第一套-质点运动学练习题
质点运动学试题与答案

质点运动学试题与答案一.选择题:1.一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ] 2.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m .(C) 0. (D) -2 m .(E) -5 m. [ ] 3.某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来? (A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°. [ ] 4.下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ ] 二.填空题1.一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI)则 (1) 质点在t =0时刻的速度=0v__________________;(2) 加速度为零时,该质点的速度=v ____________________.2.一物体作斜抛运动,初速度0v与水平方向夹角为θ,如图所示.物体轨道最高点处的曲率半径ρ为__________________.3.设质点的运动学方程为j t R i t R r sin cos ωω+= (式中R 、ω 皆为常量)则质点的v=___________________,d v /d t =_____________________.4.轮船在水上以相对于水的速度1v 航行,水流速度为2v,一人相对于甲板以速度3v 行走.如人相对于岸静止,则1v 、2v 和3v的关系是___________________.2. -12三.计算:一人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m .求在这50 s 内, (1) 平均速度的大小和方向; (2) 平均速率的大小.有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点. 四.证明:一艘船以速率u驶向码头P ,另一艘船以速率v 自码头离去,试证当两船的距离最短时,两船与码头的距离之比为:()()ααcos :cos v v ++u u 设航路均为直线,α为两直线的夹角.答案:一.选择题: BBCC二.填空题:1 5m/s 17m/s2 ρ =v 02cos 2θ /g3 -ωR sin ω t i +ωR cos ω t j4 0321=++v v v三.计算题:1解:(1) ++=)45sin )45cos (18)10(30j i j i ︒+︒-+-+=j i 73.227.17+==17.48 m ,方向φ =8.98°(东偏北)2分=∆=∆∆=t t r //0.35m/s方向东偏北8.98° 1分(2) (路程)()181030++=∆S m=58m,16.1/=∆∆=t S v m/s 2分2解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,OCAB东y 北φπ/4西 南x由题意可得u x = 0u y = a (x -l /2)2+b令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u代入上式定出a 、b,而得 ()x x l luu y --=204船相对于岸的速度v(v x ,v y )明显可知是 2/0v v =x y y u +=)2/(0v v ,将上二式的第一式进行积分,有t x 20v=还有,x y t x x y t y y d d 2d d d d d d 0v v ====()x x l l u --20042v 2分即()x x l l u x y--=020241d d v 1分因此,积分之后可求得如下的轨迹(航线)方程: '302020032422x l u x l u x y v v +-= 2分到达东岸的地点(x ',y ' )为⎪⎪⎭⎫⎝⎛-=='='=003231v , u l y y l x l x 2分四.证明:证:设任一时刻船与码头的距离为x 、y ,两船的距离为l ,则有 αc o s 2222xy y x l -+= 2分 对t求导,得()()tx y t y x t y y t x x t l l d d c o s 2d d c o s 2d d 2d d 2d d 2αα--+= 2分 将v , =-=t y u t x d d d d 代入上式,并应用0d d =tl作为求极值的条件, 则得 ααc o s c o s 0yu x y ux +-+-=v v ()()ααc o s c o s u y u x +++-=v v 3分 由此可求得 ααc o sc o sv v ++=u u y x 1分即当两船的距离最短时,两船与码头的距离之比为()()ααcos+uu2分:cos vv+。
力学习题-第1章质点运动学(含答案)

第一章质点运动学单元测验题一、选择题1.一质点沿x 轴运动,加速度与位置的关系为a (x )=2x +4x 2(SI 单位).已知质点在x =0处的速度为2m/s ,则质点在x =3m 处的速度为A.42m/s; B.26m/s ; C.94m/s ; D.34m/s .答案:C 解:根据题意:224dv a x x dt ==+,两边同乘dx 有:2(24)dv dx x x dx dt ⋅=+⋅由dx v dt=,上式化为:2(24)v dv x x dx ⋅=+对上式两边积分得到:223423v x x c =++由x =0,v =2m/s ,确定c =2.则当x =3m 时,解得:v =94m/s.2.一质点沿x 轴做直线运动,其速度v 随时间t 的变化关系如图所示.则下列哪个图可表示质点加速度a 随时间t 变化关系?2-•/s m a 2-•/s m a AB C答案:B 解:依据质点在一维运动时,速度-时间曲线的斜率对应加速度可知B 为加速度曲线.3.质点的运动学方程为33(21)t t =++r i j (SI 单位).则t =1s 时质点的速度为(SI单位)A.ji 6+3; B.j i 3+3; C.j i 6+6; D.j i 3+6.答案:A解:根据题意:33(21)t t =++r i j ,微分得:236d t dt ==+r v i j ,()136=+v i j 4.质点运动学方程为:kbt j t a i t a r +sin +cos =ωω,其中a 、b 、ω均为正的常数.问质点作什么运动?A.平面圆周运动;B.平面椭圆运动;C.螺旋运动;D.三维空间的直线运动.答案:C解:把质点的运动分解到三个方向上:cos sin x a t y a t z bt ωω===,,整理可知:222x y a z bt+==,则质点是以z 5.如图所示,在桌面的一边,—小球作斜抛运动,初速度v 0=4.7m/s.已知桌面宽a =2.0m.欲使小球能从桌面的另—边切过,小球的抛射角θ为A.30°;B.38°;C.50°;D.58°.答案:D 解:根据题意,小球沿x 和y 方向的运动方程为:t v x ⋅=θcos 0,201sin 2y v t gt θ=⋅-由x =2.0m 时,y =0,解得:o 58θ=.6.如图,有一半径为R 的定滑轮,沿轮周绕着一根绳子,悬在绳子一端的物体按s =(1/2)bt 2的规律向下运动.若绳子与轮周间没有相对滑动,轮周上一点A 在任一时刻t 的总加速度大为A.2t b a ;B.222/=R t b a ;C.b a =;D.R t b b a /+=22.答案:A 解:已知221bt s =,微分可得速度大小:t b dtds v ⋅==切向加速度大小:b dt dv a ==τ;法向加速度大小:Rt b R v a n 222==总加速度大小:a ==.7.当蒸汽船以15km/h 的速度向正北方向航行时,船上的人观察到船上的烟囱里冒出的烟飘向正东方向.过一会儿,船以24km/h 的速度向正东方向航行,船上的人则观察到烟飘向正西北方向.若在这两次航行期间风速不变,则风速的大小为A.9km/h; B.17.5km/h ; C.26.9km/h ; D.41km/h.答案:B解:地面为静系,船为动系,风为研究对象,则风对地的速度为绝对速度:风v v =船对地的速度为牵连速度:船牵连v v =风对船的速度为相对速度:风对船牵连v v =由绝对速度、牵连速度和相对速度的关系可得v v v =+船风对船,其矢量几何关系如图所示由此几何关系可得:1cos v v θ=船风,o 2145sin v v ctg v θ-=风船船联立解得:o 31θ=,5.17=v km /h .8.一个自由落体在它运动的最后一秒内所通过的路程等于全程的1/3.则物体通过全程所需的时间为A.3s ;B.6-3s ;C.6+3s ;D.6s答案:C解:设自由落体的全程下落时间和下落的高度分别为t 、S t 。
质点运动学习题 (修复的)

第一章质点运动学一.选择题:1.某质点的运动方程为,则该点作[ ](A )匀加速直线运动,加速度沿X 轴正方向。
(B )匀加速直线运动,加速度沿X 轴负方向。
(C )变加速直线运动,加速度沿X 轴正方向。
(D )变加速直线运动,加速度沿X 轴负方向。
2.一运动质点在某瞬间时位于矢径(X 、Y )的端点处,其速度大小为[ ](A )(B )(C )(D )3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设人以匀速率收绳,绳不伸长、湖水静止,则小般的运动是[ ](A )匀加速运动。
(B )匀减速运动。
(C )变加速运动。
(D )变减速运动。
(E )匀速直线运动。
4.一个质点在做匀速率圆周运动时[ ](A )切向加速度改变,法向加速度也改变。
(B )切向加速度不变,法向加速度改变。
(C )切向加速度不变,法向加速度也不变。
(D )切向加速度改变,法向加速度不变。
5.对于沿曲线运动的物体,以下几种说法中哪一种是正确的: [ ](A )切向加速度必不为零。
(B )法向加速度必不为零(拐点处除外)。
(C )由于速度沿切线方向,法向分速度必为零。
因此法向加速度必为零。
(D )若物体作匀速率运动,其总加速度必为零。
(E )若物体的加速度为恒矢量,它一定作匀变速率运动。
6.某人骑自行车以速率向西行驶,今有风以相同速率从北偏东方向吹来,试问人感到风从哪个方向吹来?[ ](A )北偏东(B )南偏东(C )北偏西(D )西偏南 7、质点的运动方程是j bt i at r (a 、b 都是常数),则质点的运动是( )(A )变速直线运动 (B )匀速直线运动(C )园周运动; (D )一般曲线运动。
8. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处 ( )(A) (B) (C) (D)9. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
大学物理作业1-质点运动学

大学物理(2-1)课后作业1质点运动学一、选择题1、如图所示,质点作匀速圆周运动,其半径为R ,从A 点出发,经半个圆周而达到B 点.则在下列表达式中,错误的是(A )位移大小2r R ∆=v ,路程R s π=.(B )位移2r Ri ∆=-v v ,路程R s π=.(C )速度增量0v ∆=v,速率增量0v ∆=. (D )速度增量2v vj ∆=-v v ,速率增量0v ∆=.2、一只昆虫沿螺旋线自外向内运动,如图所示,已知它走过的弧长与时间t 的一次方成正比,则该昆虫加速度的大小将[ ](A )越来越大 (B )越来越小 (C )不变 (D )不能判断3、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不能伸长、湖水静止,则小船的运动是(A )匀加速运动. (B )匀减速运动.(C )变加速运动.(D )变减速运动. (E )匀速直线运动.4、一质点沿x 轴作直线运动,加速度t a 2=,s 2=t 时质点静止于坐标原点左边2m 处,则质点的运动方程为(A )22232t t x -+=. (B )3143t x -=. (C )383t x -=. (D )310433t x t =-+. 5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A ) 2i ϖ+2j ϖ. (B )-2i ϖ+2j ϖ.(C )-2i ϖ-2j ϖ. (D ) 2i ϖ-2j ϖ.1、如图所示,质点在t ∆时间内沿曲线从A 运动到B ,试在图中画出:(1)A 、B 两处质点的位矢r v ;它们与坐标原点的选择有关吗?(2)质点在t ∆时间内的r ∆v 、r ∆、s ∆;它们与坐标原点的选择有关吗?2、一个作平面运动的质点,其切向加速度t a 和法向加速度n a 均不为零,试讨论在下列条件下质点的运动情况.(1)加速度恒矢量a v =.(2)加速度a v随时间变化.3、一质点作半径为 1.0m R =的圆周运动,其运动方程为323(SI)t t θ=+.试求当2s t =时,质点的角位置,角速度,角加速度,切向加速度,法向加速度.、1、一质点在平面xOy 内运动,运动方程为2x t =,2192y t =-(SI ).试求:(1)质点的运动轨迹方程;(2)求2s t =时刻质点的位置矢量、瞬时速度和瞬时加速度;(3)在什么时刻,质点的位置矢量和速度矢量垂直?这时x 、y 分量各为多少?2、一质点沿x 轴方向运动,其加速度和时间的关系为6a t =-(SI 单位),设0t =时刻,质点处于坐标原点并以012m/s v =的速度沿x 轴正方向运动, 试求:(1)任意时刻质点的位置和速度;(2)沿x 轴正方向质点最多能走多远,何时又回到出发点?(3)在13s :内质点的位移和路程.3、一架预警飞机在速率为150km/h的西风中巡航,飞机相对于空气以速率750km/h向正北航行.飞机中的雷达员在荧光屏上发现一个目标正相对于飞机从东北方向以950km/h的速率逼近飞机,建立如图坐标系,试在图上画出各速度的矢量图示,并求该目标相对于地面的速度.。
力学习题-第1章质点运动学(含答案)

第一章质点运动学单元测验题一、选择题1.一质点沿x 轴运动,加速度与位置的关系为a (x )=2x +4x 2(SI 单位).已知质点在x =0处的速度为2m/s ,则质点在x =3m 处的速度为A.42m/s; B.26m/s ; C.94m/s ; D.34m/s .答案:C 解:根据题意:224dv a x x dt ==+,两边同乘dx 有:2(24)dv dx x x dx dt ⋅=+⋅由dx v dt=,上式化为:2(24)v dv x x dx ⋅=+对上式两边积分得到:223423v x x c =++由x =0,v =2m/s ,确定c =2.则当x =3m 时,解得:v =94m/s.2.一质点沿x 轴做直线运动,其速度v 随时间t 的变化关系如图所示.则下列哪个图可表示质点加速度a 随时间t 变化关系?2-•/s m a 2-•/s m a AB C答案:B 解:依据质点在一维运动时,速度-时间曲线的斜率对应加速度可知B 为加速度曲线.3.质点的运动学方程为33(21)t t =++r i j (SI 单位).则t =1s 时质点的速度为(SI单位)A.ji 6+3; B.j i 3+3; C.j i 6+6; D.j i 3+6.答案:A解:根据题意:33(21)t t =++r i j ,微分得:236d t dt ==+r v i j ,()136=+v i j 4.质点运动学方程为:kbt j t a i t a r +sin +cos =ωω,其中a 、b 、ω均为正的常数.问质点作什么运动?A.平面圆周运动;B.平面椭圆运动;C.螺旋运动;D.三维空间的直线运动.答案:C解:把质点的运动分解到三个方向上:cos sin x a t y a t z bt ωω===,,整理可知:222x y a z bt+==,则质点是以z 5.如图所示,在桌面的一边,—小球作斜抛运动,初速度v 0=4.7m/s.已知桌面宽a =2.0m.欲使小球能从桌面的另—边切过,小球的抛射角θ为A.30°;B.38°;C.50°;D.58°.答案:D 解:根据题意,小球沿x 和y 方向的运动方程为:t v x ⋅=θcos 0,201sin 2y v t gt θ=⋅-由x =2.0m 时,y =0,解得:o 58θ=.6.如图,有一半径为R 的定滑轮,沿轮周绕着一根绳子,悬在绳子一端的物体按s =(1/2)bt 2的规律向下运动.若绳子与轮周间没有相对滑动,轮周上一点A 在任一时刻t 的总加速度大为A.2t b a ;B.222/=R t b a ;C.b a =;D.R t b b a /+=22.答案:A 解:已知221bt s =,微分可得速度大小:t b dtds v ⋅==切向加速度大小:b dt dv a ==τ;法向加速度大小:Rt b R v a n 222==总加速度大小:a ==.7.当蒸汽船以15km/h 的速度向正北方向航行时,船上的人观察到船上的烟囱里冒出的烟飘向正东方向.过一会儿,船以24km/h 的速度向正东方向航行,船上的人则观察到烟飘向正西北方向.若在这两次航行期间风速不变,则风速的大小为A.9km/h; B.17.5km/h ; C.26.9km/h ; D.41km/h.答案:B解:地面为静系,船为动系,风为研究对象,则风对地的速度为绝对速度:风v v =船对地的速度为牵连速度:船牵连v v =风对船的速度为相对速度:风对船牵连v v =由绝对速度、牵连速度和相对速度的关系可得v v v =+船风对船,其矢量几何关系如图所示由此几何关系可得:1cos v v θ=船风,o 2145sin v v ctg v θ-=风船船联立解得:o 31θ=,5.17=v km /h .8.一个自由落体在它运动的最后一秒内所通过的路程等于全程的1/3.则物体通过全程所需的时间为A.3s ;B.6-3s ;C.6+3s ;D.6s答案:C解:设自由落体的全程下落时间和下落的高度分别为t 、S t 。
《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
《大学物理学》质点运动学练习题

质点运动学学习材料一、选择题1.质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )(A ) (B ) (C ) (D )【提示:由于质点作曲线运动,所以,加速度的方向指向曲线的内侧,又速率逐渐减小,所以加速度的切向分量与运动方向相反】2. 一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( )(A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
【提示:将t =3代入公式,得到的是t=3时的位置,位移为t =3时的位置减去t =0时的位置;显然运动规律是一个抛物线方程,可利用求导找出极值点:24d x t dt =-,当t =2时,速度0d xdtυ==,所以前两秒退了4米,后一秒进了1米,路程为5米】3.一质点的运动方程是cos sin r R t i R t j ωω=+,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是 ( )(A ) -2R i ; (B ) 2R i; (C ) -2j ; (D ) 0。
(2)该质点经过的路程是 ( ) (A ) 2R ; (B ) R π; (C ) 0; (D ) R πω。
【提示:轨道方程是一个圆周方程(由运动方程平方相加可得圆方程),t =π/ω到t =2π/ω时间内质点沿圆周跑了半圈,位移为直径,路程半周长】4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度υ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 ( )(A )大小为2υ,方向与B 端运动方向相同; (B )大小为2υ,方向与A 端运动方向相同;(C )大小为2υ, 方向沿杆身方向;(D )大小为2cos υθ,方向与水平方向成 θ 角。
【提示:C 点的坐标为sin 2cos 2C C l x l y θθ⎧=⎪⎪⎨⎪=⎪⎩,则cos 2sin 2cx cyl d dt l d dt θυθθυθ⎧=⋅⎪⎪⎨⎪=⋅⎪⎩,有中点C 的速度大小:2C l d dt θυ=⋅。
大学物理练习题_C1-1质点运动学(含答案解析)

本习题版权归西南交大理学院物理系所有《大学物理AI 》作业No.01运动的描述班级________学号________姓名_________成绩_______一、选择题1.一质点沿x 轴作直线运动,其v ~t 曲线如图所示。
若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为[](A)0(B) 5 m(C) 2 m (D)-2 m (E)-5 m解:因质点沿x 轴作直线运动,速度v =x 2t 2v (m ⋅s -1)21O-112.5234 4.5t (s )d x,d t∆x =⎰d x =⎰v d tx 1t 1所以在v ~t 图中,曲线所包围的面积在数值上等于对应时间间隔内质点位移的大小。
横轴以上面积为正,表示位移为正;横轴以下面积为负,表示位移为负。
由上分析可得t=4.5 s 时,位移∆x =x =1(1+2.5)⨯2-1(1+2)⨯1=2(m )22选C2.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率v 0收绳,绳不伸长、ϖv湖水静止,则小船的运动是0[](A)匀加速运动(B)匀减速运动(C)变加速运动(D)变减速运动(E)匀速直线运动解:以水面和湖岸交点为坐标原点建立坐标系如图所示,且设定滑轮到湖面高度为h ,则xh 2+x 2d l x d x =-=v 0题意匀速率收绳有22d td t h +x 小船在任一位置绳长为l =d x h 2+x 2=-v 0故小船在任一位置速率为d t x 22d 2x 2h +2x =-v 0小船在任一位置加速度为a =,因加速度随小船位置变化,且d t 2x 3与速度方向相同,故小船作变加速运动。
选Cϖ3.一运动质点在某瞬时位于矢径r (x ,y )的端点处,其速度大小为[]d r (A)d t ϖd r (C)d tϖd r (B)d t(D)⎛d x ⎫⎛d y ⎫ ⎪+ ⎪d t d t ⎝⎭⎝⎭22ϖϖϖd x ϖd y ϖϖϖd r解:由速度定义v =及其直角坐标系表示v =v x i +v y j =i +j 可得速度大d t d t d t ϖ⎛d x ⎫⎛d y ⎫小为v =⎪+ ⎪d t d t ⎝⎭⎝⎭22精品文档选D4.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有[](A)v =v ,ϖϖϖϖϖ(B)v ≠v ,v =vv =v ϖϖϖϖ(C)v =v ,v ≠v (D)v ≠v ,v ≠vϖd s ϖd rϖϖ解:根据定义,瞬时速度为v =,瞬时速率为v =,由于d r =d s ,所以v =v 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、质点运动学一.选择题1.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,平均速率为v ,平均速度为v ,它们之间必定有如下关系:( )A v v =,v ≠vB v v =,v ≠vC.v=v,v =v D.v ≠v ,v =v2.一质点在平面上运动,已知质点位置矢量的表达式为r =a 2t ˆi +2ˆbt j .(其中a.b 为常量),则该质点作( )A.匀速直线运动 B .变速直线运动 C. 抛物线运动 D. 一般曲线运动3.一质点沿x 轴作直线运动,其v-t 曲线如图所示。
在t=0时,质点位于坐标原点,则t=4.5s 时,质点在x 轴上的位置为( )A.0B. 5mC. 2mD.-2m4.质点作曲线运动,r 表示位置矢量,s 表示路程,a τ表示切向加速度,判断下列表达式(1)dv a dt = (2)dr v dt = (3)ds v dt= (4)dva dt τ= A 只有(1)(4)是对的 B 只有(2)(4)是对的 C 只有(2)是对的 D 只有(3)是对的5.质点作半径为R 的变速运动时的加速度大小为(v 表示任意时刻质点的速率 )( )A.dvdt B.2v RC 2dv v dt R+ D12422dv v dt R ⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦6.对于沿曲线运动的物体,以下几种说法中那一种是正确的( )A .切向加速度必不为零B.法向加速度必不为零(拐点处除外)C.若物体作匀速运动,其总加速度必为零7.一物体从某一确定高度以速度0v 水平抛出,已知它落地时的速度为t v ,那么它运动的时间是( )A.t v v g- B.02t v v g-C.()12220tv v g- D.()122202tv v g-8.下列说法正确的是 ( )A. 加速度恒定不变时,物体的运动速度也不变B.平均速率等于平均速度的大小C.当物体的速度为零时,加速度必定为零D.质点作曲线运动时,质点速度大小的变化产生切向加速度9.一运动质点在某瞬时位于矢径(.)r x y 的端点处,其速度的大小为( )A.dr dtB.d r dtC.d rdtD.22dx dy dt dt ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭10.一质点从静止出发绕半径为R 的圆周作匀变速圆周运动,角加速度为α,当该点走完一圈回到出发点时,所经历的时间为( )A.212R α B.4παC.2παD.条件不够不能确定二.填空题:1.一物体在某瞬时,以初速度0v 从某点开始运动。
在t ∆时间内,经一长度为s 的曲线路程后,又回到出发点。
此时速度为0v -,则在这段时间内(1)物体的平均速率是( ) (2)物体的平均加速度是( )2 .一质点的运动方程为26x t t =-([s]单位),则在t 由0到4s 的时间间隔内,质点位移的大小为( ),在t 由0到4s 的时间间隔内质点走过的路程为( )3.一质点沿直线运动,其坐标x 与时间t 有如下关系:cos t x Ae t βω-=([s]单位)(A.β皆为常数)。
(1) 任意时刻质点的加速度a=( ) (2) 质点通过原点的时刻t=( ) 4 灯距地面高度为1h ,一个人身高为2h ,以匀速率v 水平直线行走,如图所示,则他的头顶在地上的影子M 沿地面移动的速度M v =( )5 .已知质点从静止出发,沿半径3R m =的圆周运动,切向加速度23/t a m s =,当总加速度与半径成045角时,所经过的时间t=( )经过的路程s 为 6.飞轮作加速转动时,轮边缘上的一点的运动方程30.1st =,飞轮半径2m,该点的速率30/v m s =时,其切向加速度( ),法向加速度为( )7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2v ct =(c 为常数),则从t=0时刻质点所走过的路程s (t )=( );t 时刻质点的切向加速度a τ=( );t 时刻质点的法向加速度n a =( )8.已知质点的运动方程2ˆˆ4(23)rt i t j =++,则该质点的轨道方程( )9.一船以速度0v 在静水湖中匀速直线航行,一乘客以初速1v 在船中竖直向上抛出一石子,则站在岸上的观察者看石子运动的轨迹是( ),其轨迹法方程是( )10.某质点以初速0v 向斜上方抛出,0v 与水平地面夹角为0ϑ,则落地时的法向、切向加速度分别为n a =( ),t a =( ),轨道最高点的曲率半径ρ=( ) 三、简答题:1、有一质点沿X 轴作直线运动,t 时刻的坐标为x=4.5t 2-2t 3 试求: (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内的路程。
2、一质点作直线运动,其x —t 曲线如图所示,质点的运动可分为OA 、AB (平行于t 轴的直线)、BC 、CD (直线)、四个区间,试问每一区间速度、加速度分别是正值、负值,还是零?3、一质点从静止开始作直线运动,开始加速度为a ,此后加速度随时间均匀增加,经过时间τ后,加速度为2a ,经过时间2τ后,加速度为3a …,求经过时间n τ后,该质点的速度和走过的距离。
4、一物体悬挂在弹簧上作竖直运动,其加速度a=-ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标。
假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式。
5、一质点在xy 平面内,以原点o 为圆心做半径为r 的匀速圆周运动, 角速度为ω ,已知在t=0时,y=0,x=r ,如图所示,试求:(1)试用r ,ω和单位矢量ˆi,ˆj 表示t 时刻的位置矢量;(2)导出速度v ,加速度a 的矢量表示式。
6、一质点在水平面内沿一半径为R=1m 的圆轨道运动。
转动的角速度与时间t 的函数关系为2kt ω=(k为常量)。
已知t=2s 时,质点p 的速度值为4m/s 。
试求t=1s 时,该质点的速度与加速度的大小。
7、质点沿着半径为r 作圆周运动,其加速度矢量与速度矢量间的夹角α保持不变,求质点的速率随时间而变化的规律。
已知初速度的值为0v 。
8、(1)ˆˆˆcos sin 2r R tiR tj tk =++ ,R 为正常数,求t=0,2π时的速度和加速度。
(2)23ˆˆˆ3 4.56rti t j t k=-+,求t=0,1时的速度和加速度写出正交分解式。
9、一质点作直线运动,其瞬时加速度的变化规律为2cos x a A t ωω=-,在t=0时,x v =0,x=A ,其中A ,ω均为正常数,求此质点的运动学方程。
10、质点直线运动的运动学方程为x=acos t ,a 为正常数。
求质点速度和加速度。
四、计算题: 1、质点运动方程为23xAt Bt ct =++,其中A ,B ,C 为非零常量,求(1)t=0时,质点的速度0v ;(2)质点加速度为零时,其速度1v 。
2、一长为L 的梯子斜靠在墙上,因受扰动而下滑,设任意时刻梯子顶端沿墙面下滑的速率为1v ,底端沿地面滑动的速率为2v ,梯子与地面的夹角为ϑ,试求1v ,2v 与ϑ三者之间的关系。
3、一艘沿直线行驶的游艇,在发动机关闭时,速度为0v ,00x =。
此后速度逐渐减少,有2dvkv dt=-(k 为正的常量)求 (1)游艇关机后速度v 与行驶时间t 之间的函数式; (2)游艇关机后速度v 与行驶距离x 之间的函数式。
4、一质点作圆周运动,其切向加速度与法向加速度的大小保持相等,设ϑ为质点在圆周任意两点处的速度1v 与2v 之间的夹角,试证:21v v e ϑ=5、在水平桌面放置A ,B 物体,用一跟不可伸长的绳索按图示的装置把它们联结起来,C 点与桌面固定,已知物体A 的加速度A a =0.5kg ,求物体B 的加速度。
答案部分: 一.选择题。
、1.B 2.B. 3 C. 4. D 5.D 6.B 7.C 8.D 9.D 10.B 二.填空题。
1.(1)st∆ (2)02v t-∆ 2. 8m 10m3. (1)22[()cos 2sin ]t Ae t t ββωωβωω--+ (2)()212k πω+ k=0.1.2.3……4.112h v h h - 5. 1s 1.5m6.26/m s2450/m s7.313ct 2ct24c t R8.()23x y =- 9. 抛物线212002v g y x x v v =- 10.gcos 0θ 0sin g θ2200cos v gθ三、简答题1、答案:-0.5m/s ;-6 m/s ;2.25m2、答案:OA :v>0,a<0;AB :v=0,a=0;BC :v>0,a>0;CD :v>0,a=0.3、答案:A=kt+a ∵t=τ,A=2a ∴k=a/τ (注意:A 是变量)由dv a A a dt τ==+,得22av t at τ=+,t=n τ时,1(2)2va n n τ=+,221(3)6S a n n τ=+ 4、答案:v 2=v 02+k (y 02-y 2) (关键dv dvav dt dy==) 5、答案:22ˆˆcos sin ˆˆsin cos ˆˆcos sin r r tir tj v r tir tj a r tir tj ωωωωωωωωωω=+=-+=--6、答案:V=t 2t=1s 时,V=1m/s ;2s7、答案:00v rv r v tctg α=- (提示:2cos .sin dv v a a dt rαα==二者相除,积分可得)8、答案:(1)t=0,ˆˆ2v Rik =+;ˆa Ri =-;t=2π,ˆˆ2vRik =-+,ˆa Rj =- (2)t=0,ˆ3vi=;ˆ9a j =-;t=1,ˆˆ3918v i j k =-+,ˆˆ936a i k =-+ 9、答案:x=Acos t ω 10、答案:sin x v a t =-,cos x a a t =-四、计算题:1、答案:(1)0v =A (2)213B v A c=-2、答案:12v v ctg ϑ=(解;如图,在任意时刻都有y =dy dx ctg dt dtϑ==-,两边取绝对值:12v v ctg ϑ=)3、答案:(1),001v v kv t=+ (2)0kx vv e -=(思考:x 与t 关系?01ln(1)x kv t k=+) 4、(证明:设圆周半径为k ,按题意有2k k αω= 则2αω=,即2d dtωω=,两边乘以d ϑ得:d d ωϑω= ∵v k ω=∴dvd vϑ=,积分:120v v dv d v ϑϑ=⎰⎰ 即得:21v v e ϑ=)5、答案:38B a =g。