固体物理答案

合集下载

固体物理习题解答

固体物理习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。

固体物理简答题及答案

固体物理简答题及答案

固体物理简答题及答案简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性与范德瓦耳斯性结合力的特点。

答案: 离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。

当排斥力与吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。

在这种情况下,电子云与原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。

范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。

但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。

非极性分子晶体就就是依靠这瞬时偶极矩的互作用而结合的。

2、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目就是否就是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似、在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动、每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它就是晶格振动模式中最简单最基本的振动方式、原子的振动, 或者说格波振动通常就是这3N 个简正振动模式的线形迭加、简正振动数目、格波数目或格波振动模式数目就是一回事, 这个数目等于晶体中所有原子的自由度数之与, 即等于3N、3、长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征就是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式、长声学支格波的特征就是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速就是一常数、任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波、4、长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化, 其根源就是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移、长声学格波的特点就是, 原胞内所有的原子没有相对位移、因此, 长声学格波不能导致离子晶体的宏观极化、5、何谓极化声子? 何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 称长光学纵波声子为极化声子、由本教科书的(3、103)式可知, 长光学横波与电磁场相耦合, 使得它具有电磁性质, 人们称长光学横波声子为电磁声子、6、什么就是声子?答案: 晶格振动的能量量子。

《固体物理》课后习题答案

《固体物理》课后习题答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。

证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。

注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。

根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。

证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。

解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。

因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。

1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。

若立方边长为a ,写出最近邻和次近邻的原子间距。

答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。

固体物理答案第一章

固体物理答案第一章

bc



b
c


i
Ω
a bc a
同理

b


j
b
c



k
c
khkl


h a
i
k b
j
l c
k


khkl


h
2



k
2



l
2

a b c

d hkl



3π 16
32
a
图1.6 金刚石结构
1.7 证明:用半径不同的两种硬球构成下列稳定结构时小球半 径和大球半径之比值分别为
(1)体心立方(配位数为8):1 r / R 0.73 ; (2)简单立方(配位数为6):0.73 r / R 0.41 ; (3)正四面体结构(配位数为4):0.41 r / R 0.23 ; (4)层状结构(配位数为3):0.23 r / R 0.16 。
z
z
2 10
131
o
y
x
x
o
y
1.3 若基矢 a,b,c 构成简单正交系,试证明,晶面族(hkl)
的面间距为
dhkl
1 h 2 k 2 l 2 a b c
并说明面指数简单的晶面,其面密度比较大,容易解理。
证明:设
a,b,c
第一章 晶体结构和X射线衍射
1.1 指出立方晶格(111)面与(110)面的交线的晶向。
解: 立方晶格(111)面与(110)面的交线为AB,其等效

固体物理习题答案PPT课件

固体物理习题答案PPT课件
上述八个矢量的垂直平分面,形成了第一布里渊 区。
5 解: A2 b c,B 2 c a,C 2 a b
V c
V c
V c
V A (B C ) (2)3( b c )[ c ( a ) ( a b )] V c
A (B C )(A C )B (A B )C
6解:当 KCl 取 ZnS 结构时,晶体总相互作用
能为 utotN(zeRR q2)
已知:N=6.023*1023/mol, ρ=0.326埃,αZnS=1.6381,(见P103) 为NaCl结构时,Zλ=2.05*10-8erg, Z=6 当为ZnS 结构时,Z=4, Zλ=(4/6)*2.05*10-8erg
设ZnS 结构时,其晶格常数与NaCl结构相同, (为原子最近邻距离)
即 a=6.294埃(见P20,图20配位数为6,参见表10,表11, a=2*1.33+1.81=6.2埃),31/2a/4=2.72埃(为原子最近邻距
离)
u to 6 . 0 t 1 2 2 [ 3 0 6 4 2 2 . 0 1 5 8 e 0 0 2 . 3 . 7 2 2 1 . 6 6 2 . ( 3 7 4 . 8 1 8 2 1 8 0 1 0 e 1 5 0 0 ) 3 ] s 1 u . 8 K 5/ m 3 C
第二章 习题答案
3解:
(c)衍射先只出现在同时满足以下二个方程的方
向上:(1)acosθ1=nλ,(2) bcosθ2=mλ
(
a,b
为二个方向矢量)
所以在二个锥面的交线上出现衍射极大。当底板
//原子面时,衍射花样为二个锥面的交线与底板
的交点。
(d)反射式低能电子衍射(LEED)中,只有表面 层原子参与衍射,故为二维衍射,衍射点的周期 大小与晶体表面原子排列方向上周期大小成反比。

固体物理答案

固体物理答案

(1)共价键结合的特点?共价结合为什么有“饱和性”和“方向性”?之答禄夫天创作饱和性和方向性饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。

N<4,有n个共价键;n>=4,有(8-n)个共价键。

其中n为电子数目。

方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。

(2)如何理解电负性可用电离能加亲和能来表征?电离能:使原子失去一个电子所必须的能量其中A为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B为释放的能量,也可以标明原子束缚价电子的能力,而电负性是用来暗示原子得失电子能力的物理量。

故电负性可用电离能加亲和势能来表征。

(3)引入玻恩-卡门条件的理由是什么?在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。

这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。

而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不克不及用中间的原子的运动方程来描述。

波恩—卡门条件解决上述困难。

(4)温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多?对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多?温度一定,一个声学波的声子数目多。

对于同一个振动模式,温度高的声子数目多。

(5)长声学格波能否导致离子晶体的宏观极化?不克不及。

长声学波代表的是原胞的运动,正负离子相对位移为零。

(6)晶格比热理论中德拜(Debye)模型在低温下与实验符合的很好,物理原因是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么?在甚低温下,不但光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。

长声学格波即弹性波。

德拜模型只考虑弹性波对热容德贡献。

因此,在甚低温下,德拜模型与事实相符,自然与实验相符。

爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差别,依照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。

(参考资料)固体物理习题带答案

(参考资料)固体物理习题带答案

D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量

固体物理课后习题答案

固体物理课后习题答案

(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj μ为:
sin()
nj j j j j a t naq μωδ=++
j δ为任意相位因子。

并已知在较高温度下每个格波的平均能量为B k T 。

具体计算每
个原子的平方平均位移。

解:(1)根据2011
sin ()2
T j j j t naq dt T ωδ⎰++= 其中2j
T π
ω=
为振动周期,
所以222
21
sin ()2
nj j j j j j a t naq a μωδ=++=
(2) 第j 个格波的平均动能 (3) 经典的简谐运动有:
每个格波的平均动能=平均势能=1
2格波平均能量=12
B k T 振幅222B j j k T a Nm ω=
, 所以 2
22
12B nj j j
k T a Nm μω==。

而每个原子的平方平均位移为:222221
()2
B n nj nj j j
j
j
j
j
k T
a Nm μμμω====∑∑∑∑。

3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。

当m M =时与一维单原子链一一对应。

解:(1)一维双原子链: 22q a a
π
π
-
≤<
声学波:1
222
2
411sin ()m M mM aq mM m M ωβ-⎧⎫⎡⎤+⎪⎪=--⎨⎬⎢⎥+⎣⎦⎪⎪
⎩⎭
当m M =时,有
2
224(1cos )sin 2
aq
aq m m ββω-=
-= 。

光学波:1
222
2
411sin ()m M mM aq mM m M ωβ+⎧⎫⎡⎤+⎪⎪=+-⎨⎬⎢⎥+⎣⎦⎪⎪
⎩⎭
当m M =时,有
2
2
24(1cos )cos 2
aq
aq m m ββω+=
+= 。

(2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq a
a
m βωπ
π
βω-+⎧=⎪⎪-
≤<

⎪=⎪⎩
与一维单原子链的解 224sin 2
aq
q m a
a
βπ
π
ω=-
≤<
是一一对应的。

3.5已知NaCl 晶体平均每对离子的相互作用能为: 其中马德隆常数 1.75,9a n ==,平衡离子间距0 2.82r =。

(1) 试求离子在平衡位置附近的振动频率。

(2) 计算与该频率相当的电磁波的波长,并与NaCl 红外吸收频率的测量只值
61μ进行比较。

解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏差0r r δ=-的二次方项。

224
00002
00
()()1()()()2U r U r U r U r O δδδδδδδδδδ==∂+∂++=+⋅+⋅+∂∂ (1) 其中
00
()
0U r δδδ=∂+=∂ 为平衡条件。

由0r 已知可确定β:
2
10n q r n
αβ-=。

(2)
根据(1)式,离子偏离平衡位置δ所受的恢复力为:
2'
002
()()U r U r F δδδδβδδδ=∂+∂+=-=-⋅=-∂∂ (3)
故恢复力常数为0
2'
2
23
()1r U r n q r r βα∂-==∂。

(4) 对于离子晶体的长光学波,
(0)ω+=
= (5) 将Na 的原子质量2423 1.6610m g -=⨯⨯, Cl 的原子质量2435.5 1.6610M g -=⨯⨯, 基本电荷电量104.80310q esu -=⨯ 代入上式,得 (2) 相对应的电磁波波长为
8614
22 3.14 2.998101710171.1110
c m m π
λμω-⨯⨯⨯===⨯=⨯ (6) 对应与远红外波,与NaCl 红外吸收频率测量值在同一数量级。

[注:如采用国际单位制进行计算,因在(2)式前乘一因子
90
18.99104k πε=
=⨯牛顿米2
/库仑 ]
3.6 求出一维单原子链的频率分布函数()ρω。

解:一维单原子链的色散关系为: 222
2
4sin sin 22
m aq aq m βωω=
=,
其中m ω= sin
2
m aq
ωω=,
振动模式的数目:2222cos
22
m Na Na d dn dq a aq ωωππω=⨯
=⨯⨯=
所以()0m m
g ωωωωω≤=>⎩
3.7设三维晶格的光学振动在0q =附近的长波极限有:
求证:频率分布函数为 12
023/201()()40V g A ωωωωωπωω⎧-<⎪=⎨⎪≥⎩
证明:由20()q Aq ωω=-, 得()2q q Aq ω∇=。

故频率分布函数为 12
023/201()()40V g A ωωωωωπωω⎧-<⎪=⎨⎪≥⎩
3.8有N 个相同原子组成面积为S 的二维晶格,在德拜近似下,计算比热,并讨论在低温极限比热正比于2T 。

解:(1)q 空间的状态密度为
2
(2)
S
π。

每个q 对应一个纵波,c q ω=, 每个q 对应一个横波,c q ω⊥=。

所以d ω范围的状态数应包括纵波和横波的状态数: 其中
2
221111()2c c c

=
+ 由于晶格振动模数有限,则晶格振动最高频率由
决定。

由此得12
4()D N c S
πω=。

比热2
2
2
2
2
(
)(
)()2(1)(1)B B D
D
B B k T
k T
B B V B B k T k T e
e
k T
k T
S c k g d k d c
e e ω
ω
ωωω
ω
ω
ω
ωωωωπ==--⎰⎰
令B x k T
ω
=
, D B D k ω=Θ, D Θ—德拜温度。

322
04()(1)D x
T v B x D T x e c Nk dx e Θ=Θ-⎰。

(2)在低温极限 0T →,
D
T
Θ→∞,
322
22
04()24()(1)x v B B x D D
T x e T c Nk dx Nk T e ∞==∝Θ-Θ⎰, 与三维情况下的德拜3T 律相对应。

3.10设晶体中每个振子的零点震动能
1
2
ω,试用德拜模型求晶体的零点振动能。

解: 根据德拜理论,cq ω=,可得晶格频率分布函数为
223
3()2V
g c
ωωπ=。

存在m ω,在m ωω≤范围的振动都可用弹性波近似,m ω则根据自由度确定如下:
2
230
3()32m
m V g d d N c ωωωωωωπ==⎰
⎰。

或1
3
26()m N c V ωπ⎡⎤=⎢⎥⎣
⎦。

因此固体总的零点振动能为
00
19
()28
m m E g d N ωωωωω==⎰。

3.11一维复式格子245 1.6710m g -=⨯⨯,4M
m
=, 1.510/N m
β=⨯(即41.510/)dyn cm ⨯,求:
(1) 光学波max O ω,min O ω, 声学波max A ω。

(2) 相应声子能量是多少电子伏特。

(3) 在300K 时的平均声子数。

(4) 与max O ω相对应的电磁波在什么波段。

解:(1) (2)ε=ω
(3)在300T K =相应的能量:
因此在室温只能激发声学声子,平均声子数为
(4)8513
max
22 3.14 2.98810 2.810286.7010
O c
m m πλμω-⨯⨯⨯=
==⨯=⨯。

此波长处在红外波段。

相关文档
最新文档