运动学部分例题分析

合集下载

高一物理运动学典型题

高一物理运动学典型题

『高一运动学 题型解析』位移是表示质点位置变化的物理量,它是由质点运动的起始位置指向终止位置的矢量。

位移可以用一根带箭头的线段表示,箭头的指向代表位移的方向,线段的长短代表位移的大小。

而路程是质点运动路线的长度,是标量。

只有做直线运动的质点始终朝着一个方向运动时,位移的大小才与运动路程相等【例题】一个电子在匀强磁场中沿半径为R 的圆周运动。

转了3圈回到原位置,运动过程中位移大小的最大值和路程的最大值分别是:(B ) A .2R ,2R ; B .2R ,R 6π; C .R 2π,2R ; D .0,R 6π。

瞬时速度是运动物体在某一时刻或某一位置的速度,而平均速度是指运动物体在某一段时间t ∆或某段位移x ∆的平均速度,它们都是矢量。

当0→∆t 时,平均速度的极限,就是该时刻的瞬时速度。

定义式t s =υ对任何性质的运动都适用,而20tυυυ+=只适用于匀变速直线运动。

此外对匀变速直线运动还有2t υυ=【例题】在软绳的两端各拴一石块,绳长3m ,拿着上端石块使它与桥面相平,放手让石块自由下落,测得两石块落水声着0.2s ,问桥面距水面多高?(g 取10m/s 2) ★解析:后一块石块下落最后3m 用时0.2s ,则s m s m /15/2.03==υ 后一石块落水速度s m gt /16=+=υυm gh 8.1222==υ【例题】质点做匀变速直线运动,5 s 内位移是20 m ,在以后的10 s 内位移是70 m ,求质点的加速度.★解析:质点运动过程示意图如图所示,根据平均速度定义,分别求得5s 内、10s 内的平均速度为111205s v t ===4 m/s 2227010s v t ===7 m/s 根据加速度定义式t v v a t-=,则质点的加速度为22120/4.0/5.7s m s m t V V a t =-=-=υυ 【例题】甲、乙两辆汽车沿平直公路从某地同时驶向同一目标,甲车在前一半时间内以速度V 1做匀速直线运动,后一半时间内以速度V 2做匀速直线运动;乙车在前一半路程中以速度V 1做匀速直线运动,后一半路程中以速度V 2做匀速直线运动,则( ) A .甲先到达; B .乙先到达; C .甲、乙同时到达; D .不能确定。

高考物理大考点巅峰训练:例题精析专题运动学专题

高考物理大考点巅峰训练:例题精析专题运动学专题

直线运动规律及追及问题一 、 例题例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( )A.位移的大小可能小于4mB.位移的大小可能大于10mC.加速度的大小可能小于4m/sD.加速度的大小可能大于10m/s析:同向时2201/6/1410s m s m t v v a t =-=-=m m t v v s t 712104201=⋅+=⋅+=反向时2202/14/1410s m s m t v v a t -=--=-=m m t v v s t 312104202-=⋅-=⋅+=式中负号表示方向跟规定正方向相反 答案:A 、D例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( )A 在时刻t 2以及时刻t 5两木块速度相同B 在时刻t1两木块速度相同C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。

由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间答案:C例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2结果保留两位数字)解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运动,因此运动员做的是竖直上抛运动,由gvh 220=可求出刚离开台面时的速度t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7s m gh v /320==,由题意知整个过程运动员的位移为-10m (以向上为正方向),由2021at t v s +=得: -10=3t -5t 2解得:t ≈1.7s思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题 4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的若干小球摄下照片如图,测得AB=15cm ,BC=20cm ,试求:(1) 拍照时B 球的速度;(2) A 球上面还有几颗正在滚动的钢球 解析:拍摄得到的小球的照片中,A 、B 、C 、D …各小球的位置,正是首先释放的某球每隔0.1s 所在的位置.这样就把本题转换成一个物体在斜面上做初速度为零的匀加速运动的问题了。

高中物理运动学练习题及讲解

高中物理运动学练习题及讲解

高中物理运动学练习题及讲解一、选择题1. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s²。

若物体在第3秒内通过的位移为9m,求物体在第2秒末的速度是多少?A. 2m/sB. 3m/sC. 4m/sD. 5m/s2. 一辆汽车以10m/s的速度行驶,突然刹车,产生一个-5m/s²的加速度。

求汽车在刹车后5秒内的位移。

A. 25mB. 31.25mC. 40mD. 50m二、填空题3. 某物体做自由落体运动,下落时间为3秒,忽略空气阻力,求物体下落的高度。

公式为:\[ h = \frac{1}{2} g t^2 \],其中\( g \)为重力加速度,\( t \)为时间。

假设\( g = 9.8 m/s^2 \)。

三、计算题4. 一个物体从高度为10米的平台上自由落下,求物体落地时的速度。

四、解答题5. 一辆汽车从静止开始加速,加速度为4m/s²,行驶了10秒后,汽车的速度和位移分别是多少?五、实验题6. 实验中,我们用打点计时器记录了小车的运动。

已知打点计时器的周期为0.02秒,记录了小车在第1、3、5、7、9点的位置。

位置数据如下(单位:米):1点:0.00,3点:0.20,5点:0.56,7点:1.08,9点:1.76。

请根据这些数据计算小车的加速度,并判断小车的运动类型。

六、论述题7. 论述在斜面上的物体受到的力有哪些,以及这些力如何影响物体的运动。

参考答案:1. B2. B3. 14.7m4. 根据公式\( v = \sqrt{2gh} \),落地速度为\( \sqrt{2 \times 9.8 \times 10} \) m/s。

5. 速度为40m/s,位移为200m。

6. 根据两点间的平均速度公式,可以求出加速度为0.8m/s²,小车做匀加速直线运动。

7. 斜面上的物体受到重力、支持力和摩擦力的作用。

重力使物体有向下运动的趋势,支持力和摩擦力则与重力的垂直和水平分量相平衡,影响物体的加速度和运动状态。

运动学部分例题分析

运动学部分例题分析

上式两边求一阶及二阶导数,则得
A
vA vM
因此
aA a M
v A 0.4m / s
aA 0.4m / s 2
例7-3 在刮风期间,风车的角加速度 0.2 rad / s 2 ,其中转 s 角θ 以rad计。若初瞬时 0 0, w0 6rad /,其叶片半径为 0.75m 。 )时其顶端 4 rad 试求叶片转过两圈( P 点的速度。
将j =wt带入上式,得M点的运动方程:
x r sin wt
w
将上式对时间求一阶导数和二阶导数得:
O
j
x
dx v rw cos wt dt dv d 2 x a 2 rw 2 sin wt dt dt
例2 曲柄连杆机构是由曲柄、连杆及滑块组成的机构。当曲柄 OA绕O轴转动时,由于连杆AB带动,滑块沿直线作往复运动。 设曲柄OA长为r,以角速度w 绕O轴转动,即j=wt,连杆AB长 为l。试求滑块B的运动方程、速度和加速度。 解:取滑块B的直线轨迹为x轴, 曲柄的转动中心O为坐标原点。 w A l 在经过 t 秒后,此时B点的坐 B 标为: x j O x OB OC CB C x r cos j l cos 整理可得B的运动方程:
2 2
由此可得滑块B的速度和加速度:
dx v rw (sin wt sin 2wt ) dt 2 dv a rw 2 (cos wt cos 2w ) dt
例3 一人高 h2 ,在路灯下以匀速v1行走,灯距地面 的高为h1 ,求人影的顶端M沿地面移动的速度。
解: 取坐标系x如图所示,由几何关系得:
方向如图所示。
M点的全加速度及其偏角为
2 a a2 an (0.4) 2 (0.8) 2 0.894 m / s 2

专题3-运动学典型问题和解决方法

专题3-运动学典型问题和解决方法

专题运动学典型问题及解决方法【例1】羚羊从静止开始奔跑,经过50m能加速到最大速度25m/s,并能维持一段较长的时间;猎豹从静止开始奔跑,经过60 m的距离能加速到最大速度30m/s,以后只能维持此速度4.0 s.设猎豹距离羚羊xm 时开时攻击,羚羊则在猎豹开始攻击后1.0 s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,求:猎豹要在从最大速度减速前追到羚羊,x值应在什么范围?【例2】高为h的电梯正以加速度a匀加速上升,忽然天花板上一颗螺钉脱落.螺钉落到电梯底板上所用的时间是多少?【例4】甲、乙两车相距S,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为v0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系。

【例5】在空中足够高的某处,以初速度v竖直上抛一小球,t s后在同一地点以初速度v/竖直下抛另一个小球,若使两个小球在运动中能够相遇,试就下述两种情况讨论t的取值范围:(l)0<v/<v,(2)v/>v一、选择题1、下列关于质点的说法,正确的是()A、只有小的物体才能看作质点B、大的物体也可以看作质点C、任何物体,在一定条件下都可以看作质点D、任何物体,在任何条件下都可以看作质点2、物体从静止开始作匀加速直线运动,第3 s时间内通过的位移为3m ,则()A、物体前3s内通过的位移是6mB、物体第3s末的速度为3.6m/sC、物体前3s内平均速度为2m/sD、物体第3s内的平均速度为3m/s3、一列火车匀减速进站,停靠一段时间后又匀加速(同方向)出站。

在如图所示的四个v-t图象中,正确描述了火车运动情况的是()4、关于自由落体运动,正确的说法是()A、自由落体运动是一种匀变速运动B、自由落体的快慢与物体质量的大小有关C、在地球表面上各处,物体自由落体运动的加速度大小相等D、在地球表面上经度较大处,物体自由落体运动的加速度较大5、某质点作直线运动,速度随时间的变化的关系式为v =(2t + 4)m/s ,则对这个质点运动描述,正确的是()A、初速度为4 m/sB、加速度为2 m/s2C、在3s末,瞬时速度为10 m/sD、前3s内,位移为30 m6、关于加速度的概念,以下说法中正确的是:A.物体运动加速度的方向与初速度方向相同,物体的运动速度将增大B.物体运动加速度的大小表示了速度变化的大小C.加速度的正负表示了物体运动的方向D.做匀变速直线运动的物体速度增大的过程中,它的加速废一定为正值7、如图展示的四个图象分别是反映物体在不同的运动过程中速度v、位移s、加速度a随时间t变化的图象,由此可以推断出物体受到的外力的合力为零的是:A.加速度越来越小B.加速度方向总跟运动方向相反C.位移随时间均匀减小D.速度随时间均匀减小9、甲、乙两辆汽车在同一水平公路上做直线运动,若在描述它们运动情况时规定甲的运动方向为正方向,得出它们运动的加速度分别为a甲= 0.4 m/s2,a乙= −0.4 m/s2。

八年级物理运动题目及解析

八年级物理运动题目及解析

八年级物理运动题目及解析题目 1:一个物体做匀速直线运动,它在 4s 内通过了 20m 的路程,则它的速度是多少?解析:速度的计算公式为:v = s/t,其中v表示速度,s表示路程,t表示时间。

已知路程s = 20m,时间t = 4s,则速度v = 20m÷4s = 5m/s题目 2:一辆汽车在平直的公路上行驶,前一半路程的速度为60km/h,后一半路程的速度为40km/h,则汽车在全程的平均速度是多少?解析:设全程的路程为s,则前一半路程所用的时间t_1 = (s/2)/(60),后一半路程所用的时间t_2 = (s/2)/(40)。

全程的平均速度v = s÷(t_1 + t_2) = s÷((s/2)/(60) + (s/2)/(40)) = 48km/h 题目 3:小明骑自行车上学,他在前5min内行驶了1500m,则他的平均速度是多少?解析:时间t = 5min = 300s,路程s = 1500m平均速度v = s÷t = 1500m÷300s = 5m/s题目 4:一列火车长200m,以20m/s的速度通过一座长1000m的大桥,求火车完全通过大桥所需的时间。

解析:火车完全通过大桥行驶的路程为火车的长度加上大桥的长度,即s = 200m + 1000m = 1200m速度v = 20m/s时间t = s÷v = 1200m÷20m/s = 60s题目 5:一物体做变速直线运动,前半段路程的平均速度是4m/s,后半段路程的平均速度是6m/s,则全程的平均速度是多少?解析:设全程的路程为2s,则前半段路程所用的时间t_1 = s÷4,后半段路程所用的时间t_2 = s÷6。

全程的平均速度v = 2s÷(t_1 + t_2) = 2s÷(s÷4 + s÷6) = 4.8m/s甲、乙两物体都做匀速直线运动,甲的速度是乙的2倍,乙通过的路程是甲的(1)/(4),则甲运动的时间是乙的多少倍?解析:设乙的速度为v,甲的速度为2v;甲通过的路程为s,乙通过的路程为(1)/(4)s。

高中物理难题解析(运动学)

高中物理难题解析(运动学)

运动学基本概念 变速直线运动(P .21)***12.甲、乙、丙三辆汽车以相同的速度经过某一路标,以后甲车一直做匀速直线运动,乙车先加速后减速运动,丙车先减速后加速运动,它们经过下一路标时的速度又相同,则( )。

[2 ](A)甲车先通过下一个路标 (B)乙车先通过下一个路标 (C)丙车先通过下一个路标 (D)三车同时到达下一个路标解答 由题知,三车经过二路标过程中,位移相同,又由题分析知,三车的平均速度之间存在:乙v > 甲v > 丙v ,所以三车经过二路标过程中,乙车所需时间最短。

本题的正确选项为(B )。

(P .21)***14.质点沿半径为R 的圆周做匀速圆周运动,其间最大位移等于_______,最小位移等于________,经过94周期的位移等于_________.[2 ] 解答 位移大小为连接初末位置的线段长,质点做半径为R 的匀速圆周运动,质点的最大位移等于2R ,最小位移等于0,又因为经过T 49周期的位移与经过T 41周期的位移相同,故经过T 49周期的位移的大小等于R 2。

本题的正确答案为“2R ;0;R 2”(P .22)***16.一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方约与地面成60°角的方向上,据此可估算出此飞机的速度约为声速的____________倍.(2000年,上海卷)[5]解答 飞机发动机的声音是从头顶向下传来的,飞机水平作匀速直线运动,设飞机在人头顶正上方时到地面的距离为Y ,发动机声音从头顶正上方传到地面的时间为t ,声音的速度为v 0,于是声音传播的距离、飞机飞行的距离和飞机与该同学的距离组成了一直角三角形,由图2-1可见:X =v t , ①Y =v 0t , ②=YXtan300 , ③ 图2-1由①式、②式和③式得:58.0330==v v , 本题的正确答案为“0.58”。

好---高中物理力学中的临界问题分析

好---高中物理力学中的临界问题分析

高中物理力学中的临界问题分析1、运动学中的临界问题例题一:一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车.试问:(1)汽车从路口开动后,在赶上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)当两车相距最远时汽车的速度多大?例题二、在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0应满足什么条件?针对练习:(07海南卷)两辆游戏赛车、在两条平行的直车道上行驶。

时两车都在同一计时线处,此时比赛开始。

它们在四次比赛中的图如图所示。

哪些图对应的比赛中,有一辆赛车追上了另一辆(AC)二、平衡现象中的临界问题例题:跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上,如图甲所示.已知物体A的质量为m,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(按最大静摩擦力等于滑动摩擦力处理).针对练习1:如图所示,水平面上两物体m1、m2经一细绳相连,在水平力F 的作用下处于静止状态,则连结两物体绳中的张力可能为( )A、零B、F/2C、FD、大于F针对练习2:(98)三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B端固定。

若逐渐增加C端所挂物体的质量,则最先断的绳A、必定是OAB、必定是OBC、必定是OCD、可能是OB,也可能是OC三、动力学中的临界问题例题一:如图所示,在光滑水平面上叠放着A、B两物体,已知m A=6 kg、m B=2 kg,A、B间动摩擦因数μ=0.2,在物体A上系一细线,细线所能承受的最大拉力是20N,现水平向右拉细线,g取10 m/s2,则 ( )A.当拉力F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受A的摩擦力等于4 ND.无论拉力F多大,A相对B始终静止针对练习:(2007)江苏卷如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列车经过M1时的全加速度为:
a1
2 2 a2 an 0.108 cm / s 1
a tan 1 | | 2.38 an1
1 arctan 2.38 67.4
列车经过M2时的加速度为:
a2 a a
2
2 n2
0.293cm / s
2
a tan 2 | | 0.355 an 2
解: 取坐标系x如图所示,由几何关系得:
h1 xM h2 xM x2
h1 x2 xM h1 h2
上式对t求一阶导数,得 M 点 的速度为:
h1 h2
M
x
h1 . h1 v xM x2 v1 h1 h2 h1 h2
.
x2 xm
例4 下图为料斗提升机示意图。料斗通过钢丝绳由绕水平轴 O 转动的卷筒提升。已知:卷筒的半径为R=16cm,料斗沿铅垂提 升的运动方程为y=2t2,y以cm记,t 以s计。求卷筒边缘一点M在 t=4s时的速度和加速度。
V1 M1 an1 ar1
a1
a2 an2 M2 ar2 V1
解:
v v a
2
2
2
1
2s
0.1m / s 2
t
v2 v
a
1
100 s
求列车经过M1和M2时的法向加速度为:
an1
v
2 1
1
0.042m / s 2
an 2 v 2 0.281m / s 2
2
2
h1 xM h2 xM x2
h1 x2 xM h1 h2
上式对t求一阶导数,得 M 点 的速度为:
h1 h2
M
x
h1 . h1 v xM x2 v1 h1 h2 h1 h2
.
x2 xm
例3 一人高 h2 ,在路灯下以匀速v1行走,灯距地面 的高为h1 ,求人影的顶端M沿地面移动的速度。
将j =wt带入上式,得M点的运动方程:
x r sin wt
w
将上式对时间求一阶导数和二阶导数得:
O
j
x
dx v rw cos wt dt dv d 2 x a 2 rw 2 sin wt dt dt
例2 曲柄连杆机构是由曲柄、连杆及滑块组成的机构。当曲柄 OA绕O轴转动时,由于连杆AB带动,滑块沿直线作往复运动。 设曲柄OA长为r,以角速度w 绕O轴转动,即j=wt,连杆AB长 为l。试求滑块B的运动方程、速度和加速度。 解:取滑块B的直线轨迹为x轴, 曲柄的转动中心O为坐标原点。 w A l 在经过 t 秒后,此时B点的坐 B 标为: x j O x OB OC CB C x r cos j l cos 整理可得B的运动方程:
vy
v x
y 4Rw 2 cos2wt 4w 2 y ay v
故M点的加速度大小为
且有
a a a 4 Rw
2 x 2 y
2
a 4w 2 xi 4w 2 yj 4w 2 ( xi yj) 4w 2r
2 2
由此可得滑块B的速度和加速度:
dx v rw (sin wt sin 2wt ) dt 2 dv a rw 2 (cos wt cos 2w ) dt
例3 一人高 h2 ,在路灯下以匀速v1行走,灯距地面 的高为h1 ,求人影的顶端M沿地面移动的速度。
解: 取坐标系x如图所示,由几何关系得:
2 arctan 0.355 19.5
例6 杆AB绕A点转动时,带动套在半径为R的固定大圆环上的小 护环M 运动,已知φ=wt (w为常数)。求小环M 的运动方程、速 度和加速度。
解:建立如图所示的直角坐标系。则
y
2j
x R sin 2j y R cos 2j x R sin 2wt y R cos2wt
x r cos wt l 1 2 sin 2 wt )
x r cos wt l 1 2 sin 2 wt )
将右边最后一项展开:
1 2 2 1 4 4 1 sin wt 1 sin wt sin wt 2 8 2 x l (1 ) r (cos wt cos 2wt ) 4 4
2 t 2
2
at tan | | 0.25 an
arctan 0.25 142 '
例5 列车沿曲线轨道行驶,初速度v1=18km/h,速度均匀增 加,行驶 s=1km 后,速度增加到 v2=54km/h ,若铁轨曲线形 状如图 1-17所示。在 M1 、 M2 点的曲率半径分别为 ρ1=600m, ρ2=800m 。求列车从M1到M2所需的时间和经过M1和M2处的 加速度。
运动学
例1 下图为偏心驱动油泵中的曲柄导杆机构。设曲柄 OA 长为r , 自水平位置开始以匀角速度 w 转动,即j =wt,滑槽K-K与导杆 B-B制成一体。曲柄端点A通过滑块在滑槽K-K中滑动,因而曲柄 带动导杆B-B作上下直线运动。试求导杆的运动方程,速度和加 x 速度。 B 解:取M点的直线轨迹为 x 轴,曲 柄的转动中心O为坐标圆点。M点 的坐标为:x OM OA sin j r sin j B K M A K
解:
dS v 4t dt
M0 R O
M
当t=4 s时速度为: v=4×4=16 cm/s 此时M点的切向加速度为:
M'
dv at 4 cm/s 2 dt
A
y 2 an 16cm / s R
M点的全加速度为:
a a an 16.5 cm/s
即为小环M 的运动方程。
B M
Oj A
x
2Rw cos2wt vx x 2Rw sin 2wt vy y
故M点的速度大小为
2 2 v vx vy 2 Rw
y
a 2j
Oj A
M
其方向余弦为
B vx
vx cos(v , i ) cos 2j v vy cos(v , j ) sin 2j v x 4Rw 2 sin 2wt 4w 2 x ax v
相关文档
最新文档