1质点运动学习题思考题

合集下载

01 力学:第一章 质点运动学-课堂练习及部分习题解答

01 力学:第一章 质点运动学-课堂练习及部分习题解答
h1 O
xM h2 = x h1 − h2 dxM h1 dx vM = = dt h1 − h2 dt
h2
x
· x
M
M
x
《学习指导》第1章·典型例题3
Zhang Shihui
题. 距河岸(看成直线)500m处有一艘静止的船,船上的探 照灯以转速为n=1r/min转动。当光束与岸边成60°角时, 光束沿岸边移动的速度的大小是多少? 解:首先建立 p 的运动方程 x(t)
Zhang Shihui
题. 一艘正在沿直线行驶的电艇,在发动机关闭后,其 加速度方向与速度方向相反,大小与速度平方成正比, 即 dv dt = − kv 2。式中k为常数,试求电艇在关闭发动 机后行驶x距离时的速度。 dv dv dx 2 解:已知 = − kv ⇒ = − kv 2 dt dx dt
《学习指导》第1章·典型例题7
Zhang Shihui
题. 物体悬挂在弹簧上作竖直振动,加速度为a=-ky,k为 常数,y是以平衡位置为原点测得的坐标,假定振动的物 体在坐标y0处的速度为v0,求速度v和坐标y的函数关系。
dv dv dy dv 解: 由 a = = −ky ⇒ = − ky ⇒ v = − ky dt dy dt dy
《学习指导》第1章·典型例题2
Zhang Shihui
题. 灯距地面高度为h1,一只鸵鸟身高为h2,在灯下以匀 速率v沿水平直线行走,如图所示,则它的头顶在地上的 影子M点沿地面移动的速度为多少? 解:建立如图所示的坐 标系,鸵鸟坐标为x, M点的坐标为xM
dx dxM = v, vM = =? dt dt
α h
O
vp
x
θ P
《学习指导》第1章·习作题1

理论力学思考题习题答案

理论力学思考题习题答案

第一章 质点力学矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。

已知升降机的初速度为零。

解 :由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 由加速度的微分形式我们可知dtdv a =代入得 dt T t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫⎝⎛-=002sin 1π 可得 :D T t c T ct v ++=2cos 2ππ(D 为常数)代入初始条件:0=t 时,0=v , 故c T D π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2T t T t c v ππ 又因为dtds v =所以 =ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos 2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。

求此直线与椭圆的焦点M 的速度。

已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,常数。

解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= ) 又因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平面运动,其速率保持为常数。

(完整版)大学物理01质点运动学习题解答

(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。

解:答案是 D。

2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。

简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。

3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。

简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。

4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。

质点运动定律习题思考题

质点运动定律习题思考题

习题22-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。

当2s t =时,求:(1) 质点的位矢; (2) 质点的速度。

解:由 x x f a m =,有:x a 263m /168s ==,2/167s m m f a y y ==(1) t dt a v v t x x x 83200+-=+=⎰于是2秒时质点的位矢为:)m )(87413(j i j y i x r+-=+=(2)于是质点在2s 时的速度: )m/s (8745j i v+-=2-2 摩托快艇以速率v 0行驶,它受到的摩擦阻力与速率平方成正比,可表示为F = -kv 2(k 为正值常量)。

设摩托快艇的质量为m ,当摩托快艇发动机关闭后,求: (1) 求速率v 随时间t 的变化规律; (2) 求路程x 随时间t 的变化规律;(3) 证明速度v 与路程x 之间的关系为x0e k v v '-=,其中m k k /='。

解:(1)由牛顿运动定律Fma =得:2d v kv md t -=,分离变量有2k d vd t m v-=, 两边积分得:速率随时间变化的规律为011kt v v m=+; (2)由位移和速度的积分关系:0tx v dt =⋅⎰,积分有:由于此题路程和位移相等,∴路程随时间变化的规律为:0ln(1)k kx v t m m=+ ; (3)由2d v d x kv md x d t -=⋅,k d v d x m v -=,∴00xv v k dv dx m v -=⎰⎰积分有: )exp(0x m k v v -=)(0x k e v '-=,其中mkk =' 2-3.质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度。

第一章 质点运动学 问题与习题解答

第一章 质点运动学 问题与习题解答

第一章 质点运动学 问题与习题解答1-3 已知质点的运动方程为()()()r t x t i y t j =+,有人说其速度和加速度分别为drv dt=,22d r a dt =其中r =答:错。

因为2||||||()dr dx dy dx v v i j dt dt dt ===+=2||d x dr d r dt dt ==所以,drv dt≠同理,222222||||||()dv d x d y d x a a i j dt dt dt ===+=2222||d r d r dt dt ==故,22d ra dt≠。

1-6 一人站在地面上用枪瞄准悬挂在树上的木偶。

当击发枪机,子弹从枪口射出时,木偶正好由静止自由下落。

试说明为什么子弹总可以射中木偶?证明:选地面为参考系,以枪口处为坐标原点,如右图所示。

假设无重力加速度作用时,子弹直线飞行0t 时间后打中木偶A ,则其飞行时间为 00cos St v θ=,因g 的作用,0t 时刻子弹的位置矢量为 200012r v t gt =+, 又从图中可知,落地前木偶垂直下落的距离为 212l gt =,而其落到地面所需时间为1t =故只要01t t <,则在0t 时木偶距原来位置A 的位移为 2001()2l t gt = 正好处于与子弹相遇的位置(如图所示)。

【条件01t t <即0cos S v θ<0cos S v θ>, 所以,只要子弹在木偶落地前到达木偶原位置A 的正下方,子弹总能打到木偶。

】 1-9 下列说法是否正确:(1)质点做圆周运动时的加速度指向圆心; (2)匀速圆周运动的加速度为常量;(3)只有法向加速度的运动一定是圆周运动;x yv 0t 0gt 02/2Sr θPA(4)只有切向加速度的运动一定是直线运动。

答:质点做圆周运动时的加速度为 2t n dv v a e e dt R=+ 。

(1)错。

质点运动学习题详解

质点运动学习题详解

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度V 0为5m -s '1,则当t 为3s 时,质点的速度 v= ________________________ 。

[答案:23 ms -1]⑶ 轮船在水上以相对于水的速度 V 航行,水流速度为v 2, 一人相对于甲板以速度 V 3行走。

如人相对于岸静止,则V 、V 2和V 3的关系是。

[答案:V 1 V 2 V 30]习题1A /选择题(1) 一运动质点在某瞬时位于矢径r(x, y)的端点处,其速度大小为dr(A) — dtdr (B) —— dtd |r |(C)dt1[答案:D]:,dx 、2,dy 、2(D)W dt )V(2) 一质点作直线运动,某时刻的瞬时速度 v 2m/s ,瞬时加速度a 2m/ s 2,则 一秒钟后质点的速度 (A)等于零 (C)等于 2m/s [答案:D] (B)等于-2m/s (D)不能确定。

(3) 一质点沿半径为 速度大小和平均速率大小分别为 2 R 2 R (A) - t tR 的圆周作匀速率运动,每 t 秒转一圈,在2t 时间间隔中,其平均 (C) 0,0 c 2 R (B) 0,-p 2 R c (D) —,0 [答案:B]/填空题 (1) 一质点,以 m 1 的匀速率作半径为 5m 的圆周运动,则该质点在 5s 内,位移的大小是 _____________________ [答案:10 m ; ;经过的路程是 5 n m]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研 究问题的性质决定。

F 面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3; ( 2)x=-4t 3+3t 2+6; ( 3)x=-2t 2+8t+4; ( 4)x=2t 2-4/t 。

质点运动学习题思考题

质点运动学习题思考题

大学物理 第一章习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dva dt=221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+。

最新力学漆安慎后小结习题答案02章

最新力学漆安慎后小结习题答案02章

力学(第二版)漆安慎习题解答第二章质点运动学第二章 质点运动学一、基本知识小结1、基本概念 22)(dtr d dt v d a dtrd v t r r====)()()(t a t v t r ⇔⇔(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t ===)2、直角坐标系 ,,ˆˆˆ222z y x r k z j y i x r ++=++= r 与x,y,z 轴夹角的余弦分别为 r z r y r x /,/,/.v v v v v k v j v i v v z y x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/. a a a a a k a j a i a a z y x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x222222,,,,dt zd dt dv a dt y d dt dv a dt x d dt dv a dtdzv dt dy v dt dx v z z y y x x z y x =========),,(),,(),,(z y x z y x a a a v v v z y x ⇔⇔3、自然坐标系 ||,,ˆ);(ττττv v dtds v v v s r r ====ρτττττ22222,,,ˆˆv a dts d dt dv a a a a n a a a n n n ===+=+= )()()(t a t v t s ττ⇔⇔4、极坐标系 22,ˆˆ,ˆθθθv v v v r v v r r r r r +=+== dtd rv dt dr v r θθ==,5、相对运动 对于两个相对平动的参考系 ',0't t r r r =+=(时空变换) 0'v v v+= (速度变换) 0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有: zz y y x x z z y y x x a a a a a a v v v v V v v t t z z y y Vt x x =====-====-=',','',','',',','y y' Vo x o' x' z z'二、思考题解答2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?解答:质点位置矢量方向不变,质点沿直线运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +v v v其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +v v v,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=v v ,有速度:sin Rcos v R t i t j ωωωω=-+v v v而v v =v v,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++v v v ,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++v v v ,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d r v dt=v v ,有速度:82v t i j =+v v v从0=t 到1=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰v v v v v v(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =v v,(1)82v i j =+v v v 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+vv v ,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =v v ,有:22v t i j =+v v v ,d v a dt=v v ,有:2a i =v v ;(2)而v v =v v,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=21t =+,利用222t n a a a =+有: 22221n t a a a t =-=+。

1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =-(1) 22012y v t at =+ (2)12y y d += (3)(注意到1y 为负值,有11y y =-) 联立求解,有:2dt g a=+。

解法二:以升降机为非惯性参照系,则重力加速度修正为'g g a =+, 利用21'2d g t =,有:22'ddt g g a==+。

1-5.一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d r d t v ,d v d t v ,d vd t。

解:(1)如图,可建立平抛运动学方程:0x v t = ,212y h g t =- ,∴201()2r v t i h g t j =+-v v;(2)联立上面两式,消去t 得小球轨迹方程:2202gx y h v =-+(为抛物线方程);(3)∵201()2r v t i h g t j =+-v v v,∴0d r v i g t j d t =-v v v , 即:0v v i g t j =-v v v,d v g j d t=-v v 在落地瞬时,有:2ht g=,∴02d r v i gh j d t =-v v v 又∵ v =2222()xyv v v gt +=+-,∴2122220022[()]g gh g t dvdt v gh v gt ==++ 。

1-6.路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

试证明人影的顶端作匀速运动,并求其速度2v .证明:设人向路灯行走,t 时刻人影中头的坐标为1x ,足的坐标为2x , 由相似三角形关系可得:12211x x h x h -=, ∴11212h x x h h =-两边对时间求导有:11212d x h d x d t h h d t =- ,考虑到:21d x v d t=, 知人影中头的速度:21112d x h v v d t h h ==-影(常数)。

1-7.一质点沿直线运动,其运动方程为2242t t x -+=(m),在 t 从0秒到3秒的时间间隔内,则质点走过的路程为多少?解:由于是求质点通过的路程,所以可考虑在0~3s 的时间间隔内,质点速度为0的位置:t dtdxv 44-==若0=v 解得 s t 1=, m x x x 22)242(011=--+=-=∆m x x x 8)242()32342(2133-=-+-⨯-⨯+=-=∆m x x x 1021=∆+∆=∆。

cm 20=h ,斜面对水1-8.一弹性球直落在一斜面上,下落高度平的倾角ο30=θ,问它第二次碰到斜面的位置距原来的下落点多远(假设小球碰斜面前后速度数值相等,碰撞时人射角等于反射角)。

x y 0v hO O1x 2x 1h 2h解:小球落地时速度为gh v 20=,建立沿斜面的直角坐标系,以小球第一次落地点为坐标原点如图示,00060cos v v x =→ 200060cos 2160cos t g t v x += (1)00060sin v v y =→ 200060sin 2160sin t g t v y -= (2)第二次落地时:0=y ,代入(2)式得:g v t 02=,所以:2002002122cos 60cos 604802v gh x v t g t h cm g g ⋅=+====。

1-9.地球的自转角速度最大增加到若干倍时,赤道上的物体仍能保持在地球上而不致离开地球?已知现在赤道上物体的向心加速度约为2s /cm 4.3,设赤道上重力加速度为2m/s 80.9。

解:由向心力公式:2F m Rω=向, 赤道上的物体仍能保持在地球必须满足:F mg =向,而现在赤道上物体的向心力为:'F ma =向∴016.9817ωω====≈1-10.已知子弹的轨迹为抛物线,初速为0v ,并且0v 与水平面的夹角为θ。

试分别求出抛物线顶点及落地点的曲率半径。

解:(1)抛物线顶点处子弹的速度0cos x v v θ=,顶点处切向加速度为0,法向加速度为g 。

因此有:22011(cos )v v g θρρ==,2201cos v gθρ=;(2)在落地点时子弹的0vθ角,则:cos n a g θ=,有:22cos v g θρ= 则:22cos v g ρθ=。

1-11.一飞行火箭的运动学方程为1()ln(1)=+--x ut u t bt b,其中b 是与燃料燃烧速率有关的量,u 为燃气相对火箭的喷射速度。

求:(1)火箭飞行速度与时间的关系;(2)火箭的加速度。

解:一维运动,直接利用公式:dx v dt =,dv a dt=有: (1))1ln(bt u dt dx v --== , (2)btubdt dv a -==11-12.飞机以s /m 1000=v 的速度沿水平直线飞行,在离地面高m 98=h 时,驾驶员要把物品投到前方某一地面目标上,问:投放物品时,驾驶员看目标的视线和竖直线应成什么角度?此时目标距飞机下方地点多远? 解:设此时飞机距目标水平距离为x 有: 0yt v x 0=┄①,221gt h =┄② 联立方程解得:m x 447≈,∴05.77arctan≈=hxθ。

1-13.一物体和探测气球从同一高度竖直向上运动,物体初速为s /m 0.490=v ,而气球以速度s /m 6.19=v 匀速上升,问气球中的观察者在第二秒末、第三秒末、第四秒末测得物体的速度各多少? 解:物体在任意时刻的速度表达式为:gt v v y -=0故气球中的观察者测得物体的速度v v v y -=∆代入时间t 可以得到第二秒末物体速度:29.8m v s∆=,(向上)第三秒末物体速度:30v ∆=第四秒末物体速度:49.8m v s∆=-(向下)。

思考题11-1.质点作曲线运动,其瞬时速度为v ,瞬时速率为v ,平均速度为v ,平均速率为v ,则它们之间的下列四种关系中哪一种是正确的?(A )v v ==v v ,;(B )v v =≠v v ,;(C )v v ≠=v v ,;(D )v v ≠≠v v ,答:(C )1-2.沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小的关系是:(A )与速度大小成正比;(B )与速度大小平方成正比;(C )与速度大小成反比;(D )与速度大小平方成反比。

答:B1-3.如图所示为A ,B 两个质点在同一直线上运动的-v t 图像,由图可知 (A )两个质点一定从同一位置出发 (B )两个质点都始终作匀加速运动 (C )在2s t 末两个质点相遇(D )在20s :t 时间内质点B 可能领先质点A答:D1-4.质点的t x ~关系如图,图中a ,b ,c 三条线表示三个速度不同的运动.问它们属于什么类型的运动?哪一个速度大?哪一个速度小? 答:匀速直线运动;a b c v v v >>。

1-5.如图所示,两船A 和B 相距R ,分别以速度A v 和B v 匀速直线行驶,它们中α和β为已知。

会不会相碰?若不相碰,求两船相靠最近的距离.图答:方法一:如图,以A 船为参考系,在该参考系中船A 是静止的,而船B 的速度A v v v B -='。

v '是船B 相对于船A 的速度,从船B 作一条平行于v '方向的直线BC,它不与船A 相交,这表明两船不会相碰.由A 作BC 垂线AC,其长度min r 就是两船相靠最近的距离θsin min R r =作FD//AB,构成直角三角形DEF ,故有:v v v A B '-=αβθsin sin sin ,在三角形BEF 中,由余弦定理可得:)cos(222βα+++='B A B A v v v v vR v v v v v v r B A BAA B )cos(2sin sin 22min βααβ+++-=。

方法二:两船在任一时刻t 的位置矢量分别为: j i r A )tsin )cos (ααB A v t v (+=j i r B )tsin )cos (ββB B v t v R (+-=j i r r r A ])sin sin [(])cos cos ([-B t v v t v v R A B A B αβαβ-++-==任一时刻两船的距离为:22])sin sin [(])cos cos ([t v v t v v R r A B A B αβαβ-++-=令:0)(=dtt drR v v v v v v t A B A B A B 22)sin sin ()cos cos (cos cos αβαβαβ-+++= R v v v v v v r B A B A A B )cos(2sin sin 22min βααβ+++-=。

相关文档
最新文档