中学数学竞赛讲义—极限的概念及求极限方法
求极限的方法和技巧

1
= b + lim x(e x −1) x→+∞
(a = 1)
= b + lim x ⋅ 1 x x→+∞
(等价无穷小代换)
= b+1
故 a = b = 1.
【例
2】(1997 年
4)求极限
lxi→m0 ⎢⎣⎡
a x
−( 1 x2
− a 2 ) ln(1 +
ax)⎥⎦⎤
(a ≠ 0)
a2 []
2
6
(B)仅有一个跳跃间断点;
(C)有两个可去间断点;
(D)有两个跳跃间断点;
答案
1.1;
β 2 −α 2
n ( n +1)
2.(D); 3. − 2; 4. e 2 ;5. e 2 6.(B); 7.(D).
方法 2 利用有理运算法则求极限
若 lim f (x) = A, lim g(x) = B ,则
+ 1)(5x
+ 1)
=
α
≠
0, ,则(
)
(A)α = 5!, β = 5.
(C) α
=
1 25
,β
=
5.
(B) α
=
5! 25
,β
=
5.
(D) α
=
5 25
,β
=
4.
(B)
【例 9】已知 lim (x + 1)(2x + 1)(3x + 1)(4x + 1)(5x + 1) + ax + b = 16, ,则( )
4.
lxi→m0⎜⎜⎝⎛
1 1
+ +
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
极限的概念和求解方法

极限的概念和求解方法在数学中,极限是一个重要的概念。
它在微积分、数学分析等领域有着广泛的应用。
本文将探讨极限的定义、特性以及求解方法。
一、极限的定义极限是指当自变量趋于某个特定值时,函数的取值趋于一个确定的值。
通常用符号x→a来表示自变量x趋于a的极限。
如果当x无限接近a时,函数f(x)的取值无限接近某个值L,我们就说函数f(x)在x趋近于a时的极限是L,记作lim_(x→a)f(x)=L。
二、极限的特性1. 唯一性特性:如果函数f(x)在x趋近于a时有极限L,那么极限L 是唯一确定的。
2. 保号性特性:如果函数f(x)在x趋近于a时的极限L大于0,那么在a的邻域内,函数f(x)的取值也大于0;同理,如果极限L小于0,那么在a的邻域内,函数f(x)的取值也小于0。
3. 夹逼定理:如果函数f(x)、g(x)与h(x)满足在x趋近于a的过程中,存在一点x_0使得当x靠近x_0时,f(x)≤g(x)≤h(x),并且lim(x→a)f(x)=lim(x→a)h(x)=L,那么lim(x→a)g(x)=L。
三、求解极限的方法1. 代入法:当函数在某个点存在定义时,可以直接将自变量的值代入函数中计算。
例如,对于函数f(x)=2x+3,当x趋近于2时,可以将x=2代入函数中计算,得到极限值为7。
2. 分析法:利用函数的性质和极限特性,通过分析函数在极限点附近的取值趋势,来求解极限。
例如,对于函数f(x)=x^2+3x-1,当x趋近于2时,可以将函数化简为lim_(x→2)(x^2)+lim_(x→2)(3x)-lim_(x→2)(1)=6+6-1=11。
3. 套用已知极限:有时可以利用已知的一些常见极限来求解复杂函数的极限。
常见的一些极限包括sinx/x和e^x的极限值。
例如,对于函数f(x)=(e^x-1)/x,当x趋近于0时,可以套用已知的极限lim_(x→0)(e^x-1)/x=1。
4. L'Hôpital法则:对于一些特殊的函数形式,如0/0或∞/∞,可以使用L'Hôpital法则来求解极限。
极限、导数与定积分

( f [ϕ ( x)])′ =
f ′[ϕ ( x)]ϕ ′( x) .
3. 导数的应用 (1)利用导数研究函数的单调性 ①在区间 (a, b) 内,若 f ′( x) > 0 ,则函数 y = f ( x) 在这个区间内单调递增.
②在区间 (a, b) 内,若 f ′( x) < 0 ,则函数 y = f ( x) 在这个区间内单调递减. (2)利用导数求函数的极值 ①极值的必要条件:若函数 f ( x) 在 x0 处可导,且在 x0 处取得极值,则
2
数学竞赛与自主招生专题讲义
第 讲 极限、导数与定积分
整理、编写:孟伟业
反思 感悟 拓展 提升:
(3)复合函数的导数 设函数 y = f (u ) , u = ϕ ( x) ,已知 ϕ ( x) 在 x 处可导, f (u ) 对应的点 u ( u = ϕ ( x) ) 处 可 导 , 则 复 合 函 数 y = f [ϕ ( x)] 在 点 x 处 可 导 , 且
第 讲 极限、导数与定积分
a
整理、编写:孟伟业
反思 感悟 拓展 提升:
①若 f ( x) 是 [−a, a ] 上的奇函数(如下图左) ,则 ∫ f ( x)dx = 0 ;
x0 x y0 y − 2 =1; a2 b
④设 P( x0 , y0 ) 是抛物线 y 2 = 2 px 上一点,则过 P( x0 , y0 ) 的抛物线切线方
程为 y0 y = p ( x + x0 ) .
2. 导数的运算 (1)常见函数的导数公式
① ( kx + b )′ = k ② C′ = 0 ③ ( xα )′ = α xα −1 ④ ( a x )′ = a x ln a ⑤ (log a x)′ = ( k , b 为常数) ( C 为常数) ( α 为常数) ⑥ ( e x )′ = e x
计算极限的方法总结

计算极限的方法总结极限是数学中重要的概念之一,它用于描述函数或数列在无穷趋近其中一点或其中一数值时的表现。
计算极限的方法有很多种,下面将总结常用的计算极限的方法。
1.代入法:代入法是最基本也是最直接的计算极限的方法。
它适用于能够通过简单代入计算出结果的情况。
通过将极限的变量代入函数中,从而得到极限的值。
2.分式归结法:分式归结法适用于计算含有分式的极限。
通过对分子、分母同时归结或分解,简化极限计算过程。
3.推状极限法:推状极限法也称为夹逼定理,适用于计算含有复杂函数的极限。
通过找到两个函数,一个小于待求函数,一个大于待求函数,并且两个函数的极限相等,从而得到待求函数的极限。
4.极限的四则运算法则:对于已知的极限,可以利用极限的四则运算法则计算复杂函数的极限。
四则运算包括加法、减法、乘法和除法,其中除法需要注意除数不能为零。
5.极限的换元法:当函数含有复杂的表达式时,可以通过进行合适的换元来简化函数求极限的过程。
常见的换元包括三角函数换元、指数函数换元、对数函数换元等。
6.形式极限法:形式极限法适用于计算复杂函数包含无穷大、无穷小量级的极限。
将函数转化为形式极限后,可以利用已知的极限进行计算。
7.泰勒级数展开法:泰勒级数展开法适用于计算函数在特定点处的极限。
通过对函数进行泰勒级数展开,可以将函数转化为多项式的形式,从而计算出极限。
8.洛必达法则:洛必达法则适用于极限存在不确定形式,即0/0或无穷/无穷的情况。
该法则通过对函数的分子和分母分别求导,然后再计算极限的值。
9.幂次不等式法:幂次不等式法适用于计算幂函数的极限。
通过利用幂函数的大小关系,可以确定幂函数的极限。
10.斜线渐进法:斜线渐进法适用于计算函数在无穷远处的极限。
通过将函数分子和分母同时除以最高阶的幂,可以得到斜率为1的直线函数,从而计算出极限。
总结以上所述,计算极限的方法有代入法、分式归结法、推状极限法、极限的四则运算法则、极限的换元法、形式极限法、泰勒级数展开法、洛必达法则、幂次不等式法和斜线渐进法等等。
数学极限公式知识点总结

数学极限公式知识点总结极限的数学定义是非常严格和精确的,它可以在多种情况下应用,比如在求导和积分中。
极限是微积分基本概念之一,也是微积分的核心内容之一。
所以,掌握极限的概念和计算方法对于学习微积分课程非常重要。
下面我将对极限的基本概念、常见的极限计算方法以及一些常见的极限公式进行总结和归纳,希望对大家学习极限有所帮助。
一、极限的基本概念1. 自变量趋于无穷大时的极限当自变量趋于无穷大时,函数的极限情况是我们经常遇到的一种情况。
在这种情况下,我们可以利用一些方法来求解函数的极限。
比如,可以利用函数的单调性和有界性来求解函数的极限值。
在计算自变量趋于无穷大时函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用夹逼定理来求解自变量趋于无穷大时函数的极限值。
2. 自变量趋于有限数值时的极限当自变量趋于有限数值时,函数的极限情况也是我们经常遇到的一种情况。
在这种情况下,我们可以利用函数的特性来求解函数的极限。
比如,可以利用函数的连续性和可导性来求解函数的极限值。
在计算自变量趋于有限数值时函数的极限值时,我们通常使用洛必达法则,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用泰勒展开式和极坐标系等方法来求解自变量趋于有限数值时函数的极限值。
3. 无穷小量与极限无穷小量是微积分中一个非常重要的概念,它是用来描述函数在某一点附近的行为的。
在数学中,无穷小量是指在某一点附近(通常是无穷小范围内)取得非常小的值的变量。
无穷小量可以用来描述函数在某一点附近的变化情况,也可以用来求解函数的极限值。
在计算函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用函数的单调性和有界性来求解函数的极限值。
二、常见的极限计算方法1. 无穷大与无穷小的比较法在计算自变量趋于无穷大时函数的极限值时,我们可以利用无穷大与无穷小的比较法来求解。
62、数学竞赛辅导之-极限2

例
求极限
a lxim0 x
1 x2
a
2
l
n(1
ax
)
解:原式
lxim0
a x
1 x2
ln(1
ax)
lima2
x0
ln(1
ax)
ax ln(1 ax)
lim
x0
x2
a a lim 1 ax
x0 2x
a2x
lim
x0
2
2!
n! (n + 1)!
那么
e = 1+1+ 1 ++ 1 + 1 +
2!
n! (n + 1)!
2en!=
2 [(1 + 1 +
1
++
1
).n!+
n!(1 + o(1)) ]
即
lim
n→∞
xn
=
3
例 设数列xn 满足 0 x1 , xn1 sin xn(n 1,2,)
(1)证明:lim n
xn存在,并求该极限;
1
(2)计算
lnim
xn1 xn
xn2
提示:(1)用归纳法证明单调下降且有下界
(2)用重要极限和洛必达法则
解: (1)由题目可得 0 < xn ≤1 ,则 xn+1 = sin xn < xn
+
2 n2 + 2
++
n n2 + n
,有
1 n(n + 1)
1 n(n + 1) n + 1
高中数学 第十四章《极限与极值》数学竞赛讲义 苏教版

第十四章 极限与导数一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞→+∞→,另外)(lim 0x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A,称右极限。
类似地)(lim 0x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。
2.极限的四则运算:如果0lim x x →f(x)=a, 0lim x x →g(x)=b,那么0lim x x →[f(x)±g(x)]=a ±b,lim x x →[f(x)•g(x)]=ab, 0limx x →).0()()(≠=b bax g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0lim x x →f(x)存在,并且0lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。
5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若xyx ∆∆→∆0lim存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或x dxdy ,即00)()(lim)('0x x x f x f x f x x --=→。
由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。
若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学数学竞赛讲义—极限数列极限的定义一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即n a a -无限地接近于0),那么就说数列{}n a 以a 为极限. 注:a 不一定是{}n a 中的项. 几个常用的极限(1)lim n C C →∞=(C 为常数);(2)1lim =0n n→∞;(3)lim 0n n q →∞=(1q <).两个重要极限(1)0sin lim0x x x →= (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭数列极限的四则运算法则设数列{a n }、{b n },当lim n n a a →∞=,lim n n b b →∞=时,l i m ()n n n ab a b →∞±=±;lim()n n n a b a b →∞= ;limn n na ab b →∞=(0b ≠). 求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m mm n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim0=→x x x 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
例5:求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1+,最后凑指数部分。
【解】222121112111lim 121lim 11lim e x x x x x x x xx x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫⎝⎛-++∞→xx a x a x ,求a 。
5.用等价无穷小量代换求极限 【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -,()abx ax x x b~11,21~cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。
例7:求极限0ln(1)lim1cos x x x x →+=-【解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-.例8:求极限xxx x 30tan sin lim -→【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 6.用罗必塔法则求极限例9:求极限220)sin 1ln(2cos ln lim xx x x +-→ 【说明】∞∞或00型的极限,可通过罗必塔法则来求。
【解】220)sin 1ln(2cos ln lim x x x x +-→xx xx x x 2sin 12sin 2cos 2sin 2lim20+--=→ 3sin 112cos 222sin lim20-=⎪⎭⎫⎝⎛+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xxx x x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f7.用对数恒等式求)()(lim x g x f 极限例11:极限xx x 20)]1ln(1[lim ++→【解】 x x x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lime eexx xx x x ==+++→→【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -因为===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -例12:求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解1】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x →+⎛⎫⎪⎝⎭= 20l n 2c o s l n 3l i m x x x →+-=()01s i n 2c o s l i m2x x x x →⋅-+=() 011s i n 1l i m22c o s 6x x x x →=-⋅=-+ 【解2】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫⎪⎝⎭= 2c o s 1ln 3limx x x →-+=(1)20c o s 11l i m 36x x x →-==-8.利用Taylor 公式求极限例13 求极限 ) 0 ( ,2lim 20>-+-→a xa a x x x . 【解】 ) (ln 2ln 1222ln x a x a x ea ax x +++==,) (ln 2ln 1222x a x a x ax++-=-;). (ln 2222x a x a a x x +=-+-∴ a xx a x x a a x x x x 22222020ln )(ln lim 2lim =+=-+→-→ . 例14 求极限011lim (cot )x x x x →-.【解】 00111sin cos lim (cot )lim sin x x x x x x x x x x x→→--= 323230()[1()]3!2!lim x x x x x x x xοο→-+--+= 333011()()12!3!lim 3x x x x ο→-+==.9.数列极限转化成函数极限求解例15:极限21sin lim n n n n ⎪⎭⎫ ⎝⎛∞→【说明】这是∞1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。
【解】考虑辅助极限611sin 11011sin 222lim lim 1sin lim -⎪⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛-+∞→+∞→===⎪⎭⎫ ⎝⎛+e e ex x y y y y x x x x x x所以,6121sin lim -∞→=⎪⎭⎫ ⎝⎛e n n n n10.n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法 (1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。
⎰=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→10)(211lim dx x f n n f n f n f n n 【解】原式=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∞→222112111111lim n n n n n n 1212ln2111102+--=+=⎰dx x例17:极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 【说明】(1)该题遇上一题类似,但是不能凑成⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛∞→n n f n f n f n n 211lim 的形式,因而用两边夹法则求解;(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。
【解】⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 因为11211122222+≤++++++≤+n n nn n n nn n又nn n n +∞→2lim11lim2=+=∞→n nn所以⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim =1 12.单调有界数列的极限问题例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<== (Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得10sin 1,1,2,n n x x n π+<=≤<= ,则数列{}n x 有界. 于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 61sin 01sin 110032221lim lim sin 1lim --→⎪⎭⎫⎝⎛-→→===⎪⎭⎫ ⎝⎛+++e e e x x xx x x x x x x x x (使用了罗必塔法则)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.。