人物简介 发现大气压力的科学家——托里拆利
托里拆利实验结论

托里拆利实验结论一、背景介绍托里拆利实验是指由美国心理学家托里拆利(Torricelli)于1643年进行的一项实验,它被认为是空气压力研究的开端。
该实验通过将水银注入一个长而细的玻璃管中,然后将其倒立于一个水池中,测量了水银柱的高度。
这项实验揭示了空气压力与海平面高度之间的关系,并为后来发展出大气压力计奠定了基础。
二、实验过程1. 实验器材:玻璃管、水银、水池;2. 实验步骤:(1)将玻璃管用一端封闭,另一端开口,并且足够长;(2)将开口处放入水池中,保证封闭处不接触水面;(3)用注射器或吸管向开口处注入适量的水银;(4)观察到水银柱在玻璃管内上升,并最终停留在一个高度处;(5)测量该高度。
三、实验结论1. 空气有重量。
2. 空气对物体产生压力。
3. 大气压力随海平面高度而变化。
4. 大气压力可以用水银柱的高度来测量。
四、实验意义1. 托里拆利实验揭示了空气压力与海平面高度之间的关系,为后来发展出大气压力计奠定了基础。
2. 该实验为后来研究天气、气象学等领域提供了基础数据,对人类的生产和生活有着重要意义。
3. 托里拆利实验也为科学家们深入探究大气压力和空气动力学提供了思路和方法。
五、实验存在的问题与改进1. 实验过程中需要使用水银,但水银是一种有毒物质,对人体健康和环境造成危害。
因此,在实际应用中需要寻找替代品。
2. 实验过程中需要使用玻璃管,但玻璃管易碎且成本较高。
因此,在实际应用中需要寻找更加耐用且经济的材料代替玻璃管。
六、结语托里拆利实验是一项经典的物理学实验,它不仅揭示了空气压力与海平面高度之间的关系,为后来发展出大气压力计奠定了基础,而且为科学家们深入探究大气压力和空气动力学提供了思路和方法。
虽然该实验存在一些问题,但其意义依然重大。
我们相信,在不断的科技进步与创新中,这些问题也将得到有效解决。
大气压强说理题解题格式

大气压强说理题解题格式中考考点解读:大气压强大气压强托里拆利(Evangelista Torricelli)托里拆利(Evangelista Torricelli,1608年10月15日-1647年10月25日),意大利物理学家、数学家,曾任伽利略的助手。
他特别强调处理力学问题时数学与实验的重要性,发明了水银气压计,解释了风的成因,曾应邀在秕糠学会作了12次学术演讲,抨击了天主教思想,捍卫伽利略的学说。
1647年10月25日,托里拆利逝世。
1.测量——托里拆利实验:(1)装置及现象如图所示:(2)实验时,应先向玻璃管中灌满汞,将玻璃管内的空气全部排出。
(3)影响玻璃管内汞柱高度的因素。
①随外界大气压的变化而变化;若玻璃管内混入少量空气,则管内汞柱的高度会减小。
②与管的粗细、倾斜程度、管的长度及将玻璃管提起还是下压、汞液槽内汞面的高低等因素无关。
如果把玻璃管倾斜放置,汞柱的高度不会改变,汞柱的长度却要增加。
2.应用:(1)利用大气压“吸”或“抽”(其实是压)液体。
如:钢笔吸墨水,吸管吸饮料,抽水机抽水等。
(2)液体的沸点随液体表面的气压增大而升高,随气压的减小而降低。
如利用高压锅煮饭菜容易熟。
【失分盲点】大气压的大小随时都会发生变化。
大气压的大小除了随海拔高度的增大而减小外,还与天气情况、气温高低、风的大小等因素有关。
【示范题1】如图所示是托里拆利实验的规范操作过程,关于托里拆利实验,下面说法错误的是( )A.实验中玻璃管内水银面的上方有少量空气B.是大气压支持玻璃管内的水银柱不会下落C.大气压的数值等于这段水银柱产生的压强D.玻璃管倾斜不影响实验测量结果【解题关键】解答本题应抓住以下关键:(1)玻璃管内水银面的上方是真空。
(2)管内外水银面高度差等于外界大气压的大小。
(3)管内外水银面高度差与玻璃管是否倾斜无关。
【解析】选A。
本题考查托里拆利实验。
在实验中,玻璃管的上方是真空的,故A说法错误;玻璃管中的水银柱不会落下,是因为大气压的作用,玻璃管中水银柱产生的压强等于大气压强,故B、C说法正确;玻璃管的倾斜程度、粗细等因素不会影响实验测量结果,只有是否漏进空气和外界大气压的变化才会影响实验结果,故D说法正确。
托里拆里的介绍

托里拆利生平托里拆利是意大利物理学家、数学家。
1608年10月15日生于法恩扎的一个贵族家庭。
1628年开始在罗马学习数学。
1641年在其数学教师开斯托里的建议下,去佛罗伦斯做伽利略的助手。
1642年伽利略逝世后,托里拆利接替伽利略任佛罗伦斯学院物理学和数学教授。
由于受到多斯加尼君主的器重,被委任为宫廷数学家。
1647年10月25日逝世,终年39岁。
托里拆利最有成效的工作是对空气压强问题的研究,并因此发明了使他著称于世的气压计。
1644年,托里拆利曾发表过有关几何和物理学方面的著作。
他论证了空气具有重量,并对重量和压力等物理概念进行过深刻阐述。
他从实验上解决了空气是否有重量和真空是否可能存在的两个重大课题。
对于上述两个问题,历史上曾长期争论不休,但亚里士多德的“大自然厌恶真空”的说法始终占上风。
托里拆利以前的科学家们都没有真正解决这两个问题。
伽利略曾发现,抽水机在工作时,不能把水抽到10 m以上的高度,他把这种现象解释为存在有“真空力”的缘故。
在总结前人理论和实验的基础上,托里拆利进行了大量的实验,实现了真空,验证了空气具有重量的事实。
从1643年起托里拆利曾先后采用多种液体,例如,海水、蜂蜜、水银等,设计了多种实验方式进行研究,大量的实验证实了抽水机提升液体的高度,决定于液体的密度。
托里拆利选用的水银实验,取得了最成功的结果。
他把装满水银的玻璃管一端封闭,开口端插入水银槽中,发现无论玻璃管长度如何,也不管玻璃管倾斜程度如何,管内水银柱的垂直高度总是76 cm。
后来人们称这一实验为“托里拆利实验”,完成实验的玻璃管为“托里拆利管”。
水银柱上端玻璃管内显然是真空的(接近真空,有少量水银蒸汽存在),称“托里拆利真空”,这是世界上首次人工获得的真空状态。
托里拆利根据这一实验得出结论:空气具有重量,空气重量所造成的压力与管内水银柱的高度所造成的压力相等,才使水银柱具有某一确定高度。
托里拆利根据自己的实验,提出了可以利用水银柱高度来测量大气压,并于1644年同维维安尼(Viviani,1622—1713)合作,制成了世界上第一个水银气压计。
托里拆利大气压实验原理

托里拆利大气压实验原理
托里拆利大气压实验是由意大利物理学家托里拆利在1643年发明的,它是用来测量大气压力的一种实验方法。
该实验原理基于气体的压缩性和弹性,通过测量气体在容器内的压力变化来计算大气压力。
实验装置通常由一个长颈瓶和一个水银压力计组成。
首先,将长颈瓶倒立于一盆水中,使其底部浸入水中。
然后,将水银压力计与长颈瓶相连,使其底部与长颈瓶内的空气相连。
此时,长颈瓶内的空气被水压挤压,使其体积减小,从而增加了内部气体的密度和压力。
这个过程可以通过观察水银压力计中水银柱的升高来测量。
接下来,将长颈瓶逐渐提起,使其底部逐渐脱离水面。
随着长颈瓶的提升,内部气体的体积逐渐增加,密度和压力逐渐降低。
这个过程同样可以通过观察水银压力计中水银柱的下降来测量。
根据气体的状态方程PV=nRT,可以将气体的压力与体积、温度和气体的分子数联系起来。
在托里拆利大气压实验中,气体的分子数和温度保持不变,因此可以通过测量气体的压力和体积来计算大气压力。
具体计算方法为:
P = hρg
其中,P为大气压力,h为水银柱的高度,ρ为水银的密度,g为重力加速度。
总之,托里拆利大气压实验通过测量气体的压力变化来计算大气压力,其原理基于气体的压缩性和弹性,是一种简单而有效的实验方法。
物理学家:托里拆利

生平简介科学成就趣闻轶事一、生平简介托里拆利(1608~1642)是意大利物理学家。
1608年10月15日诞生于意大利的法恩扎。
托里拆利的父亲是一位纺织业主,由于经营情况不佳,日益衰落。
父亲为了摆脱窘境,被迫把托里拆利送给伯父雅可布抚养。
1627年,伯父在朋友们的劝说下,把托里拆利送到罗马,拜伽利略的得意门生、数学家和水力学工程师卡斯特里为师,继续深造。
从1630年到1641年,托里拆利在伽利略的朋友夏波利手下工作,主要从事力学研究,写了一批论文。
为了向卡斯特里等有名第一章声学部分一、自制声学小实验辅助物理课教学物理学是一门以实验为基础的科学,在目前新教材使用的初期阶段里,却出现了同步的实验器材还比较匮乏的现象。
笔者在教学过程中,利用饮料瓶设计自制了百余种小实验,以弥补教学之不足。
有些小实验可以用于课堂演示,有些还可以当成家庭作业布置给学生。
现在将利用饮料瓶制作的部分声学小实验介绍给大家,以利于在今后的教学过程中选用。
1 钟声响起将两个饮料瓶都剪去底部并做成喇叭状,用细线系在瓶口的瓶盖上,再用细绳的中间部分系住一把钢勺(图1)。
将两个喇叭口罩住两只耳朵并贴紧耳根,并用钢勺去撞击桌子等物品时,你能听到什么?可以请几位学生上台试试,并谈谈自己的感受。
通过课堂参与的小活动,可以激发学生的兴趣,调动其求知的积极性。
继续让一个学生手提着细线并用钢勺碰撞课桌,再谈谈手上的感受。
通过刚才的小实验可以让学生了解到,振动能够发出声音来,并且可以通过细绳等物体向外传播;同一个声音从空气传到耳朵和从细线等传入耳朵,其感受却是不同的。
2 水中的振动由于振动而发出的声音,可以在固体和气体中传播,声音能在液体中传播吗?用细线系好三把旧钥匙,放入盛水的大饮料瓶内并上下抖动细绳(图2),你听到了什么?可以听到碰撞声从水中传出来。
仔细听又会发现,钥匙在空气中碰撞和在水中碰撞发声是不一样的。
学生经过亲手做、亲眼看的实验过程,将会对声音的传播有了比较深刻的认识,并可以激发学生继续去探究新的知识。
格里克与大气压的发现

格里克与大气压的发现
格里克(Torricelli, Evangelista)是一位17世纪意大利数学家和物理学家。
他在1643年发现了大气压。
格里克对于气体的压力作了广泛的研究,在他之前的研究者们也大致了解到气体有一定的压强。
然而,格里克做出的贡献是通过他的实验来量化和解释这种压力。
格里克设计了一个实验来研究压力的原因。
他取了一根长约一米的玻璃管,一端封闭后充满汞(一种金属元素)并倒置,另一端则开放在一个汞槽中。
他注意到,汞在管中会产生一个上升的高度,而不是排空。
通过这个实验,格里克发现汞的上升高度与大气压力有直接的关系。
他解释说,汞上升的高度是大气压力对管内汞的压力产生的结果。
当大气压力增加时,管内汞的压力增加,使得汞的上升高度也增加。
这个实验被后来称为“格里克实验”,标志着对大气压力的认识有了重大的突破。
格里克的实验结果为后来的大气压力研究奠定了基础,也为后来物理学中的气压定律提供了重要的支持。
初中物理中的科学家介绍

初中物理涉及的科学家及其成就1、沈括宋----地球磁偏角2、爱因斯坦德国、瑞士、美籍-----真空中的光速是物体运动的极限速度;3、中国的墨子墨翟-----小孔成像;4、牛顿英国-----牛顿第一运动定律惯性定律、光的色散;即试验运用了理想模型,绝对光滑平面;物体有保持原有运动状态的特性,也就是惯性5、伽利略意大利----伽利图实验证明了运动着的物体不受外力作用时,总保持匀速直线运动状态6、托里拆利意大利-----首先测定了大气压强的值测为1.013×105帕;7、阿基米德古希腊----阿基米德原理F浮=G排;浸在液体里的物体受到液体竖直向上的浮力,浮力的大小等于物体排开液体受到的重力;公式是:F浮=G排=ρ液gV排;阿基米德-----杠杆原理当杠杆平衡时:动力×动力臂=阻力×阻力臂8、法拉第英国-----电磁感应现象磁生电1831年9、欧姆德国---------欧姆定律I=U/R10、焦耳英国-----焦耳定律Q=I2Rt.11、电量、电流、电压、电阻、电功率的单位分别是库仑、安培、伏特、欧姆、瓦特;12、笛卡尔法国-----研究了物体不受其他物体的作用,它的运动方向就不会改变;13、力、压强、功率、功、能、频率的单位分别是牛顿、帕斯卡、瓦特、焦耳、焦耳、赫兹;14、摄尔修斯瑞典----摄氏温标;15、开尔文英国----热力学温标;16、摄氏温度、热力学温度、热量的单位分别是摄氏度、开尔文、焦耳;17、格里克德国-----完成马德堡半球实验,证明了大气压强的存在;18、奥斯特丹麦---- 奥斯特实验,证明了电流的周围存在磁场电生磁20、安培法国-----总结了安培定则:也叫右手螺旋定则,用右手握螺线管,让四指指向螺线管中电流的方向,那么大拇指所指的那端就是螺线管的N级;②磁场对电流有力是作用,力的方向跟电流方向和磁场方向有关;21、麦克斯韦英国---提出了电磁波理论22、赫兹德国----用实验证明了电磁波的存在23、伯努利瑞士-----伯努利原理液体压强与流速的关系24、帕斯卡法国-----帕斯卡原理25、伏打或译伏特,意大利-----发明了电池26、富兰克林美国-----证明自然界中只存在两种电荷;牛顿牛顿1643格里历年1月4日—1727年3月21日爵士,英国皇家学会会员,英国伟大的物理学家、数学家、天文学家、自然哲学家,百科全书式的“全才”,著有自然哲学的数学原理、光学、二项式定理和微积分;他在1687年发表的论文自然定律里,对万有引力和三大运动定律进行了描述;这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础;他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命;在力学上,牛顿阐明了动量和角动量守恒的原理;在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论;他还系统地表述了冷却定律,并研究了音速;在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉;他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献;伽利略伽利略·伽利雷Galileo Galilei,1564年2月15日-1642年1月8日是16-17世纪的意大利物理学家、天文学家;伽利略发明了摆针和温度计,他在科学上为人类做出过巨大贡献,是近代实验科学的奠基人之一;他被誉为“近代力学之父”、“现代科学之父”和“现代科学家的第一人”;他在力学领域进行过著名的比萨斜塔重物自由下落实验,推翻了亚里士多德关于“物体落下的速度与重量成正比例”的学说两个铁球同时落地,建立了自由落体定律;还发现物体的惯性定律、摆振动的等时性和抛体运动规律,并确定了伽利略相对性原理;他是利用望远镜观察天体取得大量成果的第一人,重要发现有:月球表面凹凸不平、木星的四个卫星、太阳黑子、银河由无数恒星组成,以及金星、水星的盈亏现象等;开尔文开尔文,为热力学温标或称绝对温标,是国际单位制中的温度单位1;由爱尔兰第一代开尔文男爵Lord Kelvin 威廉·汤姆森发明,其命名依发明者头衔为Kelvins,符号是K,但不加“°”来表示温度;1927年,第七届国际计量大会将热力学温标作为最基本的温标;安培安德烈·玛丽·安培André-Marie Ampère,1775年—1836年,法国化学家,在电磁作用方面的研究成就卓著,对数学和物理也有贡献;电流的国际单位安培即以其姓氏命名;1802 年他在布尔让-布雷斯中央学校任物理学和化学教授;1808年被任命为法国帝国大学总学监,此后一直担任此职;1814 年被选为帝国学院数学部成员;1819年主持巴黎大学哲学讲座;1824年担任法兰西学院实验物理学教授;奥斯特奥斯特是一位热情洋溢重视科研和实验的教师,他说:“我不喜欢那种没有实验的枯燥的讲课,所有的科学研究都是从实验开始的”;因此受到学生欢迎;他还是卓越的讲演家和自然科学普及工作者,1824年倡议成立丹麦科学促进协会,创建了丹麦第一个物理实验室;1908 年丹麦自然科学促进协会建立“奥斯特奖章”,以表彰做出重大贡献的物理学家;奥斯特的功绩受到了学术界的公认,为了纪念他,国际上从1934年起命名磁场强度的单位为奥斯特,简称“奥”;1937年美国物理教师协会设立“奥斯特奖章”,奖励在物理教学上做出贡献的物理教师;他的重要论文在1920年整理出版,书名是奥斯特科学论文;法拉第迈克尔·法拉第Michael Faraday,公元1791~公元1867英国物理学家、化学家,也是著名的自学成才的科学家;生于萨里郡纽因顿一个贫苦铁匠家庭,仅上过小学;迈克尔·法拉第是英国著名化学家戴维的学生和助手,他的发现奠定了电磁学的基础,是麦克思韦的先导;1831年10月17日,法拉第首次发现电磁感应现象,在电磁学方面做出了伟大贡献;赫兹海因里希·鲁道夫·赫兹Heinrich Rudolf Hertz,1857年丁巳年2月22日-1894年甲午年1月1日,德国物理学家,于1888年首先证实了电磁波的存在;并对电磁学有很大的贡献,故频率的国际单位制单位赫兹以他的名字命名;阿基米德浮力原理简述:物体在液体中所获得的浮力,等于它所排出液体的重量,即:式中为物体所受浮力,为物体排开液体所受重力;该式变形可得式中为被排开液体密度,为当地重力加速度,为排开液体体积关于浮力原理的发现,有这样一个故事:相传叙拉古赫农王让工匠替他做了一顶纯金的王冠;但是在做好后,国王疑心工匠做的金冠并非纯金,但这顶金冠确与当初交给金匠的纯金一样重;工匠到底有没有私吞黄金呢国王想检验金冠是否为纯金,但又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑;经一大臣建议,国王请来阿基米德检验;最初,阿基米德也是冥思苦想而却无计可施;后来有一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻托起;他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重;他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡尤里卡”Eureka,意思是“找到了”;希腊文:ερηκα他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多;这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属;这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律阿基米德原理:物体在液体中所获得的浮力,等于它所排出液体的重量;一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量即广为人知的排水量法等;帕斯卡布莱士·帕斯卡Blaise Pascal ,1623-1662是法国数学家、物理学家、哲学家、散文家;他自幼聪颖,12岁始学几何,即通读欧几里得Euclid的几何原本Elements并掌握了它;16岁时发现著名的帕斯卡六边形定理:内接于一个二次曲线的六边形的三双对边的交点共线;17岁时写成圆锥曲线论1640,是研究德札尔格Girard Desargues射影几何工作心得的论文,包括上述定理;这些工作是自希腊阿波罗尼奥斯Apollonius of Perga以来圆锥曲线论的最大进步;1642年他设计并制作了一台能自动进位的加减法计算装置,被称为是世界上第一台数字计算器,为以后的计算机设计提供了基本原理;1654年他开始研究几个方面的数学问题,在无穷小分析上深入探讨了不可分原理,得出求不同曲线所围面积和重心的一般方法,并以积分学的原理解决了摆线问题,于1658年完成论摆线;他的论文手稿对莱布尼茨Gottfried Leibniz建立微积分学有很大启发;在研究二项式系数性质时,写成算术三角形向巴黎科学院提交,后收入他的全集,并于1665年发表;其中给出的二项式系数展开后人称为“帕斯卡三角形”,实际它已在约1100年由中国的贾宪所知;在与费马Pierre Fermat的通信中讨论赌金分配问题,对早期概率论的发展颇有影响;他还制作了水银气压计1646,写了液体平衡、空气的重量和密度等方向的论文1651-1654;自1655年隐居修道院,写下思想录1658等经典著作;托里拆利埃万杰利斯塔·托里拆利Evangelista Torricelli,1608~1647意大利物理学家、数学家;1608年10月15日出生于贵族家庭,幼年时表现出数学才能,20岁时到罗马在伽利略早年的学生B.卡斯提利指导下学习数学,毕业后成为他的秘书;1641年写了第一篇论文论自由坠落物体的运动,发展了伽利略关于运动的想法;经卡斯提利推荐做了伽利略的助手,伽利略去世后接替伽利略作了宫廷数学家,1647年10月25日39岁过早去世;瓦特詹姆斯·瓦特James Watt,1736年1月19日— 1819年8月19日是英国著名的发明家,是工业革命时的重要人物;1776年制造出第一台有实用价值的蒸汽机;以后又经过一系列重大改进,使之成为“万能的原动机”,在工业上得到广泛应用;他开辟了人类利用能源新时代,标志着工业革命的开始;后人为了纪念这位伟大的发明家,把功率的单位定为“瓦特”;。
大气压强的发现

大气压强的发现与多位科学家和实验观察密切相关。
以下是一些关键事件和人物:
伽利略·伽利莱(Galileo Galilei):约在17世纪初期,伽利略通过一系列的实验研究了气体性质,包括空气对物体的作用力等。
伯努利(Daniel Bernoulli)原理:18世纪初,瑞士数学家伯努利提出了液体和气体运动的基本原理。
他的研究奠定了后来对气体压强的理解基础。
罗贝尔·波义耳(Robert Boyle):17世纪中期,英国物理学家波义耳进行了一系列压缩空气的实验研究。
他发现在恒定温度下,气体体积与压强成反比例关系,建立了著名的波义耳定律。
由图斯卡兰尼(Evangelista Torricelli)设计和实施的水银柱实验:1643年,图斯卡兰尼通过在一根闭合的玻璃管内注入水银,然后倒置在水盆中,观察到水银柱的高度不会一直下降,最终稳定在约760毫米的高度。
这个现象被认为是大气压强支撑的结果,这根管子就成为了著名的"托里拆利管"。
通过以上一系列的实验和观察,科学家们逐渐发现了大气压强的存在,并建立了相关的理论和规律。
这些发现对后来关于气象学、空气动力学和其他领域的研究具有重要的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人物简介: 发现大气压力的科学家——托里拆利
托里拆利(Evangelista Torricelli,1608—1647)在物理学中的主要贡献是设计了有名的托里拆利实验,证明了真空的存在,发现了大气压力。
他是意大利物理学家、数学家,1608年10月15日诞生于意大利的法恩扎的贵族家庭。
托里拆利的父亲是一位纺织业主,由于经营情况不佳,日益衰落。
父亲为了摆脱困境,被迫把托里拆利送给伯父雅可布抚养。
托里拆利小时候酷爱学习,表现出很出色的才能,尤其在法恩扎耶稣教会学校学习数学和哲学课程的时候,成绩特别出众。
1627年,伯父在朋友们的劝说下,把托里拆利送到罗马,拜伽利略的得意门生、数学家和水力学工程师卡斯特里为师,继续深造。
从1630—1641年,托里拆利在伽利略的朋友夏波利手下工作,主要从事力学研究,写了一批论文。
为了向卡斯特里等有名的学者请教,托里拆利于1641年再度来到罗马。
在卡斯特里的推荐下,托里拆利于1641年10月10日来到伽利略身边工作,并和伽利略的学生维维安尼结成了很好的朋友。
伽利略去世后,他的保护人托斯吉姆大公爵让托里拆利以学院数学教授的名义作为伽利略的继承人。
卡斯特里非常赏识托里拆利的才华。
1628年,卡斯特里出版了一本有关流体力学的著作。
托里拆利仔细研读了导师的名著,还做了一系列实验,逐个验证书中的重要结论。
他发现,书中关于液体从容器底部小孔流出的速度和小孔离液面高度成正比的结论,和实验不符。
经过反复测量和计算,他总结出水从容器底部小孔流出的速度和水从小孔上方的水面高度自由下落到小孔时候的速度相等,进一步得到了这个速度和小孔上方水面高度的平方根成正比的正确结论。
托里拆利热爱和尊敬自己的导师,但是他并不盲从。
他决定把自己的发现整理成文,公开发表,来纠正导师的这个学术错误。
胸怀宽广的卡斯特里看到这篇文章以后,十分高兴,认定托里拆利大有培养和发展前途,立即决定让他当自己的秘书。
早在古希腊时代,大学问家亚里士多德认为“自然界厌恶真空”,他特别用飞矢作例子来说明,认为飞矢的箭头把空气向两边分开,当箭尾向前去的时候,空气不断补充,不存在真空。
后来,人们在抽水的时候发现,吸气桶式抽水机无论如何也无法把水抽到10米高,真空不存在的观念发生了动摇。
伽利略研究了这一现象以后认为,空气是有重量的,空气密度是水的1/400;别的液体抽吸所能送到的高度也有一个限度,这个限度由这种液体的密度大小来确定。
不过,他没有做实验来验证自己的看法。
1643年,托里拆利用实验进行了仔细的研究。
他设计了一个用水银柱测真空阻力的方案,预言水银柱的高度大约是水柱高度的1/14。
接着,他和维维安尼一起在佛罗伦萨作了这个著名的实验。
他们在一支一端开口的玻璃管里灌满水银,然后把开口的一端倒插入水银槽中。
他们发现,水银柱立即下降,直到比槽中水银面高出76厘米为止,而且不论玻璃管斜放还是竖放,水银柱的垂直高度都不变。
托里拆利认为,水银柱的垂直高度是由大气对槽中水银面的压力引起的。
当时由于托里拆利忙于摆线的研究,所以没有公开发表这个著名实验。
他仅于1644年在给罗马的朋友里奇的两封信里描述了这个实验,还说他实验的目的“不是单纯地产生真空,而是要制造一种仪器,用它来证明空气的变异,时而较重而稠密,时而较轻而稀薄”。
同年,里奇在给巴黎学者默森(1588~1648)的信中介绍了托里拆利的实验,在法国科学界广为传播,引起很大的轰动。
1646年夏天皮尔·珀蒂在鲁昂重复了这个实验。
1648年帕斯卡也先后在巴黎教堂的尖顶上和法国南部的多姆山重做了这个实验,成功地证实了托里拆利的重大发现。
这样,古代权威亚里士多德的“自然界厌恶真空”的谬说被彻底推翻了。
除此之外,托里拆利曾磨制成直径80毫米的望远镜透镜,还用小玻璃球作透镜制成简易显微镜。
他还写了不少有价值的数学论文,对摆线、圆锥曲线、对数曲线等进行了深入的研究。