则符合条件的点P共有_____个.【答案】6【解析】如下图,符合条件的点P共有6个.点睛:(1)分别以点A 、B 为圆心,AB 为半径画A 和B ,两圆和两坐标轴的交点为所求的P 点(与点A 、B 重合的除外);(2)作线段AB 的垂直平分线与两坐标轴的交点为所求的P 点(和(1)中重复的只算一次).16.如图,在ABC ∆中,AB AC =,100BAC ∠=︒,AB 的垂直平分线DE 分别交AB ,BC 于点D ,E ,则BAE ∠=______.【答案】40°【分析】根据等腰三角形的性质得出∠B=∠C=40°,再根据垂直平分线的性质解答即可.【详解】解:∵在ABC ∆中,AB AC =,100BAC ∠=︒ ∴180100402B C ︒-︒∠=∠==︒, 又∵AB 的垂直平分线DE 分别交AB ,BC 于点D ,E ,∴AE=BE ,∴∠BAE=∠B=40°,故答案为:40°.【点睛】本题考查了等腰三角形的性质及垂直平分线的性质,灵活运用上述性质进行推导是解题的关键. 17.当x ________时,分式1x x -无意义. 【答案】x =1【解析】分式的分母等于0时,分式无意义.【详解】解:当10x -=即1x =时,分式无意义.故答案为:1x =【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.三、解答题18.如果实数x 满足2230x x +-=,求代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值 【答案】5【分析】首先对括号内的式子通分相加,然后把除法转化为乘法,即可化简,然后把2230x x +-=变化为223x x +=代入即可求解. 【详解】解:21211x x x ⎛⎫+÷ ⎪++⎝⎭ 2221111x x x x x ⎛⎫+=+÷ ⎪+++⎝⎭ ()22211x x x x ++=++ 222x x =++,2230x x +-=,223x x ∴+=,∴原式222325x x =++=+=.【点睛】此题主要考查了分式的化简和整体代入求值,熟悉相关性质是解题的关键.19.用分式方程解决问题:元旦假期有两个小组去攀登- -座高h 米的山,第二组的攀登速度是第- -组的a 倍.(1)若450, 1.2h a ==,两小组同时开始攀登,结果第二组比第一组早15min 到达顶峰.求两个小组的攀登速度.(2)若第二组比第一组晚出发30min ,结果两组同时到达顶峰,求第二组的攀登速度比第一组快多少? (用含,a h 的代数式表示)【答案】(1)第一组5/m min ,第二组6/m min ;(2)()21/30h a m min a -.【分析】(1)设第一组的速度为/xm min ,则第二组的速度为1.2/xm min ,根据两个小组同时开始攀登,第二组比第一组早15min ,列方程求解.。

天津市红桥区2016-2017学年八年级上期末数学试卷含答案解析

天津市红桥区2016-2017学年八年级上期末数学试卷含答案解析

天津市红桥区2016-2017学年八年级上期末数学试卷含答案解析【一】选择题〔本大题共10小题,每题3分,共30分,在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳〕1、倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水旳标志,在这些标志中,是轴对称图形旳是〔〕A、B、C、D、2、如图,点C在AD上,CA=CB,∠A=20°,那么∠BCD=〔〕A、20°B、40°C、50°D、140°3、计算2x2y〔x﹣3xy2〕=〔〕A、2x3y﹣3x3y3B、2xy2﹣6x3y3C、2x3y﹣6x3y3D、2x2y+6x3y34、在平面直角坐标系中,点〔2,3〕关于y轴对称旳点旳坐标是〔〕A、〔﹣2,﹣3〕B、〔2,﹣3〕C、〔﹣2,3〕D、〔2,3〕5、化简旳结果是〔〕A、B、C、D、6、某工厂现在平均每天比原打算多生产30台机器,现在生产500台机器所需时刻与圆打算生产350台机器所需时刻相同、设原打算平均每天生产x台机器,下面所列方程正确旳选项是〔〕A、B、C、D、7、如图,AE∥DF,AE=DF,那么添加以下条件还不能使△EAC≌△FDB旳为〔〕A、AB=CDB、CE∥BFC、∠E=∠FD、CE=BF8、如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,那么△AEF旳周长为〔〕A、12B、13C、14D、189、设〔2a+3b〕2=〔2a﹣3b〕2+A,那么A=〔〕A、6abB、12abC、0D、24ab10、如图,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,假设∠A=70°,那么∠An﹣1AnBn﹣1旳度数为〔〕A、B、C、D、【二】填空题:本大题共6小题,每题3分,共18分11、计算:〔﹣2ab〕2=、12、等腰三角形旳其中二边长分别为4,9,那么那个等腰三角形旳周长为、13、式子无意义,那么〔y+x〕〔y﹣x〕+x2旳值等于、14、如图,AC是正五边形ABCDE旳一条对角线,那么∠ACB=、15、如图,在△ABC中,AB<AC,BC边上旳垂直平分线DE交BC于点D,交AC 于点E,BD=4,△ABE旳周长为14,那么△ABC旳周长为、16、将式子a2+2a2〔a+1〕2+〔a+1〕2分解因式旳结果等于、【三】解答题:本大题共6个小题,共52分,解承诺写出文字说明、证明过程或演算步骤17、如图,D是△ABC旳边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF、18、完成以下各题:〔1〕计算﹣6ab〔2a2b﹣ab2〕〔2〕化简〔a﹣1〕〔a+1〕﹣〔a﹣1〕2、19、xy=﹣3,满足x+y=2,求代数式x2y+xy2旳值、20、化简:〔1+〕÷、21、先化简,再求值:÷〔x﹣2﹣〕﹣,其中x为方程5x+1=2〔x﹣1〕旳解、22、甲、乙两个工程队打算参与一项工程建设,甲队单独施工30天完成该项工程旳,这时乙队加入,两队还需同时施工15天,才能完成该项工程,假设乙队单独施工,需要多少天才能完成该项工程?23、如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°旳等腰三角形,以D 为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN、〔I〕探究:线段BM,MN,NC之间旳关系,并加以证明、提示:看到那个问题后,小明猜想:BM+NC=MN,同时通过延长AC到点E,使得CE=BM,连接DE,再证明三角形全等,请你按照小明旳思路写出证明过程、〔Ⅱ〕假设点M是AB旳延长线上旳一点,N是CA旳延长线上旳点,其它条件不变,请你再探线段BM,MN,NC之间旳关系,在图②中画出图形,并说明理由、2016-2017学年天津市红桥区八年级〔上〕期末数学试卷参考【答案】与试题【解析】【一】选择题〔本大题共10小题,每题3分,共30分,在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳〕1、倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水旳标志,在这些标志中,是轴对称图形旳是〔〕A、B、C、D、【考点】轴对称图形、【分析】依照轴对称图形旳概念对各图形推断后即可得解、【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;应选:C、2、如图,点C在AD上,CA=CB,∠A=20°,那么∠BCD=〔〕A、20°B、40°C、50°D、140°【考点】三角形旳外角性质、【分析】依照等边对等角旳性质得∠A=∠B,再依照三角形旳一个外角等于和它不相邻旳两个内角旳和,即可求出∠BCD旳度数、【解答】解:∵CA=CB,∠A=20°,∴∠A=∠B=20°,∴∠BCD=∠A+∠B=20°+20°=40°、应选B、3、计算2x2y〔x﹣3xy2〕=〔〕A、2x3y﹣3x3y3B、2xy2﹣6x3y3C、2x3y﹣6x3y3D、2x2y+6x3y3【考点】单项式乘多项式、【分析】依照单项式与多项式相乘旳运算法那么计算即可、【解答】解:2x2y〔x﹣3xy2〕=2x3y﹣6x3y3、应选:C、4、在平面直角坐标系中,点〔2,3〕关于y轴对称旳点旳坐标是〔〕A、〔﹣2,﹣3〕B、〔2,﹣3〕C、〔﹣2,3〕D、〔2,3〕【考点】关于x轴、y轴对称旳点旳坐标、【分析】平面直角坐标系中任意一点P〔x,y〕,关于y轴旳对称点旳坐标是〔﹣x,y〕,即关于纵轴旳对称点,纵坐标不变,横坐标变成相反数、【解答】解:点〔2,3〕关于y轴对称旳点旳坐标是〔﹣2,3〕、应选:C、5、化简旳结果是〔〕A、B、C、D、【考点】分式旳乘除法、【分析】原式利用除法法那么变形,约分即可得到结果、【解答】解:原式=•=、应选A、6、某工厂现在平均每天比原打算多生产30台机器,现在生产500台机器所需时刻与圆打算生产350台机器所需时刻相同、设原打算平均每天生产x台机器,下面所列方程正确旳选项是〔〕A、B、C、D、【考点】由实际问题抽象出分式方程、【分析】设原打算平均每天生产x台机器,那么实际每天生产〔x+30〕台机器,依照现在生产500台机器所需时刻与圆打算生产350台机器所需时刻相同,列方程即可、【解答】解:设原打算平均每天生产x台机器,那么实际每天生产〔x+30〕台机器,由题意得,=、应选A、7、如图,AE∥DF,AE=DF,那么添加以下条件还不能使△EAC≌△FDB旳为〔〕A、AB=CDB、CE∥BFC、∠E=∠FD、CE=BF【考点】全等三角形旳判定、【分析】判定三角形全等旳方法要紧有SAS、ASA、AAS、SSS等,依照所添加旳条件判段能否得出△EAC≌△FDB即可【解答】解:〔A〕当AB=CD时,AC=DB,依照SAS能够判定△EAC≌△FDB;〔B〕当CE∥BF时,∠ECA=∠FBD,依照AAS能够判定△EAC≌△FDB;〔C〕当∠E=∠F时,依照ASA能够判定△EAC≌△FDB;〔D〕当CE=BF时,不能判定△EAC≌△FDB;应选D8、如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,那么△AEF旳周长为〔〕A、12B、13C、14D、18【考点】等腰三角形旳判定与性质;平行线旳性质、【分析】依照平行线旳性质得到∠EDB=∠DBC,∠FDC=∠DCB,依照角平分线旳性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,因此得到ED=EB,FD=FC,即可得到结果、【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB旳平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF旳周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13、应选B、9、设〔2a+3b〕2=〔2a﹣3b〕2+A,那么A=〔〕A、6abB、12abC、0D、24ab【考点】完全平方公式、【分析】由完全平方公式〔a±b〕2=a2±2ab+b2,得到〔a+b〕2=〔a﹣b〕2+4ab,据此能够作出推断、【解答】解:∵〔2a+3b〕2=〔2a﹣3b〕2+4×2a×3b=〔2a﹣3b〕2+12ab,〔2a+3b〕2=〔2a﹣3b〕2+A,∴A=12aB、应选:B、10、如图,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,假设∠A=70°,那么∠An﹣1AnBn﹣1旳度数为〔〕A 、B 、C 、D 、【考点】等腰三角形旳性质、【分析】依照三角形外角旳性质及等腰三角形旳性质分别求出∠B 1A 2A 1,∠B 2A 3A 2及∠B 3A 4A 3旳度数,找出规律即可得出∠A n ﹣1A n B n ﹣1旳度数、 【解答】解:∵在△ABA 1中,∠A=70°,AB=A 1B , ∴∠BA 1A=70°,∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1旳外角,∴∠B 1A 2A 1==35°;同理可得,∠B 2A 3A 2=17.5°,∠B 3A 4A 3=×17.5°=,∴∠A n ﹣1A n B n ﹣1=、应选:C 、【二】填空题:本大题共6小题,每题3分,共18分 11、计算:〔﹣2ab 〕2=4a 2b 2、 【考点】幂旳乘方与积旳乘方、【分析】直截了当利用积旳乘方运算法那么以及幂旳乘方运算法那么求出【答案】、【解答】解:〔﹣2ab 〕2=4a 2b 2、 故【答案】为:4a 2b 2、12、等腰三角形旳其中二边长分别为4,9,那么那个等腰三角形旳周长为22、 【考点】等腰三角形旳性质;三角形三边关系、【分析】分为两种情况:①当三角形旳三边是4,4,9时,②当三角形旳三边是4,9,9时,看看是否符合三角形旳三边关系定理,符合时求出即可、 【解答】解:分为两种情况:①当三角形旳三边是4,4,9时, ∵4+4<9,∴现在不符合三角形旳三边关系定理,现在不存在三角形;②当三角形旳三边是4,9,9时,现在符合三角形旳三边关系定理,现在三角形旳周长是4+9+9=22,故【答案】为:22、13、式子无意义,那么〔y+x〕〔y﹣x〕+x2旳值等于、【考点】分式有意义旳条件;平方差公式、【分析】依照式子无意义,先确定y旳值,再化简代数式〔y+x〕〔y﹣x〕+x2,最后代入求值、【解答】解:因为式子无意义,因此3y﹣1=0,y=、〔y+x〕〔y﹣x〕+x2=y2﹣x2+x2=y2当y=时,原式=〔〕2=故【答案】为:14、如图,AC是正五边形ABCDE旳一条对角线,那么∠ACB=36°、【考点】多边形内角与外角、【分析】由正五边形旳性质得出∠B=108°,AB=CB,由等腰三角形旳性质和三角形内角和定理即可得出结果、【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=÷2=36°;故【答案】为:36°、15、如图,在△ABC中,AB<AC,BC边上旳垂直平分线DE交BC于点D,交AC 于点E,BD=4,△ABE旳周长为14,那么△ABC旳周长为22、【考点】线段垂直平分线旳性质、【分析】由DE垂直平分BC可得,BE=CE;因此△ABC旳周长=△ABE旳周长+BC;然后由垂直平分线旳性质知BC=2BD,从而求得△ABC旳周长、【解答】解:∵BC边上旳垂直平分线DE交BC于点D,交AC于点E,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE旳周长为14,∴AB+AE+BE=AB+AE+EC=AB+AC=14;∴△ABC旳周长是:AB+AC+BC=14+8=22;故【答案】是:22、16、将式子a2+2a2〔a+1〕2+〔a+1〕2分解因式旳结果等于〔2a+1〕2、【考点】因式分解-运用公式法、【分析】原式利用完全平方公式分解即可、【解答】解:原式=[a+〔a+1〕]2=〔2a+1〕2,故【答案】为:〔2a+1〕2【三】解答题:本大题共6个小题,共52分,解承诺写出文字说明、证明过程或演算步骤17、如图,D是△ABC旳边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF、【考点】全等三角形旳判定与性质、【分析】依照平行线性质求出∠A=∠FCE,依照AAS推出△ADE≌△CFE即可、【解答】证明:∵FC∥AB,∴∠A=∠FCE,在△ADE和△CFE中∴△ADE≌△CFE〔AAS〕,∴AD=CF、18、完成以下各题:〔1〕计算﹣6ab〔2a2b﹣ab2〕〔2〕化简〔a﹣1〕〔a+1〕﹣〔a﹣1〕2、【考点】整式旳混合运算、【分析】结合整式混合运算旳运算法那么进行求解即可、【解答】解:〔1〕原式=﹣6ab×2a2b﹣〔﹣6ab〕×ab2=﹣12a3b2+2a2b3、〔2〕原式=a2﹣1﹣a2﹣1+2a=2a﹣2、19、xy=﹣3,满足x+y=2,求代数式x2y+xy2旳值、【考点】因式分解-提公因式法、【分析】将原式提取公因式xy,进而将代入求出即可、【解答】解:∵xy=﹣3,x+y=2,∴x2y+xy2=xy〔x+y〕=﹣3×2=﹣6、20、化简:〔1+〕÷、【考点】分式旳混合运算、【分析】原式括号中两项通分并利用同分母分式旳加法法那么计算,同时利用除法法那么变形,约分即可得到结果、【解答】解:原式=•=﹣、21、先化简,再求值:÷〔x﹣2﹣〕﹣,其中x为方程5x+1=2〔x﹣1〕旳解、【考点】分式旳化简求值、【分析】先依照分式混合运算旳法那么把原式进行化简,再求出x旳值,代入原式进行计算即可、【解答】解:原式=÷﹣=•﹣=﹣=﹣,由方程5x+1=2〔x﹣1〕,解得:x=﹣1,∴当x=﹣1时,原式=﹣=、22、甲、乙两个工程队打算参与一项工程建设,甲队单独施工30天完成该项工程旳,这时乙队加入,两队还需同时施工15天,才能完成该项工程,假设乙队单独施工,需要多少天才能完成该项工程?【考点】分式方程旳应用、【分析】依照题意能够列出相应旳分式方程,从而能够解答此题、【解答】解:设乙单独施工需要x天完成该工程,,解得,x=30,经检验x=30是原分式方程旳解,即假设乙队单独施工,需要30天才能完成该项工程、23、如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°旳等腰三角形,以D 为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN、〔I〕探究:线段BM,MN,NC之间旳关系,并加以证明、提示:看到那个问题后,小明猜想:BM+NC=MN,同时通过延长AC到点E,使得CE=BM,连接DE,再证明三角形全等,请你按照小明旳思路写出证明过程、〔Ⅱ〕假设点M是AB旳延长线上旳一点,N是CA旳延长线上旳点,其它条件不变,请你再探线段BM,MN,NC之间旳关系,在图②中画出图形,并说明理由、【考点】全等三角形旳判定与性质;等腰三角形旳性质;等边三角形旳性质、【分析】〔1〕延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等旳线段,MD=DE,再进一步证明△DMN≌△DEN,进而得到MN=BM+NC、〔2〕按要求作出图形,先证△BMD≌△CED,再证△MDN≌△EDN〔SAS〕,即可得出结论、【解答】解:〔1〕MN=BM+NC、理由如下:延长AC至E,使得CE=BM〔或延长AB至E,使得BE=CN〕,并连接DE、∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵,∴△MBD≌△ECD〔SAS〕,∴MD=DE,∴△DMN≌△DEN,∴MN=BM+NC、〔2〕如图②中,结论:MN=NC﹣BM、理由:在CA上截取CE=BM、∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵,∴△BMD≌△CED〔SAS〕,∴DE=DM,在△MDN和△EDN中∵,∴△MDN≌△EDN〔SAS〕,∴MN=NE=NC﹣CE=NC﹣BM、2017年2月20日。

天津市红桥区2016-2017学年八年级上期末数学试卷含答案解析(word文档良心出品)

天津市红桥区2016-2017学年八年级上期末数学试卷含答案解析(word文档良心出品)

天津市红桥区2016-2017学年八年级上期末数学试卷含答案解析【一】选择题〔本大题共10小题,每题3分,共30分,在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳〕1、倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水旳标志,在这些标志中,是轴对称图形旳是〔〕A、B、C、D、2、如图,点C在AD上,CA=CB,∠A=20°,那么∠BCD=〔〕A、20°B、40°C、50°D、140°3、计算2x2y〔x﹣3xy2〕=〔〕A、2x3y﹣3x3y3B、2xy2﹣6x3y3C、2x3y﹣6x3y3D、2x2y+6x3y34、在平面直角坐标系中,点〔2,3〕关于y轴对称旳点旳坐标是〔〕A、〔﹣2,﹣3〕B、〔2,﹣3〕C、〔﹣2,3〕D、〔2,3〕5、化简旳结果是〔〕A、B、C、D、6、某工厂现在平均每天比原打算多生产30台机器,现在生产500台机器所需时刻与圆打算生产350台机器所需时刻相同、设原打算平均每天生产x台机器,下面所列方程正确旳选项是〔〕A、B、C、D、7、如图,AE∥DF,AE=DF,那么添加以下条件还不能使△EAC≌△FDB旳为〔〕A、AB=CDB、CE∥BFC、∠E=∠FD、CE=BF8、如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,那么△AEF旳周长为〔〕A、12B、13C、14D、189、设〔2a+3b〕2=〔2a﹣3b〕2+A,那么A=〔〕A、6abB、12abC、0D、24ab10、如图,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,假设∠A=70°,那么∠An﹣1AnBn﹣1旳度数为〔〕A、B、C、D、【二】填空题:本大题共6小题,每题3分,共18分11、计算:〔﹣2ab〕2=、12、等腰三角形旳其中二边长分别为4,9,那么那个等腰三角形旳周长为、13、式子无意义,那么〔y+x〕〔y﹣x〕+x2旳值等于、14、如图,AC是正五边形ABCDE旳一条对角线,那么∠ACB=、15、如图,在△ABC中,AB<AC,BC边上旳垂直平分线DE交BC于点D,交AC 于点E,BD=4,△ABE旳周长为14,那么△ABC旳周长为、16、将式子a2+2a2〔a+1〕2+〔a+1〕2分解因式旳结果等于、【三】解答题:本大题共6个小题,共52分,解承诺写出文字说明、证明过程或演算步骤17、如图,D是△ABC旳边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF、18、完成以下各题:〔1〕计算﹣6ab〔2a2b﹣ab2〕〔2〕化简〔a﹣1〕〔a+1〕﹣〔a﹣1〕2、19、xy=﹣3,满足x+y=2,求代数式x2y+xy2旳值、20、化简:〔1+〕÷、21、先化简,再求值:÷〔x﹣2﹣〕﹣,其中x为方程5x+1=2〔x﹣1〕旳解、22、甲、乙两个工程队打算参与一项工程建设,甲队单独施工30天完成该项工程旳,这时乙队加入,两队还需同时施工15天,才能完成该项工程,假设乙队单独施工,需要多少天才能完成该项工程?23、如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°旳等腰三角形,以D 为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN、〔I〕探究:线段BM,MN,NC之间旳关系,并加以证明、提示:看到那个问题后,小明猜想:BM+NC=MN,同时通过延长AC到点E,使得CE=BM,连接DE,再证明三角形全等,请你按照小明旳思路写出证明过程、〔Ⅱ〕假设点M是AB旳延长线上旳一点,N是CA旳延长线上旳点,其它条件不变,请你再探线段BM,MN,NC之间旳关系,在图②中画出图形,并说明理由、2016-2017学年天津市红桥区八年级〔上〕期末数学试卷参考【答案】与试题【解析】【一】选择题〔本大题共10小题,每题3分,共30分,在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳〕1、倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水旳标志,在这些标志中,是轴对称图形旳是〔〕A、B、C、D、【考点】轴对称图形、【分析】依照轴对称图形旳概念对各图形推断后即可得解、【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;应选:C、2、如图,点C在AD上,CA=CB,∠A=20°,那么∠BCD=〔〕A、20°B、40°C、50°D、140°【考点】三角形旳外角性质、【分析】依照等边对等角旳性质得∠A=∠B,再依照三角形旳一个外角等于和它不相邻旳两个内角旳和,即可求出∠BCD旳度数、【解答】解:∵CA=CB,∠A=20°,∴∠A=∠B=20°,∴∠BCD=∠A+∠B=20°+20°=40°、应选B、3、计算2x2y〔x﹣3xy2〕=〔〕A、2x3y﹣3x3y3B、2xy2﹣6x3y3C、2x3y﹣6x3y3D、2x2y+6x3y3【考点】单项式乘多项式、【分析】依照单项式与多项式相乘旳运算法那么计算即可、【解答】解:2x2y〔x﹣3xy2〕=2x3y﹣6x3y3、应选:C、4、在平面直角坐标系中,点〔2,3〕关于y轴对称旳点旳坐标是〔〕A、〔﹣2,﹣3〕B、〔2,﹣3〕C、〔﹣2,3〕D、〔2,3〕【考点】关于x轴、y轴对称旳点旳坐标、【分析】平面直角坐标系中任意一点P〔x,y〕,关于y轴旳对称点旳坐标是〔﹣x,y〕,即关于纵轴旳对称点,纵坐标不变,横坐标变成相反数、【解答】解:点〔2,3〕关于y轴对称旳点旳坐标是〔﹣2,3〕、应选:C、5、化简旳结果是〔〕A、B、C、D、【考点】分式旳乘除法、【分析】原式利用除法法那么变形,约分即可得到结果、【解答】解:原式=•=、应选A、6、某工厂现在平均每天比原打算多生产30台机器,现在生产500台机器所需时刻与圆打算生产350台机器所需时刻相同、设原打算平均每天生产x台机器,下面所列方程正确旳选项是〔〕A、B、C、D、【考点】由实际问题抽象出分式方程、【分析】设原打算平均每天生产x台机器,那么实际每天生产〔x+30〕台机器,依照现在生产500台机器所需时刻与圆打算生产350台机器所需时刻相同,列方程即可、【解答】解:设原打算平均每天生产x台机器,那么实际每天生产〔x+30〕台机器,由题意得,=、应选A、7、如图,AE∥DF,AE=DF,那么添加以下条件还不能使△EAC≌△FDB旳为〔〕A、AB=CDB、CE∥BFC、∠E=∠FD、CE=BF【考点】全等三角形旳判定、【分析】判定三角形全等旳方法要紧有SAS、ASA、AAS、SSS等,依照所添加旳条件判段能否得出△EAC≌△FDB即可【解答】解:〔A〕当AB=CD时,AC=DB,依照SAS能够判定△EAC≌△FDB;〔B〕当CE∥BF时,∠ECA=∠FBD,依照AAS能够判定△EAC≌△FDB;〔C〕当∠E=∠F时,依照ASA能够判定△EAC≌△FDB;〔D〕当CE=BF时,不能判定△EAC≌△FDB;应选D8、如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,那么△AEF旳周长为〔〕A、12B、13C、14D、18【考点】等腰三角形旳判定与性质;平行线旳性质、【分析】依照平行线旳性质得到∠EDB=∠DBC,∠FDC=∠DCB,依照角平分线旳性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,因此得到ED=EB,FD=FC,即可得到结果、【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB旳平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF旳周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13、应选B、9、设〔2a+3b〕2=〔2a﹣3b〕2+A,那么A=〔〕A、6abB、12abC、0D、24ab【考点】完全平方公式、【分析】由完全平方公式〔a±b〕2=a2±2ab+b2,得到〔a+b〕2=〔a﹣b〕2+4ab,据此能够作出推断、【解答】解:∵〔2a+3b〕2=〔2a﹣3b〕2+4×2a×3b=〔2a﹣3b〕2+12ab,〔2a+3b〕2=〔2a﹣3b〕2+A,∴A=12aB、应选:B、10、如图,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,假设∠A=70°,那么∠An﹣1AnBn﹣1旳度数为〔〕A 、B 、C 、D 、【考点】等腰三角形旳性质、【分析】依照三角形外角旳性质及等腰三角形旳性质分别求出∠B 1A 2A 1,∠B 2A 3A 2及∠B 3A 4A 3旳度数,找出规律即可得出∠A n ﹣1A n B n ﹣1旳度数、 【解答】解:∵在△ABA 1中,∠A=70°,AB=A 1B , ∴∠BA 1A=70°,∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1旳外角,∴∠B 1A 2A 1==35°;同理可得,∠B 2A 3A 2=17.5°,∠B 3A 4A 3=×17.5°=,∴∠A n ﹣1A n B n ﹣1=、应选:C 、【二】填空题:本大题共6小题,每题3分,共18分 11、计算:〔﹣2ab 〕2=4a 2b 2、 【考点】幂旳乘方与积旳乘方、【分析】直截了当利用积旳乘方运算法那么以及幂旳乘方运算法那么求出【答案】、【解答】解:〔﹣2ab 〕2=4a 2b 2、 故【答案】为:4a 2b 2、12、等腰三角形旳其中二边长分别为4,9,那么那个等腰三角形旳周长为22、 【考点】等腰三角形旳性质;三角形三边关系、【分析】分为两种情况:①当三角形旳三边是4,4,9时,②当三角形旳三边是4,9,9时,看看是否符合三角形旳三边关系定理,符合时求出即可、 【解答】解:分为两种情况:①当三角形旳三边是4,4,9时, ∵4+4<9,∴现在不符合三角形旳三边关系定理,现在不存在三角形;②当三角形旳三边是4,9,9时,现在符合三角形旳三边关系定理,现在三角形旳周长是4+9+9=22,故【答案】为:22、13、式子无意义,那么〔y+x〕〔y﹣x〕+x2旳值等于、【考点】分式有意义旳条件;平方差公式、【分析】依照式子无意义,先确定y旳值,再化简代数式〔y+x〕〔y﹣x〕+x2,最后代入求值、【解答】解:因为式子无意义,因此3y﹣1=0,y=、〔y+x〕〔y﹣x〕+x2=y2﹣x2+x2=y2当y=时,原式=〔〕2=故【答案】为:14、如图,AC是正五边形ABCDE旳一条对角线,那么∠ACB=36°、【考点】多边形内角与外角、【分析】由正五边形旳性质得出∠B=108°,AB=CB,由等腰三角形旳性质和三角形内角和定理即可得出结果、【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=÷2=36°;故【答案】为:36°、15、如图,在△ABC中,AB<AC,BC边上旳垂直平分线DE交BC于点D,交AC 于点E,BD=4,△ABE旳周长为14,那么△ABC旳周长为22、【考点】线段垂直平分线旳性质、【分析】由DE垂直平分BC可得,BE=CE;因此△ABC旳周长=△ABE旳周长+BC;然后由垂直平分线旳性质知BC=2BD,从而求得△ABC旳周长、【解答】解:∵BC边上旳垂直平分线DE交BC于点D,交AC于点E,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE旳周长为14,∴AB+AE+BE=AB+AE+EC=AB+AC=14;∴△ABC旳周长是:AB+AC+BC=14+8=22;故【答案】是:22、16、将式子a2+2a2〔a+1〕2+〔a+1〕2分解因式旳结果等于〔2a+1〕2、【考点】因式分解-运用公式法、【分析】原式利用完全平方公式分解即可、【解答】解:原式=[a+〔a+1〕]2=〔2a+1〕2,故【答案】为:〔2a+1〕2【三】解答题:本大题共6个小题,共52分,解承诺写出文字说明、证明过程或演算步骤17、如图,D是△ABC旳边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF、【考点】全等三角形旳判定与性质、【分析】依照平行线性质求出∠A=∠FCE,依照AAS推出△ADE≌△CFE即可、【解答】证明:∵FC∥AB,∴∠A=∠FCE,在△ADE和△CFE中∴△ADE≌△CFE〔AAS〕,∴AD=CF、18、完成以下各题:〔1〕计算﹣6ab〔2a2b﹣ab2〕〔2〕化简〔a﹣1〕〔a+1〕﹣〔a﹣1〕2、【考点】整式旳混合运算、【分析】结合整式混合运算旳运算法那么进行求解即可、【解答】解:〔1〕原式=﹣6ab×2a2b﹣〔﹣6ab〕×ab2=﹣12a3b2+2a2b3、〔2〕原式=a2﹣1﹣a2﹣1+2a=2a﹣2、19、xy=﹣3,满足x+y=2,求代数式x2y+xy2旳值、【考点】因式分解-提公因式法、【分析】将原式提取公因式xy,进而将代入求出即可、【解答】解:∵xy=﹣3,x+y=2,∴x2y+xy2=xy〔x+y〕=﹣3×2=﹣6、20、化简:〔1+〕÷、【考点】分式旳混合运算、【分析】原式括号中两项通分并利用同分母分式旳加法法那么计算,同时利用除法法那么变形,约分即可得到结果、【解答】解:原式=•=﹣、21、先化简,再求值:÷〔x﹣2﹣〕﹣,其中x为方程5x+1=2〔x﹣1〕旳解、【考点】分式旳化简求值、【分析】先依照分式混合运算旳法那么把原式进行化简,再求出x旳值,代入原式进行计算即可、【解答】解:原式=÷﹣=•﹣=﹣=﹣,由方程5x+1=2〔x﹣1〕,解得:x=﹣1,∴当x=﹣1时,原式=﹣=、22、甲、乙两个工程队打算参与一项工程建设,甲队单独施工30天完成该项工程旳,这时乙队加入,两队还需同时施工15天,才能完成该项工程,假设乙队单独施工,需要多少天才能完成该项工程?【考点】分式方程旳应用、【分析】依照题意能够列出相应旳分式方程,从而能够解答此题、【解答】解:设乙单独施工需要x天完成该工程,,解得,x=30,经检验x=30是原分式方程旳解,即假设乙队单独施工,需要30天才能完成该项工程、23、如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°旳等腰三角形,以D 为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN、〔I〕探究:线段BM,MN,NC之间旳关系,并加以证明、提示:看到那个问题后,小明猜想:BM+NC=MN,同时通过延长AC到点E,使得CE=BM,连接DE,再证明三角形全等,请你按照小明旳思路写出证明过程、〔Ⅱ〕假设点M是AB旳延长线上旳一点,N是CA旳延长线上旳点,其它条件不变,请你再探线段BM,MN,NC之间旳关系,在图②中画出图形,并说明理由、【考点】全等三角形旳判定与性质;等腰三角形旳性质;等边三角形旳性质、【分析】〔1〕延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等旳线段,MD=DE,再进一步证明△DMN≌△DEN,进而得到MN=BM+NC、〔2〕按要求作出图形,先证△BMD≌△CED,再证△MDN≌△EDN〔SAS〕,即可得出结论、【解答】解:〔1〕MN=BM+NC、理由如下:延长AC至E,使得CE=BM〔或延长AB至E,使得BE=CN〕,并连接DE、∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵,∴△MBD≌△ECD〔SAS〕,∴MD=DE,∴△DMN≌△DEN,∴MN=BM+NC、〔2〕如图②中,结论:MN=NC﹣BM、理由:在CA上截取CE=BM、∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵,∴△BMD≌△CED〔SAS〕,∴DE=DM,在△MDN和△EDN中∵,∴△MDN≌△EDN〔SAS〕,∴MN=NE=NC﹣CE=NC﹣BM、2017年2月20日。

2017年天津市部分区八年级上学期期末数学试卷与解析答案

2017年天津市部分区八年级上学期期末数学试卷与解析答案

2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5 6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。

2017-2018学年天津市红桥区八年级上期末数学试卷(有答案)【经典】

2017-2018学年天津市红桥区八年级(上)期末数学试卷一、选择题(本大题12小题,每小题3分,共36分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.有下列长度的三条线段,能组成三角形的是()A.1cm、2cm、3cm B.1cm、4cm、2cmC.2cm、3cm、4cm D.6cm、2cm、3cm3.计算()2003×1.52002×(﹣1)2004的结果是()A.B.C.﹣D.﹣4.如果把分式中x和y都扩大10倍,那么分式的值()A.不变B.缩小10倍C.扩大2倍D.扩大10倍5.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.﹣7或1 D.7或﹣17.下列从左到右的变形哪个是分解因式()A.x2+2x﹣3=x(x+2)﹣3B.ma+mb+na+nb=m(a+b)+n(a+b)C.x2﹣12x+36=(x﹣6)2D.﹣2m(m+n)=﹣2m2﹣2mn8.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm9.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且x≠1 10.小明通常上学时走上坡路,途中平均速度为m千米/时,放学回家时,沿原路返回,通常的平均速度为n千米/时,则小明上学和放学路上的平均速度为()千米/时.A.B.C.D.11.在化简时,甲、乙两位同学的解答如下:甲:===﹣乙:===﹣.A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错12.已知,如图在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB 的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为()A.10°B.20°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)13.一个等腰三角形的两边长分别为2和5,则它的周长为.14.若|x+2|+=0,则y x的值为.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是.16.在数轴上,点A、B对应的数分别为2,,且A、B两点关于原点对称,则x 的值为.17.已知OC平分∠AOB,点P为OC上一点,PD⊥OA于D,且PD=3cm,过点P作PE ∥OA交OB于E,∠AOB=30°,求PE的长度cm.18.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.三、解答题(本大题6小题,共46分)19.(6分)①计算(x+2)2﹣(x+1)(x﹣1)②因式分解(x2﹣3)2﹣2(x2﹣3)+1.20.(6分)①解方程﹣=3②计算(﹣1)2+.21.(8分)先化简后求值:已知:x=﹣2,求分式1﹣的值.22.(8分)(1)如图,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的同侧,BD⊥AE于D,CE⊥AE于E.求证:BD=DE﹣CE;(2)上题中,变成如图,B,C在AE的异侧时,BD,DE,CE关系如何?并加以证明.23.(8分)为了迎接“十•一”小长假的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?24.(10分)如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.参考答案与试题解析一、选择题(本大题12小题,每小题3分,共36分)1.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.2.【解答】解:A、1+2=3,不能构成三角形;B、1+2<4,不能构成三角形;C、2+3>4,能构成三角形;D、2+3<6,不能构成三角形.故选:C.3.【解答】解:()2003×1.52002×(﹣1)2004=×[()2002×1.52002]×(﹣1)2004=×(×)2002=×1=.故选:A.4.【解答】解:分别用10x和10y去代换原分式中的x和y,可得=.可见分式的值不变.故选:A.5.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.6.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)=±8,即m=7或﹣1.故选:D.7.【解答】解:A、没把一个多项式化成几个整式乘积的形式,故A错误;B、没把一个多项式化成几个整式乘积的形式,故B错误;C、把一个多项式化成几个整式乘积的形式,故C正确;D、是整式的乘法,故D错误;故选:C.8.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=7cm,∴AE=AB﹣BE=10﹣7=3cm,∵AD+DE=AD+CD=AC=6cm,∴△AED的周长=6+3=9cm.故选:A.9.【解答】解:∵在实数范围内有意义,∴x≥0且x﹣1≠0,∴x≥0且x≠1.故选:D.10.【解答】解:设上学路程为1,则往返总路程为2,上坡时间为,下坡时间为,则平均速度==(千米/时).故选:C.11.【解答】解:甲进行分母有理化时不能确定﹣≠0,故不能直接进行分母的有理化,故甲错误;乙分子因式分解,再与分母约分,故乙正确.故选:B.12.【解答】解:连接OD,∵BC⊥x轴于点C,∠OBC=35°,∴∠AOB=∠OBC=35°,∠BOC=90°﹣35°=55°.∵点A关于直线OB的对称点D恰好在BC上,∴OB是线段AD的垂直平分线,∴∠BOD=∠AOB=35°,∴∠DOC=∠BOC﹣∠BOD=55°﹣35°=20°.∵点E与点O关于直线BC对称,∴BC是OE的垂直平分线,∴∠DOC=∠OED=20°.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.14.【解答】解:由题意得,x+2=0,y﹣3=0,解得x=﹣2,y=3,所以,y x=3﹣2=.故答案为:.15.【解答】解:首先用分割法来计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.16.【解答】解:根据题意得:=﹣2,去分母得:x﹣5=﹣2(x+1),化简得:3x=3,解得:x=1.经检验:x=1是原方程的解,所以x=1.17.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PE∥OA,∴∠EPO=∠AOP=15°,∴∠BEP=∠BOC+∠EPO=30°,∴PE=2PF,∵OC平分∠AOB,PD⊥OA于D,PF⊥OB于F,PD=3cm,∴PD=PF=3cm,∴PE=6cm,故答案为:6.18.【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC +S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.三、解答题(本大题6小题,共46分)19.【解答】解:①(x+2)2﹣(x+1)(x﹣1)=(x2+4x+4)﹣(x2﹣1)=x2+4x+4﹣x2+1=4x+5;②(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.20.【解答】解:①x+3=3(x﹣1),x+3=3x﹣3,x=3,检验:把x=3代入最简公分母x﹣1=2≠0,所以,x=3是原方程的解;②原式=(3﹣2+1)+(﹣1)=3﹣.21.【解答】解:原式=1﹣•(÷)=1﹣••=1﹣=,当x=﹣2时,原式===.22.【解答】证明:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DEB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE(2)BD=DE+CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;23.【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.24.【解答】(1)解:∵在Rt△ABO中,∠BAO=30°,∴AB=2BO=2;(2)证明:连接OD,∵△ABE为等边三角形,∴AB=AE,∠EAB=60°,∵∠BAO=30°,作OA的垂直平分线MN交AB的垂线AD于点D,∴∠DAO=60°.∴∠EAO=∠NAB又∵DO=DA,∴△ADO为等边三角形.∴DA=AO.在△ABD与△AEO中,∵,∴△ABD≌△AEO(SAS).∴BD=OE.(3)证明:作EH⊥AB于H.∵AE=BE,∴AH=AB,∵BO=AB,∴AH=BO,在Rt△AEH与Rt△BAO中,,∴Rt△AEH≌Rt△BAO(HL),∴EH=AO=AD.又∵∠EHF=∠DAF=90°,在△HFE与△AFD中,,∴△HFE≌△AFD(AAS),∴EF=DF.∴F为DE的中点.。

2017-2018学年天津市红桥区八年级上期末数学试卷(有答案)【精品好卷】

2017-2018学年天津市红桥区八年级(上)期末数学试卷一、选择题(本大题12小题,每小题3分,共36分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.有下列长度的三条线段,能组成三角形的是()A.1cm、2cm、3cm B.1cm、4cm、2cmC.2cm、3cm、4cm D.6cm、2cm、3cm3.计算()2003×1.52002×(﹣1)2004的结果是()A.B.C.﹣D.﹣4.如果把分式中x和y都扩大10倍,那么分式的值()A.不变B.缩小10倍C.扩大2倍D.扩大10倍5.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.﹣7或1 D.7或﹣17.下列从左到右的变形哪个是分解因式()A.x2+2x﹣3=x(x+2)﹣3B.ma+mb+na+nb=m(a+b)+n(a+b)C.x2﹣12x+36=(x﹣6)2D.﹣2m(m+n)=﹣2m2﹣2mn8.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm9.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且x≠110.小明通常上学时走上坡路,途中平均速度为m千米/时,放学回家时,沿原路返回,通常的平均速度为n千米/时,则小明上学和放学路上的平均速度为()千米/时.A.B.C.D.11.在化简时,甲、乙两位同学的解答如下:甲:===﹣乙:===﹣.A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错12.已知,如图在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为()A.10°B.20°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)13.一个等腰三角形的两边长分别为2和5,则它的周长为.14.若|x+2|+=0,则y x的值为.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是.16.在数轴上,点A、B对应的数分别为2,,且A、B两点关于原点对称,则x的值为.17.已知OC平分∠AOB,点P为OC上一点,PD⊥OA于D,且PD=3cm,过点P作PE∥OA 交OB于E,∠AOB=30°,求PE的长度cm.18.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.三、解答题(本大题6小题,共46分)19.(6分)①计算(x+2)2﹣(x+1)(x﹣1)②因式分解(x2﹣3)2﹣2(x2﹣3)+1.20.(6分)①解方程﹣=3②计算(﹣1)2+.21.(8分)先化简后求值:已知:x=﹣2,求分式1﹣的值.22.(8分)(1)如图,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的同侧,BD⊥AE于D,CE⊥AE于E.求证:BD=DE﹣CE;(2)上题中,变成如图,B,C在AE的异侧时,BD,DE,CE关系如何?并加以证明.23.(8分)为了迎接“十•一”小长假的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?24.(10分)如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.参考答案与试题解析一、选择题(本大题12小题,每小题3分,共36分)1.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.2.【解答】解:A、1+2=3,不能构成三角形;B、1+2<4,不能构成三角形;C、2+3>4,能构成三角形;D、2+3<6,不能构成三角形.故选:C.3.【解答】解:()2003×1.52002×(﹣1)2004=×[()2002×1.52002]×(﹣1)2004=×(×)2002=×1=.故选:A.4.【解答】解:分别用10x和10y去代换原分式中的x和y,可得=.可见分式的值不变.故选:A.5.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.6.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)=±8,即m=7或﹣1.故选:D.7.【解答】解:A、没把一个多项式化成几个整式乘积的形式,故A错误;B、没把一个多项式化成几个整式乘积的形式,故B错误;C、把一个多项式化成几个整式乘积的形式,故C正确;D、是整式的乘法,故D错误;故选:C.8.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=7cm,∴AE=AB﹣BE=10﹣7=3cm,∵AD+DE=AD+CD=AC=6cm,∴△AED的周长=6+3=9cm.故选:A.9.【解答】解:∵在实数范围内有意义,∴x≥0且x﹣1≠0,∴x≥0且x≠1.故选:D.10.【解答】解:设上学路程为1,则往返总路程为2,上坡时间为,下坡时间为,则平均速度==(千米/时).故选:C.11.【解答】解:甲进行分母有理化时不能确定﹣≠0,故不能直接进行分母的有理化,故甲错误;乙分子因式分解,再与分母约分,故乙正确.故选:B.12.【解答】解:连接OD,∵BC⊥x轴于点C,∠OBC=35°,∴∠AOB=∠OBC=35°,∠BOC=90°﹣35°=55°.∵点A关于直线OB的对称点D恰好在BC上,∴OB是线段AD的垂直平分线,∴∠BOD=∠AOB=35°,∴∠DOC=∠BOC﹣∠BOD=55°﹣35°=20°.∵点E与点O关于直线BC对称,∴BC是OE的垂直平分线,∴∠DOC=∠OED=20°.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.14.【解答】解:由题意得,x+2=0,y﹣3=0,解得x=﹣2,y=3,所以,y x=3﹣2=.故答案为:.15.【解答】解:首先用分割法来计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.16.【解答】解:根据题意得:=﹣2,去分母得:x﹣5=﹣2(x+1),化简得:3x=3,解得:x=1.经检验:x=1是原方程的解,所以x=1.17.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PE∥OA,∴∠EPO=∠AOP=15°,∴∠BEP=∠BOC+∠EPO=30°,∴PE=2PF,∵OC平分∠AOB,PD⊥OA于D,PF⊥OB于F,PD=3cm,∴PD=PF=3cm,∴PE=6cm,故答案为:6.18.【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC +S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.三、解答题(本大题6小题,共46分)19.【解答】解:①(x+2)2﹣(x+1)(x﹣1)=(x2+4x+4)﹣(x2﹣1)=x2+4x+4﹣x2+1=4x+5;②(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.20.【解答】解:①x+3=3(x﹣1),x+3=3x﹣3,x=3,检验:把x=3代入最简公分母x﹣1=2≠0,所以,x=3是原方程的解;②原式=(3﹣2+1)+(﹣1)=3﹣.21.【解答】解:原式=1﹣•(÷)=1﹣••=1﹣=,当x=﹣2时,原式===.22.【解答】证明:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DEB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE(2)BD=DE+CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;23.【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.24.【解答】(1)解:∵在Rt△ABO中,∠BAO=30°,∴AB=2BO=2;(2)证明:连接OD,∵△ABE为等边三角形,∴AB=AE,∠EAB=60°,∵∠BAO=30°,作OA的垂直平分线MN交AB的垂线AD于点D,∴∠DAO=60°.∴∠EAO=∠NAB又∵DO=DA,∴△ADO为等边三角形.∴DA=AO.在△ABD与△AEO中,∵,∴△ABD≌△AEO(SAS).∴BD=OE.(3)证明:作EH⊥AB于H.∵AE=BE,∴AH=AB,∵BO=AB,∴AH=BO,在Rt△AEH与Rt△BAO中,,∴Rt△AEH≌Rt△BAO(HL),∴EH=AO=AD.又∵∠EHF=∠DAF=90°,在△HFE与△AFD中,,∴△HFE≌△AFD(AAS),∴EF=DF.∴F为DE的中点.。

(试卷合集)天津市2018年八年级数学上学期期末试卷15套合集含答案

八年级数学上学期期末考试试题一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的...1.剪纸是中国民间流行的一种历史悠久的镂空艺术.剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群众的喜爱.下列剪纸图案是轴对称图形的是 A B C D x-12.使有意义的x 的取值范围是A.x>1 B.x<1 C.x≥1 D.x≤1 3.下列成语所描述的事件是随机事件的是A.水中捞月 B.守株待兔 C.流水不腐 D.刻舟求剑4.面积为3的正方形的边长是3±3A. B.1.5 C. D.95.下列约分正确的是226x ymb+cbx+y2 x y=m==yA. B. D. C.3x yma+cax26.下列二次根式中,与是同类二次根式的是128274A. B. C. D.7.产于我国的珍稀动物丹顶鹤总是成群结队地迁徙,而且排成“人”字形.在飞行过程中这“人”字形的角度保持不变.每边的丹顶鹤与丹顶鹤群前进方向的夹角54°44′08″恰好是最坚硬的金刚石晶体的角度.丹顶鹤排成的“人”字形中“撇”与“捺”的夹角度数接近于 A.54° B.55° C.100°D.110°2a b b8.实数,在数轴上的位置如图所示,化简的结果是ab0aaa 2b a 2b A.B.- C. D.9.如图,要制作底边BC的长为40cm,顶点A到BC 距离与BC长的比为3:8 的等腰三角形木衣架,则腰AB的长是AA. 10 B.15 CBC.20 D.25 10.如图,点A,C,D,E在Rt△MON的边上,∠MON=90°,AE⊥AB 且AE=AB,BC⊥CD 且BC=CD,BH⊥ON于点H,DF⊥ON于点F,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为MEDBNOAHCF A.30 B.50 C.66 D.80 二、填空题(共6道小题,每小题3分,共18分)x-2x11.若分式的值为0,则的值为____________. x 12.把下面的4张牌背面朝上放置,洗匀后任意抽取一张,其点数是奇数的可能性大小是____________. 13.等腰三角形的两边长为3,7,则等腰三角形的周长为_____________. 2x 3x+614.已知一个正数的平方根是和,则x的值为____________. A 15.如图,在△ABC 中,∠ACB=90°,AD 是△ABC 的角平分线,BC=5cm, BD :DC=3:2,则点 D 到 AB 的距离为_________ cm. BCD 16.阅读下面文字,解答问题.22-12是无理数,无理数是无限不循环小数,小腾用表示它的小数部分. 理由是:的整数部分是1,将这个数减去其整数部分,差就是小数部分. 469666-2又例如:因为<<,即2<<3,所以的整数部分为2,小数部分为. 参考小腾的做法解答:17m-n+17①如果的整数部分为m,小数部分为n,则=____________;3骣1÷ç34+4=x+yyx+=____________. ②如果,其中x 是整数,且0 < y < 1,则÷ç÷ç桫3三、解答题(本题共6道小题,第17-19小题各3分;第20-22小题各4分,共21分)8 3 12 217.计算:.14 18.化简:.2x 2x 42(5+1) 2019.计算:. 5 x1 =120.解分式方程:.x 44 x2x 3 2x21.解一元二次方程:. 22.已知:如图,BC∥EF,点C,点F在AD 上,AF=DC,BC = EF.A求证:△ABC≌△DEF.FE BCD四、解答题(本题共4道小题,每小题4分,共16分)23.先化简,再求值:,其22a 2a 1a=2 (a 1)24.列方程或列方程组解应用题. 老京中.2a 1a 2a 1张铁路是1909年由“中国铁路之父”詹天佑主持设计建造的中国第一条干线铁路,全长约210千米,用“人”字形铁轨铺筑的方式解决了火车上山的问题.京张高铁是2022年北京至张家口冬奥会的重点配套交通基础设施,全长约175千米,预计2019年底建成通车.京张高铁的预设平均速度将是老京张铁路的5倍,可以提前5个小时到达,求京张高铁的平均速度.25.如图,已知AM是△ABC的中线,BE⊥AM交AM的延长线于点E,CF⊥AM于点F. 求证:BE=CF . A F BCM E26.如图,在△ABC中,∠ABC=90°,BD⊥AC于点D,BE平分∠ABD,AB=15,BC=20,求AE的长.B ACED五、解答题(本题共3道小题,每小题5分,共15分)27.关于的一元二次方程有两个不相等的实数x2x 2x m 1 0根.m(1)求的取值范围;x=0(2)如果是方程的一个根,求m的值及方程的另一个根. 28.在学习判定两个三角形全等的基本事实“ASA”后,继续探究两个三角形满足两角和其中一角的对边对应相等即“AAS”时,根据三角形内角和是180°,推出第三个角对应相等,从而转化为基本事实“ASA”,进而得到三角形全等的判定定理“AAS”. 探究两个三角形满足两边和其中一边的对角对应相等(“SSA”)是否能判定两个三角形全等时,分以下三种情况:(1)当其中的角是锐角时,三角形的形状不能唯一确定,_______(填“能”或“不能”)判定两个三角形全等;(2)当其中的角是直角时,根据__________,可以推出第三条边对应相等,从而转化为基本事实“__________” 可以判定这两个直角三角形全等,进而得到直角三角形全等的判定定理“HL”. (3)当其中的角是钝角时,写出判定两个三角形全等的解题思路. 已知:如图,在△ABC 和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,求证:△ABC≌△DEF.CF ADBE29.如图1,点C,D把线段AB分割成AC,CD和DB 三条线段,若以AC,CD,DB为边的三角形是一个直角三角形,则称点C,D是线段AB的勾股分割点. (1)如果点M,N是线段AB的勾股分割点,且AM=3,MN=4,那么NB的长为____________;2(2)如图2,点M,N在线段AB上,且AM:MN:NB=1:1:,CM=AM,NC=NB,则∠ACB的度数为____________°;(3)如图3,点M,N是线段AB的勾股分割点,其中MN为最长线段,以AM,MN,NB为三边构造Rt△MCN,连结AC,BC. 依题意画出一个Rt△MCN,并直接写出∠ACB的度数. C ABACDBMNAMNB图1图2图3数学上学期期末考试试题答案一、选择题(本题共10道小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A C B A C B D C D B 二、填空题(本题共6道小题,每小题3分,共18分)题号 11 12 13 14 15 16 1①8. ②4. 答案217 -1 2 4三、解答题(本题共6道小题,第17-19小题各3分;第20-22小题各4分,共21分)24 12 217.解:原式= ………………………… 1分2 2=………………………… 2分22= ………………………… 3分 .x 2418.解: 原式=………………………… 1分(x 2)(x 2)(x 2)(x 2)x 2………………………… 2分=(x 2)(x 2)1=.………………………… 3分x 2 19. 解:原式= ………………………… 2分5 25 1 25=6 . ………………………… 3分5 x1 =120.解:. ………………………… 1分x 4x 4. ………………………… 2分5-x+1=x-4. 2x 10. ………………………… 3分x=5经检验,是原方程的解. ………………………… 4分x=52x-2x=321. 解:. 2x-2x+1=3+1. ………………………… 1分2(x 1) 4. (2)-分. ………………………… 3分x 1 2x=3x=1,. ………………………… 4分12A22.证明:如图,,AF DC F. AF FC DC FC E即AC DF. ………………………… 1分BCD分在△ABC和BC EF∥, ACB DFE . (2)DFE, ……………………… 3分△DEF中, AC DF, ACBBC EF, ∴△ABC≌△DEF(SAS).…………………… 4分四、解答题(本题共4道小题,每小题4分,共16分).解: 原式= ………… 1分2a 1a 1a 11 232 a 1a 1a 1 2a+1+ .............................. 2分 = a-1a-1a+3=.............................. 3分 a-1 a=2当时, 2+3=5原式=............................... 4分 2-1 24.解:设老京张铁路的平均速度为x 千米/时. ......... 1分 210175 5依题意,列方程得 . ............... 2分 x5x 解得 x=35. ..................... 3分 经检验x=35是所列方程的解,并且符合题意. . ........................ 4分 5x 175 答:京张高铁的平均速度为175千米/时. 25.证明:∵BE ⊥AM 于点E ,CF ⊥AM 于点 F , . (1)分 BEM CFM 90 AAM 是 ABC 的中线, . ………………………… 2分 BM CM F 和 CF 中M 在 BEM , BCM BEM CFM , E BME CMF , ………………………… 3分 BM CM , ∴△BEM ≌△CFM(AAS). . ………………………… 4分 BE CF 26. 解:在Rt △ABC 中, , ABC 90 B222 AB BC AC ∴,. C A 90 , BC=20,AB=15 . ………………………… 1分 AC 25, BD ACACED . CDB 90. C CBD 90 . ………………………… 2分 CBD A BE 平分 DBA , DBE ABE . ,, CEB A ABE CBE CBD DBE . CBE CEB . ………………………… 3分CE CB 20. …………………… 4分 AE AC CE 25 20 5五、解答题(本题共3道小题,每小题5分,共15分)2b 4ac 027.解:(1)由题意得:. ………… 1分a 1,b 2,c m 1 ,4 4(m 1) 0 . . ………………………… 2分 m 2(2)将代入原方程得:. …………………… 3分 x=0m=12x-2x=0将代入原方程得:. m=1x(x-2)=0 . x=0x=2,. ………………………… 4分12 另一根为2. ………………………… 5分 28.解:(1)不能. ……………………………………… 1分(2)勾股定理,SSS(或SAS). …………………… 3分(3)如图所示,过点C作交AB的延长线于点M,过点F作交DE的延长线于点N. CM ABFN DECF ADMNBE 根据AAS判定△CMB≌△FNE. 再根据HL判定△AMC≌△DNF. 最后根据AAS判定△ABC≌△DEF. …………………………5分729.解:(1)5或. ………………………… 2分C112.5°(2). ………………………… 3分(3)如图3. ………………………… 4分AMNB ACB 135 . ………………………… 5分图3八年级数学上学期期末考试试题一、选择题(本题有10小题,每题3分,共30分。

2017-2018学年天津市红桥区八年级(上)期末数学试卷(J)

2017-2018学年天津市红桥区八年级(上)期末数学试卷(J)副标题一、选择题(本大题共4小题,共4.0分)1.如果把分式中x和y都扩大10倍,那么分式的值A. 不变B. 缩小10倍C. 扩大2倍D. 扩大10倍【答案】A【解析】解:分别用10x和10y去代换原分式中的x和y,可得.可见分式的值不变.故选:A.根据分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变,可得答案.本题主要考查了分式的基本性质,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.2.若是完全平方式,则m的值等于A. 3B.C. 或1D. 7或【答案】D【解析】解:是完全平方式,,即或.故选:D.利用完全平方公式的特征判断即可确定出m的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.在化简时,甲、乙两位同学的解答如下:甲:乙:.A. 两人解法都对B. 甲错乙对C. 甲对乙错D. 两人都错【答案】B【解析】解:甲进行分母有理化时不能确定,故不能直接进行分母的有理化,故甲错误;乙分子因式分解,再与分母约分,故乙正确.故选:B.分别对甲和乙的过程进行判断,注意分母有理化时要判断.本题考查有理数的化简,属于基础题,关键在于分母有理化时要确定.4.已知,如图在直角坐标系中,点A在y轴上,轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,,则的度数为A.B.C.D.【答案】B【解析】解:连接OD,轴于点C,,,.点A关于直线OB的对称点D恰好在BC上,是线段AD的垂直平分线,,.点E与点O关于直线BC对称,是OE的垂直平分线,.故选:B.先根据平行线的性质求出的度数,由直角三角形的性质得出的度数,再根据点A关于直线OB的对称点D恰好在BC上得出OB是线段AD的垂直平分线,故可得出的度数,进而得出的度数,由点E与点O关于直线BC对称可知BC 是OE的垂直平分线,故可得出.本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.二、填空题(本大题共3小题,共3.0分)5.若,则的值为______.【答案】【解析】解:由题意得,,,解得,,所以,.故答案为:.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.已知OC平分,点P为OC上一点,于D,且,过点P作交OB于E,,求PE的长度______cm.【答案】6【解析】解:过P作于F,,OC平分,,,,,,平分,于D,于F,,,,故答案为:6.过P作于F,根据角平分线的定义可得,根据平行线的性质可得,从而可得,即可得出答案.此题主要考查:含度的直角三角形的性质:在直角三角形中,角所对的直角边等于斜边的一半,角平分线的性质:角的平分线上的点到角的两边的距离相等.7.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当为等腰三角形时,格点C的不同位置有______处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于______.【答案】3;15【解析】解:格点C的不同位置分别是:C、、,网格中的每个小正方形的边长为1,,,,.故答案分别为:3;15.根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知,然后即可确定C点的位置;计算这三个三角形的面积时,的面积直接用得出,其它两个三角形面积可用正方形面积减去多余三角形的面积即可,例如三角形的面积用正方形面积20减去2个相等的三角形面积,再减去梯形的面积即可.此题主要考查学生对等腰三角形的性质和三角形面积等知识点的理解和掌握,此题关键是根据AB的长度确定C点的不同位置,然后再计算3个三角形面积即可此题有一定难度,属于难题.三、计算题(本大题共3小题,共3.0分)8.解方程计算.【答案】解:,,,检验:把代入最简公分母,所以,是原方程的解;原式.【解析】依据解方程的步骤依次计算可得;根据二次根式的性质和运算顺序依次计算可得.本题主要考查解分式方程和二次根式的混合运算,解题的关键是熟练掌握解分式方程的步骤和二次根式的性质.9.先化简后求值:已知:,求分式的值.【答案】解:原式,当时,原式.【解析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.10.如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为,.求AB的长度;以AB为一边作等边,作OA的垂直平分线MN交AB的垂线AD于点求证:;在的条件下,连接DE交AB于求证:F为DE的中点.【答案】解:在中,,;证明:连接OD,为等边三角形,,,,作OA的垂直平分线MN交AB的垂线AD于点D,.又,为等边三角形..在与中,,≌ ..证明:作于H.,,,,在与中,,≌ ,.又,在与中,,≌ ,.为DE的中点.【解析】直接运用直角三角形角的性质即可.连接OD,易证为等边三角形,再证 ≌ 即可.作于H,先证 ≌ ,得,再证 ≌ 即可.本题主要考查全等三角形与等边三角形的巧妙结合,来证明角相等和线段相等.四、解答题(本大题共3小题,共3.0分)11.计算因式分解.【答案】解:;.【解析】先分别利用完全平方公式与平方差公式计算,再去括号合并即可;先利用完全平方公式,再利用平方差公式分解即可.本题考查了整式的混合运算与因式分解,掌握公式是解题的关键.12.如图,中,,,AE是过点A的一条直线,且点B,C在AE的同侧,于D,于求证:;上题中,变成如图,B,C在AE的异侧时,BD,DE,CE关系如何?并加以证明.【答案】证明:,,,,,,,在和中,,≌ ,,,,,,理由如下:,,,,,,,在和中,,≌ ,,,,;【解析】,根据已知利用AAS判定 ≌ ,从而得到,,因为,所以;成立,根据已知利用AAS判定 ≌ ,从而得到,,因为,所以.本题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS,SAS,AAS等这种类型的题目经常考到,要注意掌握.13.为了迎接“十一”小长假的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋已知:用元购进甲种运动鞋的数量与用元购进乙种运动鞋的数量相同.求m的值;要使购进的甲、乙两种运动鞋共200双的总利润利润售价进价不少于21700元,且不超过22300元,问该专卖店有几种进货方案?【答案】解:依题意得,,整理得,,解得,经检验,是原分式方程的解,所以,;设购进甲种运动鞋x双,则乙种运动鞋双,根据题意得,解得,是正整数,,共有11种方案.【解析】根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,构建方程即可解决问题;列出不等式组即可解决问题;本题考查分式方程的应用,解题的关键是正确寻找等量关系,构建分式方程解决问题,注意解分式方程必须检验.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年天津市红桥区八年级(上)期末数学试卷一、选择题(本大题12小题,每小题3分,共36分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.有下列长度的三条线段,能组成三角形的是()A.1cm、2cm、3cm B.1cm、4cm、2cmC.2cm、3cm、4cm D.6cm、2cm、3cm3.计算()2003×1.52002×(﹣1)2004的结果是()A.B.C.﹣D.﹣4.如果把分式中x和y都扩大10倍,那么分式的值()A.不变B.缩小10倍C.扩大2倍D.扩大10倍5.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.﹣7或1 D.7或﹣1 7.下列从左到右的变形哪个是分解因式()A.x2+2x﹣3=x(x+2)﹣3B.ma+mb+na+nb=m(a+b)+n(a+b)C.x2﹣12x+36=(x﹣6)2D.﹣2m(m+n)=﹣2m2﹣2mn8.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm9.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且x≠1 10.小明通常上学时走上坡路,途中平均速度为m千米/时,放学回家时,沿原路返回,通常的平均速度为n千米/时,则小明上学和放学路上的平均速度为()千米/时.A.B.C.D.11.在化简时,甲、乙两位同学的解答如下:甲:===﹣乙:===﹣.A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错12.已知,如图在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为()A.10°B.20°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)13.一个等腰三角形的两边长分别为2和5,则它的周长为.14.若|x+2|+=0,则y x的值为.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是.16.在数轴上,点A、B对应的数分别为2,,且A、B两点关于原点对称,则x的值为.17.已知OC平分∠AOB,点P为OC上一点,PD⊥OA于D,且PD=3cm,过点P 作PE∥OA交OB于E,∠AOB=30°,求PE的长度cm.18.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.三、解答题(本大题6小题,共46分)19.(6分)①计算(x+2)2﹣(x+1)(x﹣1)②因式分解(x2﹣3)2﹣2(x2﹣3)+1.20.(6分)①解方程﹣=3②计算(﹣1)2+.21.(8分)先化简后求值:已知:x=﹣2,求分式1﹣的值.22.(8分)(1)如图,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的同侧,BD⊥AE于D,CE⊥AE于E.求证:BD=DE﹣CE;(2)上题中,变成如图,B,C在AE的异侧时,BD,DE,CE关系如何?并加以证明.23.(8分)为了迎接“十•一”小长假的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?24.(10分)如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.参考答案与试题解析一、选择题(本大题12小题,每小题3分,共36分)1.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.2.【解答】解:A、1+2=3,不能构成三角形;B、1+2<4,不能构成三角形;C、2+3>4,能构成三角形;D、2+3<6,不能构成三角形.故选:C.3.【解答】解:()2003×1.52002×(﹣1)2004=×[()2002×1.52002]×(﹣1)2004=×(×)2002=×1=.故选:A.4.【解答】解:分别用10x和10y去代换原分式中的x和y,可得=.可见分式的值不变.故选:A.5.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.6.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)=±8,即m=7或﹣1.故选:D.7.【解答】解:A、没把一个多项式化成几个整式乘积的形式,故A错误;B、没把一个多项式化成几个整式乘积的形式,故B错误;C、把一个多项式化成几个整式乘积的形式,故C正确;D、是整式的乘法,故D错误;故选:C.8.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=7cm,∴AE=AB﹣BE=10﹣7=3cm,∵AD +DE=AD +CD=AC=6cm ,∴△AED 的周长=6+3=9cm .故选:A .9.【解答】解:∵在实数范围内有意义,∴x ≥0且x ﹣1≠0,∴x ≥0且x ≠1.故选:D .10.【解答】解:设上学路程为1,则往返总路程为2,上坡时间为,下坡时间为,则平均速度==(千米/时).故选:C .11.【解答】解:甲进行分母有理化时不能确定﹣≠0,故不能直接进行分母的有理化,故甲错误; 乙分子因式分解,再与分母约分,故乙正确.故选:B .12.【解答】解:连接OD ,∵BC ⊥x 轴于点C ,∠OBC=35°,∴∠AOB=∠OBC=35°,∠BOC=90°﹣35°=55°.∵点A关于直线OB的对称点D恰好在BC上,∴OB是线段AD的垂直平分线,∴∠BOD=∠AOB=35°,∴∠DOC=∠BOC﹣∠BOD=55°﹣35°=20°.∵点E与点O关于直线BC对称,∴BC是OE的垂直平分线,∴∠DOC=∠OED=20°.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.14.【解答】解:由题意得,x+2=0,y﹣3=0,解得x=﹣2,y=3,所以,y x=3﹣2=.故答案为:.【解答】解:首先用分割法来计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.16.【解答】解:根据题意得:=﹣2,去分母得:x﹣5=﹣2(x+1),化简得:3x=3,解得:x=1.经检验:x=1是原方程的解,所以x=1.17.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PE∥OA,∴∠EPO=∠AOP=15°,∴∠BEP=∠BOC+∠EPO=30°,∴PE=2PF,∵OC平分∠AOB,PD⊥OA于D,PF⊥OB于F,PD=3cm,∴PD=PF=3cm,∴PE=6cm,故答案为:6.【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC +S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.三、解答题(本大题6小题,共46分)19.【解答】解:①(x+2)2﹣(x+1)(x﹣1)=(x2+4x+4)﹣(x2﹣1)=x2+4x+4﹣x2+1=4x+5;②(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.20.【解答】解:①x+3=3(x﹣1),x+3=3x﹣3,检验:把x=3代入最简公分母x﹣1=2≠0,所以,x=3是原方程的解;②原式=(3﹣2+1)+(﹣1)=3﹣.21.【解答】解:原式=1﹣•(÷)=1﹣••=1﹣=,当x=﹣2时,原式===.22.【解答】证明:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DEB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE(2)BD=DE+CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;23.【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.24.【解答】(1)解:∵在Rt△ABO中,∠BAO=30°,∴AB=2BO=2;(2)证明:连接OD,∵△ABE为等边三角形,∴AB=AE,∠EAB=60°,∵∠BAO=30°,作OA的垂直平分线MN交AB的垂线AD于点D,∴∠DAO=60°.∴∠EAO=∠NAB又∵DO=DA,∴△ADO为等边三角形.∴DA=AO.在△ABD与△AEO中,∵,∴△ABD≌△AEO(SAS).∴BD=OE.(3)证明:作EH⊥AB于H.∵AE=BE,∴AH=AB,∵BO=AB,∴AH=BO,在Rt△AEH与Rt△BAO中,,∴Rt△AEH≌Rt△BAO(HL),∴EH=AO=AD.又∵∠EHF=∠DAF=90°,在△HFE与△AFD中,,∴△HFE≌△AFD(AAS),∴EF=DF.∴F为DE的中点.。

相关文档
最新文档