江苏专版2019版高考数学一轮复习第二十章计数原理20.1两个计数原理排列与组合课件

合集下载

2019-2020年高考数学一轮复习 第一讲 计数原理讲练 理 新人教A版

2019-2020年高考数学一轮复习 第一讲 计数原理讲练 理 新人教A版

2019-2020年高考数学一轮复习第一讲计数原理讲练理新人教A版一、两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.二、排列组合1、排列与排列数(1).排列从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2).排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n.2、组合与组合数(1).组合从n个不同元素中取出m(m≤n)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合.(2).组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3、排列数、组合数的公式及性质(1)A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!(2)C m n=A m nA m m=n n-1n-2…n-m+1m!=n!m!n-m!(n,m∈N*,且m≤n).特别地C0n=1.解排列、组合应用题的常见策略 (1)特殊元素优先安排的策略; (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略; (7)定序问题除法处理的策略; (8)分排问题直排处理的策略.三、二项式定理 1、二项式定理(1).(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *). (2).第r +1项,T r +1=C r n an -r b r. (3).第r +1项的二项式系数为C r n . 2、二项式系数的性质(1).0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n .(2).二项式系数先增后减中间项最大且n 为偶数时第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n .(3).各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 基础自测1.在所有的两位数中,个位数字大于十位数字的两位数共有( ) A .50个 B .45个 C .36个 D .35个【解析】 根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个). 【答案】 C2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种【解析】 分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.【答案】C3.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种【解析】可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A35=60(种).【答案】B4.(xx·大纲全国卷)(x+2)8的展开式中x6的系数是()A.28 B.56 C.112 D.224【解析】该二项展开式的通项为T r+1=C r8x8-r2r=2r C r8x8-r,令r=2,得T3=22C28x6=112x6,所以x6的系数是112.【答案】C考点一两个计数原理例6个学生按下列要求站成一排,求各有多少种不同的站法?(1)甲不站排头,乙不能站排尾;(2)甲、乙都不站排头和排尾;(3)甲、乙、丙三人中任何两人都不相邻;(4)甲、乙都不与丙相邻.【思路点拨】(1)按甲站的位置分类求解;(2)先排甲、乙的位置,再排其他学生;(3)不相邻问题用插空法求解;(4)按丙站的位置分类求解.【尝试解答】(1)分两类:甲站排尾,有A55种;甲站中间四个位置中的一个,且乙不站排尾,有A14A14A44种.由分类计数原理,共有A55+A14A14A44=504(种).(2)分两步:首先将甲、乙站在中间四个位置中的两个,有A24种;再站其余4人,有A44种.由分步计数原理,共有A24·A44=288(种).(3)分两步:先站其余3人,有A33种;再将甲、乙、丙3人插入前后四个空当,有A34种.由分步计数原理,共有A33·A34=144(种).(4)分三类:丙站首位,有A24A33种;丙站末位,有A24A33种;丙站中间四个位置中的一个,有A14A23A33种.由分类计数原理,共有2A24A33+A14A23A33=288(种).方法与技巧 1.对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.2.对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.跟踪练习(xx山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243B.252C.261 D.279解析:本题考查分步乘法计数原理的基础知识,考查转化与化归思想,考查运算求解能力,考查分析问题和解决问题的能力.能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三位数的个数是900-648=252.答案:B考点二排列与组合例1、男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)至少有1名女运动员;(2)既要有队长,又要有女运动员.【思路点拨】第(1)问可以用直接法或间接法求解.第(2)问根据有无女队长分类求解.【尝试解答】(1)法一至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246(种).法二“至少有1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的选法为C510-C56=246(种).(2)当有女队长时,其他人选法任意,共有C49种选法.不选女队长时,必选男队长,共有C48种选法.其中不含女运动员的选法有C45种,所以不选女队长时共有C48-C45种选法,所以既有队长又有女运动员的选法共有C49+C48-C45=191(种).方法与技巧组合问题常有以下两类题型变化1“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.2“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.2、(xx山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .484解析:若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C 14×C 14×C 14=64种,若2张同色,则有C 23×C 12×C 24×C 14=144种;若红色卡片有1张,剩余2张不同色,则有C 14×C 23×C 14×C 14=192种,剩余2张同色,则有C 14×C 13×C 24=72种,所以共有64+144+192+72=472种不同的取法.答案:C跟踪练习 1、(xx 山东)(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有 (A )36种(B )42种(C)48种(D )54种【答案】B2、(xx·宁夏、海南)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).解析:法一:先从7人中任取6人,共有C 67种不同的取法.再把6人分成两部分,每部分3人,共有C 36C 33A 22种分法.最后排在周六和周日两天,有A 22种排法, ∴C 67×C 36C 33A 22×A 22=140种.法二:先从7人中选取3人排在周六,共有C 37种排法.再从剩余4人中选取3人排在周日,共有C 34种排法,∴共有C 37×C 34=140种. 答案:140考点三 二项式定理例 1、(X -)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220 解析:本题考查二项式定理及其应用41212123311212123((1)(1),r r r r r r r r r rr T C xC x x C x x----+==-⋅=-993101212121110(1)220.321T C C ⨯⨯==-=-=-=-⨯⨯2、如果的展开式中各项系数之和为128,则展开式中的系数是 ( )A .7B .-7C .21D .-215.C跟踪练习 1、[xx·山东卷] 若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.答案:2[解析] T r +1=C r 6(ax 2)6-r ·⎝⎛⎭⎫b x r=C r 6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.2、(xx 江西).⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( ) A .80 B .-80 C .40D .-40解析:本题考查二项式定理,意在考查考生的运算能力.T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫-2x 3r =C r 5·(-2)r ·x 10-5r,令10-5r =0,得r =2,故常数项为C 25×(-2)2=40. 答案:C。

计数原理-备战高考数学(理)一轮复习考点

计数原理-备战高考数学(理)一轮复习考点

计数原理【命题趋势】两个基本计数原理是高考必考内容,有时会单独考查,有时会出现在解答题的过程之中,我们必须掌握.(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.排列组合是高考中的必考内容,必须掌握.有时会是单独一道小题,有时会是在概率统计解答题中涉及,分值至少5分.(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.二项式定理和排列组合在高考中一般交替考查,二者必出其一,二项式定理好拿分,熟练掌握即可.(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.【重要考向】考向一分类加法、乘法计数原理考向二两个计数原理的综合应用考向三排列与组合的综合应用考向四二项展开式通项的应用考向一分类加法、乘法计数原理(1)分类加法计数原理的特点:①根据问题的特点能确定一个适合于它的分类标准.②完成这件事的任何一种方法必须属于某一类.(2)使用分类加法计数原理遵循的原则:有时分类的划分标准有多个,但不论是以哪一个为标准,都应遵循“标准要明确,不重不漏”的原则.(3)应用分类加法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.②完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须既不重复也不遗漏. (4)应用分步乘法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某一步骤的某种方法是不能完成这件事的,也就是说必须要经过几步才能完成这件事.②完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步骤,这件事都不可能完成.③根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏. (5)两个计数原理的区别与联系定义:若数列 {a n } 满足所有的项均由 ﹣1,1 构成且其中-1有m 个,1有p 个 (m +p ≥3) ,则称 {a n } 为“ (m,p) ﹣数列”.(1)a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项,则使得 a i a j a k =1 的取法有多少种? (2)a i ,a j ,a k (i <j <k) 为“ (m,p) ﹣数列” {a n } 中的任意三项,则存在多少正整数 (m,p) 对使得 1≤m ≤p ≤100, 且 a i a j a k =1 的概率为 12 .【答案】 (1)解:三个数乘积为1有两种情况:“ ﹣1,﹣1,1 ”,“ 1,1,1 ”,其中“ ﹣1,﹣1,1 ”共有: C 32C 41=12 种, “ 1,1,1 ”共有: C 43=4 种,利用分类计数原理得:a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项, 则使得 a i a j a k =1 的取法有: 12+4=16 种.(2)解:与(1)同理,“ ﹣1,﹣1,1 ”共有 C m 2C p 1种, “ 1,1,1 ”共有 C P 3 种,而在“ (m,p) ﹣数列”中任取三项共有 C m+p3种, 根据古典概型有:C m 2C p 1+C p 3C m+p3=12 ,再根据组合数的计算公式能得到: (p ﹣m)(p 2﹣3p ﹣2mp +m 2﹣3m ﹣2)=0 , ①p =m 时,应满足 {1≤m ≤p ≤100m +p ≥3p =m ,∴(m,p)=(k,k),k ∈{2,3,4,…,100} ,共 99 个,②p 2﹣3p ﹣2mp +m 2﹣3m ﹣2=0 时,应满足 {1<m ≤p <100m +p ≥3p 2−3p −2mp +m 2−3m −2=0 , 视 m 为常数,可解得 p =(2m+3)±√24m+12,∵m ≥1, ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,∵m ≥1 , ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,(否则 p ≤m ﹣1 ),下设 k =√2m +1 ,则由于 p 为正整数知 k 必为正整数, ∵1≤m ≤100 , ∴5≤k ≤49 ,化简上式关系式可以知道: m =k 2−124=(k−1)(k+1)24,∴k ﹣1,k +1 均为偶数,∴设k=2t+1,(t∈N∗),则2≤t≤24,∴m=k2−124=t(t+1)6,由于t,t+1中必存在偶数,∴只需t,t+1中存在数为3的倍数即可,∴t=2,3,5,6,8,9,11,…,23,24,∴k=5,11,13,…,47,49.检验:p=(2m+3)+√24m+12=(k−1)(k+1)24≤48+5024=100,符合题意,∴共有16个,综上所述:共有115个数对(m,p)符合题意.【考点】古典概型及其概率计算公式,分类加法计数原理,组合及组合数公式【解析】(1)易得使得a i a j a k=1的情况只有“ ﹣1,﹣1,1”,“ 1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“ ﹣1,﹣1,1”共有C m2C p1种,“ 1,1,1”共有C P3种.再根据古典概型的方法可知C m2C p1+C p3C m+p3=12,利用组合数的计算公式可得(p﹣m)(p2﹣3p﹣2mp+m2﹣3m﹣2)=0,当p=m时根据题意有(m,p)=(k,k),k∈{2,3,4,…,100},共99个;当p2﹣3p﹣2mp+m2﹣3m﹣2=0时求得p=(2m+3)±√24m+12,再根据1≤m≤p≤100,换元根据整除的方法求解满足的正整数对即可.某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1、2、3、4、5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m元(m为三位数的百位上的数字,如三位数为234,则奖励100×2= 200元).(1)求抽奖者在一次抽奖中所得三位数是奇数的概率;(2)求抽奖者在一次抽奖中获奖金额X的概率分布与期望E(X).【答案】(1)解:因为总的基本事件个数n1=A53=60,摸到三位数是奇数的事件数n2=A31A42=36,所以P1=3660=35;所以摸到三位数是奇数的概率35.(2)解:获奖金额 X 的可能取值为50、100、200、300、400、500, P(X =50)=35 , P(X =100)=1×3×260=110, P(X =200)=1×3×160=120,P(X =300)=1×3×260=110 , P(X =400)=1×3×160=120 , P(X =500)=1×3×260=110 ,获奖金额 X 的概率分布为均值 E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150 元. 所以期望是150元.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,分步乘法计数原理【解析】(1)首先利用排列求出摸三次的总的基本事件个数: n 1=A 53=60 ;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.(2)获奖金额X 的可能取值为50、100、200、300、400、500,求出各个随机变量的分布列,利用均值公式即可求解考向二 两个计数原理的综合应用(1)利用两个原理解决涂色问题解决着色问题主要有两种思路:一是按位置考虑,关键是处理好相交线端点的颜色问题;二是按使用颜色的种数考虑,关键是正确判断颜色的种数.解决此类应用题,一般优先完成彼此相邻的三部分或两部分,再分类完成其余部分.要切实做到合理分类,正确分步,才能正确地解决问题. (2)利用两个原理解决集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有123,,,,{}n a a a a 的子集有2n 个,真子集有21n个.对有 n(n ≥4) 个元素的总体 {1,2,3,⋅⋅⋅,n} 进行抽样,先将总体分成两个子总体 {1,2,3,⋅⋅⋅,m} 和 {m +1,m +2,⋅⋅⋅,n} ( m 是给定的正整数,且 2≤m ≤n −2 ),再从每个子总体中各随机抽取2个元素组成样本.用 P ij 表示元素 i 和 j 同时出现在样本中的概率. (1)求 P 1n 的表达式(用m ,n 表示); (2)求所有 P ij (1≤i <j ≤n) 的和.【答案】 (1)解:由题意,从m 和 m −m 个式子中随机抽取2个,分别有 C m 2 和 C n−m2 个基本事件, 所以 P 1n 的表达式为 P 1n =m−1C m2⋅n−m−1C n−m2=4m(n−m) .(2)解:当 i,j 都在 {1,2,⋅⋅⋅,m} 中时,可得 P ij =1C m2 ,而从 {1,2,⋅⋅⋅,m} 中选两个数的不同方法数为 C m 2 ,则 P ij 的和为1;当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,同理可得 P ij 的和为1; 当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时, P ij =4m(n−m) ,而从 {1,2,⋅⋅⋅,m} 中选取一个数,从 {m +1,m +2,⋅⋅⋅,n} 中选一个数的不同方法数为 m(n −m) , 则 P ij 的和为4,所以所有 P ij 的和为 1+1+4=6 .【考点】相互独立事件的概率乘法公式,古典概型及其概率计算公式,计数原理的应用,组合及组合数公式【解析】(1)根据组合数的公式,以及古典概型的概率计算公式和相互独立事件的概率计算公式,即可求解;(2)当 i,j 都在 {1,2,⋅⋅⋅,m} 中时求得 P ij 的和为1,当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,求得 P ij 的和为1,当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时得到 P ij 的和为4,即可求解.6男4女站成一排,求满足下列条件的排法各有多少种?(用式子表达) (1)男甲必排在首位; (2)男甲、男乙必排在正中间; (3)男甲不在首位,男乙不在末位; (4)男甲、男乙必排在一起; (5)4名女生排在一起; (6)任何两个女生都不得相邻; (7)男生甲、乙、丙顺序一定.【答案】 解:(1)男甲必排在首位,则其他人任意排,故有A 99种, (2)男甲、男乙必排在正中间,则其他人任意排,故有A 22A 77种,(3)男甲不在首位,男乙不在末位,利用间接法,故有A 1010﹣2A 99+A 88种,(4)男甲、男乙必排在一起,利用捆绑法,把甲乙两人捆绑在一起看作一个复合元素和另外全排,故有A 22A 88种,(5)4名女生排在一起,利用捆绑法,把4名女生捆绑在一起看作一个复合元素和另外全排,故有A 44A 77种,(6)任何两个女生都不得相邻,利用插空法,故有A 66A 74种, (7)男生甲、乙、丙顺序一定,利用定序法,A 1010A 33=A 107种【考点】计数原理的应用【解析】(1)男甲必排在首位,则其他人任意排,问题得以解决. (2)男甲、男乙必排在正中间,则其他人任意排,问题得以解决, (3)男甲不在首位,男乙不在末位,利用间接法,故问题得以解决, (4)男甲、男乙必排在一起,利用捆绑法,问题得以解决, (5)4名女生排在一起,利用捆绑法,问题得以解决, (6)任何两个女生都不得相邻,利用插空法,问题得以解决, (7)男生甲、乙、丙顺序一定,利用定序法,问题得以解决.考向三 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.7名学生,按照不同的要求站成一排,求下列不同的排队方案有多少种. (1)甲、乙两人必须站两端; (2)甲、乙两人必须相邻.【答案】 (1)甲、乙为特殊元素,先将他们排在两头位置,有 A 22 种站法,其余5人全排列,有 A 55种站法.故共 A 22⋅A 55 有=240种不同站法.(2)(捆绑法):把甲、乙两人看成一个元素,首先与其余5人相当于六个元素进行全排列,然后甲、乙两人再进行排列,所以共 A 66⋅A 22 有=1440种站法.【考点】排列、组合的实际应用,排列、组合及简单计数问题 【解析】(1)运用捆绑法直接求解即可; (2)运用特殊元素分析法直接求解即可.一个笼子里关着10只猫,其中有7只白猫,3只黑猫.把笼门打开一个小口,使得每次只能钻出1只猫.猫争先恐后地往外钻.如果 10 只猫都钻出了笼子,以X 表示7只白猫被3只黑猫所隔成的段数.例如,在出笼顺序为“□■□□□□■□□■”中,则 X =3 . (1)求三只黑猫挨在一起出笼的概率; (2)求X 的分布列和数学期望.【答案】 (1)解:设“三只黑猫挨在一起出笼”为事件A ,将三只黑猫捆绑在一起,与其它7只白猫形成 8 个元素, 所以, P(A)=A 33A 88A 1010=115,因此,三只黑猫挨在一起出笼的概率为 115 ;(2)解:由题意可知,随机变量X 的取值为1、2、3、4, 其中 X =1 时,7只白猫相邻,则 P(X =1)=A 77A 44A 1010=130 ,P(X =2)=(A 32C 21C 21C 61+6A 33+A 32C 61)A 77A 1010=310 ,P(X =3)=(A 31C 21A 62+A 32A 62)A 77A 1010=12 ;P(X =4)=A 63A 77A 1010=16, 所以,随机变量 X 的分布列如下表所示:因此, E(X)=1×130+2×310+3×12+4×16=145.【考点】古典概型及其概率计算公式,离散型随机变量的期望与方差,排列及排列数公式,排列、组合的实际应用【解析】(1)利用捆绑法计算三只黑猫挨在一起出笼的情况种数,再利用古典概型的概率公式可求得所求事件的概率;(2)由题意可知,随机变量X 的可能取值有1、2、3、4,利用排列组合思想求出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,利用数学期望公式可求得随机变量X 的数学期望.考向四 二项展开式通项的应用求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n ).(1)第m 项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程.已知 f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗).(1)若 a n =n −1 ,求 f(n) ;(2)若 a n =3n−1 ,求 f(20) 除以5的余数【答案】 (1)因为 f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n . 所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n0 2f(n)=nC n 0+nC n 1+nC n 2+⋯+nC n n =n(C n 0+C n 1+C n 2+⋯+C n n)=n ⋅2n ,∴f(n)=n ⋅2n−1(2)因为 f(n)=30C n 0+31C n 1+32C n 2+⋯+3n C n n =(1+3)n =4n .f(20)=420=(5−1)20=C 200520−C 201519+C 202518−⋯+C 201852−C 201951+C 202050 除以5余数为1,所以 f(20) 除以5的余数为1. 【考点】二项式系数的性质,二项式定理的应用【解析】(1) 因为f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗),再结合a n =n −1 , 得出f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n ,再利用倒序求和法,所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n 0 , 再利用两式求和法结合二项式的系数的性质,得出 f(n) 。

2025届高中数学一轮复习课件《计数原理》ppt

2025届高中数学一轮复习课件《计数原理》ppt

高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.

高考江苏数学大一轮精准复习课件:20.1计数原理与排列组合

高考江苏数学大一轮精准复习课件:20.1计数原理与排列组合

考向基础1 •分类加法计数原理(加法原理)完成一件事有两类不同方案,在第1类方案中有加种不同的方法,在第2类 方案中有”种不同的方法,那么完成这件事共有用① ___________ 种不同的 方法•这个原理称为分类加法计数原理.2 •分类加法计数原理的推广 完成一件事有斤类不同方案,在第1类方案中有如种不同的方法,在第2类方案中有加2种不同的方法,……,在第"类方案中有他种不同的方法,那么 破考点; 考点一 考点清单 加法原理与乘法原理完成这件事共有心二② ________________ 种不同的方法.3•分步乘法计数原理(乘法原理)完成一件事需要两个步骤,做第1步有加种不同的方法,做第2步有〃种不同的方法,那么完成这件事共有爪③ _________ 种不同的方法.4.分步乘法计数原理的推广完成一件事情,需要分成斤个步骤,做第1步有"种不同的方法,做第2步有弘种不同的方法,……,做第斤步有m种不同的方法,那么完成这件事共有N=® _______________ 种不同的方法•这里要完成这件事情必须这斤个步骤逐次完成,不能缺少一个,也不能重复.考向两个计数原理例(1)从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数则不同的取法共有 ________ 种.⑵将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有—种.解题导引(1)四个不同的数的和为偶数需要分类讨论,计数时需要用分类计数原理.(2)由于要分成两个小组去两个地方,故需要分步安排,计数时需要用分步计数原理.解析(1)由题意知,满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C;=5(种);二是两个奇数加两个偶数,其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C[Ci =60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).⑵分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C》2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有CR6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2x6=12(种).答案(1)66 (2)12考点二排列考向基础1.排列的定义:一般地,从斤个不同元素中取出个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出加个元素的一个排列.2.排列数的定义:从"个不同元素中取出个元素的所有不同排列的个数,叫做从〃个不同元素中取出加个元素的排列数用符号A;:表示.3•扌非列数公式:A;;=n(n-l)(n-2)・・・(n-m+l)=(T) (n.m U N\m W 刃),规定0!=②_____,当m=n时,A;;二③__ 考向突破考向排列问题例4个男同学,3个女同学站成一排.(1)3个女同学必须排在一起,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?解题导引对有相邻元素的排列可以采用捆绑法,对有不相邻元素排列 (间隔排列),可以采用插空法.解析(1)3个女同学是特殊元素,共有A;种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A;种排法. 由分步乘法计数原理,有A; A=720种不同排法.⑵先将男生排好洪有A;种排法,再在这4个男生的中间及两头的5个空档中插入3个女生有A;种方法.故符合条件的排法共有A:A;=1 440种.(3)先排甲、乙和丙3人以外的其他4人,有A:种排法;由于甲、乙要相邻, 故先把甲、乙排好,有A;种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的空档及两边有A;种排法.总共有A:A;A;=960种不同排法.考点三组合考向基础1.组合的定义:一般地,从"个不同元素中取出个元素合成一组,叫做从"个不同元素中取出"2个元素的一个组合.2.组合数的定义:从”个不同元素中取出m(mS个元素的所有不同组合的个数,叫做从“个不同元素中取出加个元素的组合数,用符号C:表示.”(“一1)...("一加+ 1) (人,”3•组合数公式:C= 万=―-—二―十,这里m.n e N*m !(n - m)! A〃?且mWn.规定C: = l,在这个规定下,组合数公式中的加可以取0.4 •组合数的性质:©匸c;「;C;『C;:+C;「考向组合问题例某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长,又要有女生当选.解题导引某些人被选中,主要是将所有人恰当地分组,“至少”或“最多”含有几个元素的题型,若直接法分类复杂时,逆向思维,间接求解. 解析⑴一名女生,四名男生洪有C;・C;=350(种).⑵将两队长作为一类,其他11人作为一类,故共有C;.C》165(种). (3)至少有一名队长含有两类:只有一名队长或有两名队长•故共有+C;・C:严825(种咸采用排除法:珥-C店825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生. 故选法有C:・C;+C;・C; +C:=966(种).(5)分两类:第一类女队长当选;第二类女队长不当选.故选法共有C:2+C〔・Cj+Cj・C? C; 4C: =790(种).52 3方法技巧秘籍、实战技能集训A方法技巧方法一两个计数原理应用的基本策略两个计数原理一个与分类有关,一个与分步有关•在综合运用这两个计 数原理时.既要会合理分类.又能合理分步.一般情形是先分类后分步•分 类计数原理中无论是哪一类方法都能单独完成这件事;分步计数原理的 每一个步骤都依次完成后,这件事才完成.例1如图,要给1,2,3,4,5五块区域分别涂上四种颜色中的某一种,允许 同一种颜色使用多次,但相邻区域必须不同颜色,则不同的涂色方法数 为 . 厂 解析解法一:按区域顺序分步涂色.先涂5号区域,有4种不同的涂法;涂剩下的4个区域要分两种情形:若1,3号区域同色,则1,3号区域有3种涂法,此时2,4号区域各有2种涂法,由分步计数原理知有3x2x2=12种涂法.若1,3号区域不同色,则1,3号区域有3x2=6种涂法,此时2,4号区域各只有1种涂法,由分步计数原理知有6x 1 xi =6种涂法.由分类和分步计数原理知总共有4x(12+6=72种不同的涂色方法.解法二:按所用颜色种数分类涂色.第一类,4种颜色全用,则1,3号区域同色,且2,4号区域不同色咸1,3号区域不同色,且2,4号区域同色,故有2x4x3x2=48^中不同的涂色方法.第二类,只用3种颜色,则1,3号区域同色,且2,4号区域也同色,故有刖=24 种不同的涂色方法.由分类计数原理知总共有48+24=72种不同的涂色方法.答案72方法二排列、组合及其应用的解题策略求解排列、组合问题的基本思路是“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘” •1•简单问题直接法直接列式计算.例2将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 _________ 种.解析从中任选两个排在第一行,有A:种方法,则另一个字母在第二行有C;种方法,其余则确定,共有A?C;=12种方法.答案12评析遇到有相同元素的排列问题时,一般应画出图表,这样比较直观,还能避免出现重复计数.2.相邻问题捆绑法在特定条件下,将几个相关元素当成一个元素来考虑,待整个问题排好之后再考虑它们“内部”的排列,它主要用于解决相邻问题.例3用字母A、丫,数字1、8、9构成一个字符不重复的五位号牌,要求字母A、丫不相邻,数字8、9相邻,则可构成的号牌个数是____________ •(用数字作答)解析先把8、9捆绑,有2种方法,再把它与1排列,有2种排法,此时共有3 个空供字母4、Y插入,有6种方法,故可构成的号牌个数是2x2x6=24.答案24评析本题考查“相邻”与“不相邻”问题,考查捆绑法和插空法•把相邻元素当成一个元素时,一定要注意这些相邻元素要作全排列.3•相间问题插空法先把一般元素排列好,然后把特定元素插排在它们之间和两端的空中.例4在123,4,5,6,7的任一排列6/詔2皿3皿4皿5皿6皿7中,使相邻两数都互质的排列种数为 _________ •解题导引解析先把数字1,3,5,7进行全排列,有A:=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有刖种排法,共有A:X3XA=864种排法.答案8644 •多元问题分类法将符合条件的排列分为几类(每一类的排列数较易求出),然后根据分类计数原理求岀排列总数.例5方程ay=b2x2+c中的心丘{-3,20丄2,3},且/力互不相同•在所有这些方程所表示的曲线中,不同的抛物线共有 ______________________ 条.解析G0均不为0,且b取互为相反数的两数时抛物线相同,故分G取1与. 不取1两类:①a取1时02的取值可分为4,9两类,当和戾=9时,C都有5种情况,此时有2x5=10(种);②a不取1时,a有C[种取法,不妨设a取2,则F的取值有1,4,9三类,当F=1 时,C有4种取法,当b—4时,C有4种取法,当於9时,C有5种取法,此时有C:(4 +4+5)=52(种).故共有10+52=62(种).即不同的抛物线有62条.答案625.至少、至多间接法“至少”“至多”的排列组合问题需分类讨论,且一般分类的情况较多,所以通常用间接法,即排除法•它适用于反面明确且易于计算的问题. 例6从5男2女中选3位代表(至少有1位女同志)分别到3个不同的工厂进行调研,不同的分派方法有______________________ 种.解析解法一:选岀的3位代表为1男2女,则有C;xc;=5种方法;选出的3 位代表为2男1女,则有C; =20种方法.再将3位代表分配到3个不同的工厂调研,有A=6种方法.故分派方法有(5+20)x6= 150种.解法二:选出的3位代表没有女同志,则有C=10种方法,所以选出3位代表,至少有1位女同志的选法有C〉C=25种方法.再将3位代表分配到3个不同的工厂调研,有A》6种方法.故分派方法有25x6=150种.答案1506 •均分问题作商法例7某校高二年级共有六个班级,现从外地转入4名学生,要安排到该 年级的两个班且每班安排2名,则不同的安排方法种数为 __________ •(用 数字作答) 解析安排方法种数为三yxA :=90.答案90nt m 若将血个元素平均分成斤组,则分法总数为 加一一n\m方法三集合中的计数问题集合中元素个数、集合的划分以及子集问题是高考中近几年的热点和难点,主要是涉及两个计数原理的综合应用.例8 (2018江苏南京、盐城、连云港二模)已知朋N:且“N4,数列厂⑷, 如…,a”中的每一项均在集合M={ 1,2,■■•,«}中,且任意两项不相等.(1 )若“=7,且色<“3<“4<。

20-21版:习题课 两个计数原理与排列、组合(步步高)

20-21版:习题课 两个计数原理与排列、组合(步步高)

习题课两个计数原理与排列、组合一、两个计数原理的应用命题角度1“类中有步”的计数问题例1电视台在某节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有________种不同的结果.考点两个计数原理的区别与联系题点两个原理的简单综合应用答案28 800解析在甲箱或乙箱中抽取幸运之星,决定了后边选幸运伙伴是不同的,故要分两类分别计算:(1)幸运之星在甲箱中抽,先确定幸运之星,再在两箱中各确定一名幸运伙伴,有30×29×20=17 400(种)结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11 400(种)结果.因此共有17 400+11 400=28 800(种)不同结果.反思感悟用流程图描述计数问题,类中有步的情形如图所示:具体意义如下:从A到B算作一件事的完成,完成这件事有两类办法,在第1类办法中有3步,在第2类办法中有2步,每步的方法数如图所示.所以,完成这件事的方法数为m1m2m3+m4m5,“类”与“步”可进一步地理解为:“类”用“+”号连接,“步”用“×”号连接,“类”独立,“步”连续,“类”标志一件事的完成,“步”缺一不可.跟踪训练1现有4种不同颜色,要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种考点涂色问题题点涂色问题答案 D解析将原图从上而下的4个区域标为1,2,3,4.因为1,2,3之间不能同色,1与4可以同色,因此,要分类讨论1,4同色与不同色这两种情况.故不同的着色方法种数为4×3×2+4×3×2×1=48.故选D.命题角度2“步中有类”的计数问题例2有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测一人,则不同的安排方式共有________种.(用数字作答)考点两个计数原理的区别与联系题点两个原理的简单综合应用答案264解析上午总测试方法有4×3×2×1=24(种);我们以A,B,C,D,E依次代表五个测试项目.若上午测试E的同学下午测试D,则上午测试A的同学下午只能测试B,C,确定上午测试A的同学后其余两位同学上、下午的测试方法共有2种;若上午测试E的同学下午测试A,B,C之一,则上午测试A,B,C中任何一个的同学下午都可以测试D,安排完这位同学后其余两位同学的测试方式就确定了,故共有3×3=9(种)测试方法,即下午的测试方法共有11种,根据分步乘法计数原理,总的测试方法共有24×11=264(种).反思感悟用流程图描述计数问题,步中有类的情形如图所示:从计数的角度看,由A到D算作完成一件事,可简单地记为A→D.完成A→D这件事,需要经历三步,即A→B,B→C,C→D.其中B→C这步又分为三类,这就是步中有类.其中m i(i=1,2,3,4,5)表示相应步的方法数.完成A→D这件事的方法数为m1(m2+m3+m4)m5.以上给出了处理步中有类问题的一般方法.跟踪训练2如图所示,使电路接通,开关不同的开闭方式的种数为()A.11B.12C.20D.21考点两个计数原理的区别与联系题点两个原理的简单综合应用答案 D解析根据题意,设5个开关依次为1,2,3,4,5,若电路接通,则开关1,2与3,4,5中至少有1个接通,对于开关1,2,共有2×2=4(种)情况,其中全部断开的有1种情况,则其至少有1个接通的有4-1=3(种)情况,对于开关3,4,5,共有2×2×2=8(种)情况,其中全部断开的有1种情况,则其至少有1个接通的有8-1=7(种)情况,则电路接通的情况有3×7=21(种).故选D.二、排列与组合的综合应用命题角度1不同元素的排列、组合问题例3有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有多少种?考点排列组合的综合应用题点排列与组合的综合应用解分三类:第一类,当取出的4张卡片分别标有数字1,2,3,4时,不同的排法有C12·C12·C12·C12·A44种.第二类,当取出的4张卡片分别标有数字1,1,4,4时,不同的排法有C22·C22·A44种.第三类,当取出的4张卡片分别标有数字2,2,3,3时,不同的排法有C22·C22·A44种.故满足题意的所有不同的排法种数为C12·C12·C12·C12·A44+2C22·C22·A44=432.反思感悟(1)解排列、组合综合问题的一般思路是“先选后排”,也就是先把符合题意的元素都选出来,再对元素或位置进行排列.(2)解排列、组合综合问题时要注意以下几点:①元素是否有序是区分排列与组合的基本方法,无序的问题是组合问题,有序的问题是排列问题;②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合综合问题的一般方法.跟踪训练3现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是()A.152B.126C.90D.54考点排列组合的综合应用题点排列与组合的综合应用答案 B解析按从事司机工作的人数进行分类:(1)有1人从事司机工作:C13·C24·A33(或C13C13C24A22)=108(种);(2)有2人从事司机工作:C23·A33=18(种).所以不同安排方案的种数是108+18=126.命题角度2含有相同元素的排列、组合问题例4今有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有________种不同的方法.考点排列组合的综合应用题点分组、分配问题答案 1 260解析方法一(元素分析法)先将这9个球视为不同的元素,共有A99种排法,再来消去同色球的顺序,因2个不同红球有A22种排法,3个不同黄球有A33种排法,4个不同白球有A44种排法,故符合题意的方法有A99 A44A33A22=1 260(种).方法二(位置分析法)第一步,从9个位置中选出2个位置,分给相同的的红球,有C29种选法.第二步,从剩余的7个位置中选出3个位置,分给相同的黄球,有C37种选法.第三步,剩下的4个位置全部分给4个白球,有1种选法.根据分步乘法计数原理可得,符合题意的方法有C29C37=1 260(种).反思感悟排列概念中的要求是对n个不同的元素进行排列,而此类题目中的元素是部分相同的,针对此类问题,有两种解决方法:(1)先把这些元素看作全不相同的元素进行排列,再设法消去相同元素的顺序.(2)从位置进行分析,因为位置全不相同,可以分别给相同的每一类元素找位置.跟踪训练4某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________.考点排列组合综合问题题点排列与组合的综合应用答案36解析先从4名调研员中选2名去同一所学校有C24种方案,然后与另外两名调研员进行全排列对应三所学校,有A33种方案,故共有C24A33=36(种)分配方案.1.给一些书编号,准备用3个字符,其中首字符用A,B,后两个字符用a,b,c(允许重复),则不同编号的书共有()A.8本B.9本C.12本D.18本考点分步乘法计数原理题点分步乘法计数原理的应用答案 D解析由分步乘法计数原理得,不同编号的书共有2×3×3=18(本).2.设4名学生报名参加同一时间安排的3项课外活动方案有a种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b种,则(a,b)为()A.(34,34)B.(43,34)C.(34,43)D.(A34,A34)考点分步乘法计数原理题点分步乘法计数原理的应用答案 C解析首先每名学生报名有3种选择,有4名学生,根据分步乘法计数原理知,共有34种选择,每项冠军有4种可能的结果,3项冠军根据分步乘法计数原理知,共有43种可能结果,故选C.3.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是()A.48B.50C.52D.54考点排列组合的综合应用题点排列与组合的综合应用答案 A解析第一类:从2,4中任取一个数,有C12种取法,同时从1,3,5中取两个数字,有C23种取法,再把三个数全排列,有A33种排法.故有C12C23A33=36(种)取法.第二类:从0,2,4中取出0,有C11种取法,从1,3,5三个数字中取出两个数字,有C23种取法,然后把两个非0的数字中的一个先安排在首位,有A12种排法,剩下的两个数字全排列,有A22种排法,共有C11C23A12A22=12(种)方法.共有36+12=48(种)排法,故选A.4.8次投篮中,投中3次,其中恰有2次连续命中的情形有________种.考点排列的应用题点排列的简单应用答案30解析将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A26=30(种).5.已知x i∈{-1,0,1},i=1,2,3,4,5,6,则满足x1+x2+x3+x4+x5+x6=2的数组(x1,x2,x3,x4,x5,x6)的个数为________.考点组合的应用题点有限制条件的组合问题答案90解析根据题意,∵x1+x2+x3+x4+x5+x6=2,x i∈{-1,0,1},i=1,2,3,4,5,6,∴x i中有2个1和4个0,或3个1、1个-1和2个0,或4个1和2个-1,共有C26+C36C23+C46=90(个),∴满足x1+x2+x3+x4+x5+x6=2的数组(x1,x2,x3,x4,x5,x6)的个数为90.。

高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

5.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取
法的种数是
.
答案 6
解析 从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:第1类,取出
的两数都是偶数,共有3种方法;第2类,取出的两数都是奇数,共有3种方法.
故由分类加法计数原理,不同的取法种数为N=3+3=6.
取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数
字不能取与这三个数字重复的数字.根据分步乘法计数原理,有
3×4×5×4=240(个)数.第2类,当千位数字为偶数且不为0时,即取2,4,6中的
任意一个时,个位数字可以取除首位数字外的任意一个偶数数字,百位数字
不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数
不同的方法
依据 能否独立完成整件事

完成这件事共有
N=
m1×m2×…×mn

能否逐步完成整件事
种不同的方
2.两个计数原理的区别与联系
名称
分类加法计数原理
分步乘法计数原理
相同点
都是用来计算完成一件事的不同方法种类的计数方法
针对“分类”问题,各种方法相互 针对“分步”问题,各个步骤中的
不同点
注意点
独立,每一类办法中的每一种方 方法互相依存,只有每一个步骤
(5)若组合式C = C ,则 x=m 成立.( × )
2.A24 + C73 =(
)
A.35
B.47
C.45
答案 B
解析
A24
+
C73
=
4!
7!
+
=12+35=47.

2019年高考数学一轮复习:两个计数原理、排列与组合

2019年高考数学一轮复习:两个计数原理、排列与组合两个计数原理、排列与组合1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理的区别分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法______________,用其中______________都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法______________,只有______________才算做完这件事.4.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.5.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n=n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.6.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m 个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n+1=____________+____________.自查自纠1.m1+m2+…+m n2.m1×m2×…×m n3.相互独立任何一种方法互相依存各个步骤都完成4.(1)不重不漏(2)步骤完整相互独立5.(1)一定的顺序(2)所有不同排列A m n(3)n(n-1)(n-2)…(n-m+1)m≤n(4)排列n!n!(n-m)!16.(1)合成一组 (2)所有不同组合 C mn (3)n (n -1)(n -2)…(n -m +1)m !n !m !(n -m )!(4)①C n -mn②C mn C m -1n(2016·郑州模拟)某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为( )A .8B .15C .125D .243 解:由分步计数原理知所求为3×5=15.故选B.某校学生会由高一年级3人,高二年级3人,高三年级4人组成,现要选择不同年级的两名成员参加市里组织的活动,则共有选法( )A .27种B .33种C .36种D .81种 解:由两个计数原理知,所求为3×3+3×4+3×4=33(种).故选B.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A .24B .48C .60D .72 解:由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C 13种方法,再将剩下的四个数字排列有A 44种方法,则满足条件的五位数有C 13A 44=72个.故选D.(2017河南五校质量监测改编)6名同学排成一排照相,甲不站两端,则不同的站法有________种.解:所求为A 14A 55=480种.故填480.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有____________种.解:按A →B →C →D 顺序分四步涂色,共有4×3×2×2=48(种).故填48.类型一 分类与分步的区别与联系甲同学有若干本课外参考书,其中有5本不同的数学书,4本不同的物理书,3本不同的化学书.现在乙同学向甲同学借书,试问:(1)若借一本书,则有多少种不同的借法? (2)若每科各借一本,则有多少种不同的借法? (3)若借两本不同学科的书,则有多少种不同的借法?解:(1)因为需完成的事情是“借一本书”,所以借给他数学、物理、化学书中的任何一本,都可以完成这件事情.故用分类计数原理,共有5+4+3=12(种)不同的借法.(2)需完成的事情是“每科各借一本书”,意味着要借给乙三本书,只有从数学、物理、化学三科中各借一本,才能完成这件事情.故用分步计数原理,共有5×4×3=60(种)不同的借法.(3)需完成的事情是“从三种学科的书中借两本不同学科的书”,要分三种情况:①借一本数学书和一本物理书,只有两本书都借,事情才能完成,由分步计数原理知,有5×4=20(种)借法;②借一本数学书和一本化学书,同理,由分步计数原理知,有5×3=15(种)借法;③借一本物理书和一本化学书,同理,由分步计数原理知,有4×3=12(种)借法.而上述的每一种借法都可以独立完成这件事情,由分类计数原理知,共有20+15+12=47(种)不同的借法.【点拨】仔细区分是“分类”还是“分步”是运用两个原理的关键.两个原理的区别在于一个与分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成n 个步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步乘法计数原理.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的50位观众的来信,甲箱中有30封,乙箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱剩下来信中各确定一名幸运观众,有多少种不同结果?解:①幸运之星在甲箱中抽取,选定幸运之星,再在两箱内各抽一名幸运观众,根据分步计数原理有30×29×20=17 400种结果.②幸运之星在乙箱中抽取,有20×19×30=11 400种结果.根据分类计数原理共有不同结果17 400+11 400=28 800(种).类型二 排列数与组合数公式(1)解方程3A x 8=4A x -19;(2)解方程C x +1x +3=C x -1x +1+C x x +1+C x -2x +2.解:(1)利用3A x 8=38!(8-x )!,4A x -19=49!(9-x +1)!, 得到3×8!(8-x )!=4×9!(10-x )!.利用(10-x )!=(10-x )(9-x )(8-x )!,将上式化简后得到(10-x )(9-x )=4×3.再化简得到x 2-19x +78=0.解方程得x 1=6,x 2=13.由于A x 8和A x -19有意义,所以x 满足x ≤8和x -1≤9.于是将x 2=13舍去,原方程的解是x =6.(2)由组合数的性质可得C x -1x +1+C x x +1+C x -2x +2=C 2x +1+C 1x +1+C 4x +2=C 2x +2+C 4x +2,又C x +1x +3=C 2x +3,且C 2x +3=C 2x +2+C 1x +2,即C 1x +2+C 2x +2=C 2x +2+C 4x +2.所以C 1x +2=C 4x +2,所以5=x +2,x =3.经检验知x =3符合题意且使得各式有意义,故原方程的解为x =3.【点拨】(1)应用排列、组合数公式解此类方程时,应注意验证所得结果能使各式有意义.(2)应用组合数性质C m n +1=C m -1n +C m n 时,应注意其结构特征:右边下标相同,上标相差1;左边(相对于右边)下标加1,上标取大.使用该公式,像拉手风琴,既可从左拉到右,越拉越长,又可以从右推到左,越推越短.(1)解方程:3A 3x =2A 2x +1+6A 2x ; (2)已知1C m 5-1C m 6=710C m 7,则C m8=____________. 解:(1)由3A 3x =2A 2x +1+6A 2x 得3x (x -1)(x -2)=2(x +1)x +6x (x -1), 由x ≠0整理得3x 2-17x +10=0.解得x =5或23(舍去).即原方程的解为x =5.(2)由已知得m 的取值范围为{m |0≤m ≤5,m ≤Z },m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28.故填28.类型三 排列的基本问题5名男生、2名女生站成一排照相: (1)两名女生要在两端,有多少种不同的站法? (2)两名女生都不站在两端,有多少种不同的站法?(3)两名女生要相邻,有多少种不同的站法? (4)两名女生不相邻,有多少种不同的站法? (5)女生甲要在女生乙的右方,有多少种不同的站法?(6)女生甲不在左端,女生乙不在右端,有多少种不同的站法?解:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排:A 22A 55=240(种);(2)中间的五个位置任选两个排女生,其余五个位置任意排男生:A 25A 55=2 400(种);(3)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A 66A 22=1440(种);(4)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生:A 55A 26=3 600(种);(5)七个位置中任选五个排男生问题就已解决,因为留下两个位置女生排法是既定的:A57=2 520(种);(6)采用排除法,在七个人的全排列中,去掉女生甲在左端的A66个,再去掉女生乙在右端的A66个,但女生甲在左端同时女生乙在右端的A55种排除了两次,要找回来一次.有A77-2A66+A55=3 720(种).【点拨】(1)有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑整体内容排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.(2)解题的基本思路通常有正向思考和逆向思考两种.正向思考时,通过分步、分类设法将问题分解;逆向思考时,从问题的反面入手,然后“去伪存真”.3名女生和5名男生排成一排.(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法?(5)其中甲不站左端,乙不站右端,有多少种排法?解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A66种排法,而其中每一种排法中,三个女生又有A33种排法,因此共有A66·A33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A36种排法,因此共有A55·A36=14 400(种)不同排法.(3)法一(位置分析法)因为两端不排女生,只能从5个男生中选2人排列,有A25种排法,剩余的位置没有特殊要求,有A66种排法,因此共有A25·A66=14 400(种)不同排法.法二(元素分析法)从中间6个位置选3个安排女生,有A36种排法,其余位置无限制,有A55种排法,因此共有A36·A55=14 400(种)不同排法.(4)8名学生的所有排列共A88种,其中甲在乙前面与乙在甲前面各占其中的12,所以符合要求的排法种数为12A88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法)甲在最右边时,其他的可全排,有A77种;甲不在最右边时,可从余下6个位置中任选一个,有A16种.而乙可排在除去最右边位置后剩余的6个中的任意一个上,有A16种,其余人全排列,共有A16·A16·A66种.由分类加法计数原理,共有A77+A16·A16·A66=30 960(种).法二(特殊位置法)先排最左边,除去甲外,有A17种,余下7个位置全排,有A77种,但应剔除乙在最右边时的排法A16·A66种,因此共有A17·A77-A16·A66=30 960(种).法三(间接法)8个人全排,共A88种,其中,不合条件的有甲在最左边时,有A77种,乙在最右边时,有A77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A66种.因此共有A88-2A77+A66=30 960(种).类型四组合的基本问题课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;(2)两队长当选;(3)至少有1名队长当选;(4)至多有2名女生当选;(5)既要有队长,又要有女生当选.解:(1)1名女生,4名男生,故共有C15·C48=350(种).(2)将两队长作为一类,其他11个作为一类,故共有C22·C311=165(种).(3)至少有1名队长当选含有两类:只有1名队长和2名队长.故共有:C12·C411+C22·C311=825(种).或采用间接法:C513-C511=825(种).(4)至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法为:C25·C38+C15·C48+C58=966(种).(5)分两类:第一类女队长当选:有C412种选法;第二类女队长不当选:有C14·C37+C24·C27+C34·C17+C44种选法.故选法共有:C412+C14·C37+C24·C27+C34·C17+C44=790(种).【点拨】①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如对(3),先选1名队长,再从剩下的人中选4人得C12·C412≠825,请同学们自己找错因.从7名男同学和5名女同学中选出5人,分别求符合下列条件的选法总数为多少?(1)A,B必须当选;(2)A,B都不当选;(3)A,B不全当选;(4)至少有2名女同学当选;(5)选出3名男同学和2名女同学,分别担任体育委员、文娱委员等五种不同的工作,但体育委员必须由男同学担任,文娱委员必须由女同学担任.解:(1)只要从其余的10人中再选3人即可,有C310=120(种).(2)5个人全部从另外10人中选,总的选法有C510=252(种).(3)直接法,分两类:A,B一人当选,有C12C410=420(种).A,B都不当选,有C510=252(种).所以总的选法有420+252=672(种).间接法:从12人中选5人的选法总数中减去从不含A,B的10人中选3人(即A,B都当选)的选法总数,得到总的选法有C512-C310=672(种).(4)直接法,分四步:选2名女生,有C25C37=10×35=350(种);选3名女生,有C35C27=210(种);选4名女生,有C45C17=35(种);选5名女生,有C55=1(种).所以总的选法有350+210+35+1=596(种).间接法:从12人中选5人的选法总数中减去不选女生与只选一名女生的选法数之和,即满足条件的选法有C512-(C57+C15C47)=596(种).(5)分三步:选1男1女分别担任体育委员、文娱委员的方法有C17C15=35(种);再选出2男1女,补足5人的方法有C26C14=60(种);最后为第二步选出的3人分派工作,有A33=6(种)方法.所以总的选法有35×60×6=12 600(种).类型五分堆与分配问题按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.解:(1)无序不均匀分组问题.先选1本,有C16种选法;再从余下的5本中选2本,有C25种选法;最后余下3本全选,有C33种选法.故共有C16C25C33=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C16C25C33A33=360(种).(3)无序均匀分组问题.先分三步,则应是C26C24C22种方法,但是这里出现了重复.不妨记六本书为A,B,C,D,E,F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则C26C24C22种分法中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共有A33种情况,而这A33种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有C26C24C22A33=15(种).(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C26C24C22A33·A33=C26C24C22=90(种).(5)无序部分均匀分组问题.共有C46C12C11A22=15(种).(6)有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式C 26C 12C 11A 22·A 33=90(种). (7)直接分配问题.甲选1本,有C 16种方法;乙从余下的5本中选1本,有C 15种方法,余下4本留给丙,有C 44种方法,故共有分配方式C 16C 15C 44=30(种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置堆数的阶乘.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再分配;②被分配的元素是不同的(像“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.(1)6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有____________种不同的分派方法.解:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法.故填90.(2)(2015·广州调研)有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有____________种.解:先把4名学生分为2、1、1的3组,有C 24C 12C 11A 22=6种分法,再将3组分到3个学校,有A 33=6种情况,则共有6×6=36种不同的保送方案.故填36.(3)(2015·江西模拟改编)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有____________种不同的分法.解:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.6名教师分组共有C 16C 25C 33=60种取法.再把这3组教师分配到3所中学,有A 33=6种分法,因此共有60×6=360种不同的分法.故填360.类型六 数字排列问题用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数字的四位偶数? (2)能组成多少个奇数数字互不相邻的六位数(无重复数字)?解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,千位从1,3,4,5中选定一个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个;第三类:4在个位时,与第二类同理,也有A 14·A 24个.由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2)先排0,2,4,再让1,3,5插空,总的排法共A 33·A 34=144(种),其中0在排头,将1,3,5插在后三个空的排法共A 22·A 33=12(种),此时构不成六位数,故总的六位数的个数为A 33·A 34-A 22·A 33=144-12=132(种).【点拨】本例是有限制条件的排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意题中隐含条件0不能在首位.(2015·山西模拟改编)用五个数字0,1,2,3,4组成没有重复数字的自然数,问:(1)四位数有几个?(2)比3 000大的偶数有几个?解:(1)首位数字不能是0,其他三位数字可以任意,所以四位数有C 14A 34=96个.(2)比3 000大的必是四位数或五位数. (Ⅰ)若是四位数,则首位数字必是3或4.①若4在首位,则个位数字必是0或2,有C 12A 23个数,②若3在首位,则个位数字必是0或2或4,有C13A23个数,所以比3 000大的四位偶数有C12A23+C13A23=30个.(Ⅱ)若是五位数,则首位数字不能是0,个位数字必是0或2或4,①若0在个位,则有A44个;②若0不在个位,则有C12C13A33个数,所以比3 000大的五位偶数有A44+C12C13A33=60个.故比3 000大的偶数共有30+60=90个.1.解答计数应用问题的总体思路根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了,此外,还要掌握一些非常规计数方法,如:(1)枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;(2)转换法:转换问题的角度或转换成其他已知问题;(3)间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.2.排列与组合的区别与联系排列、组合之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行全排列,因此,分析解决排列问题的基本思路是“先选,后排”.3.解排列、组合题的基本方法(1)限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.(2)正难则反排异法:有些问题,正面考虑情况复杂,可以反面入手把不符合条件的所有情况从总体中去掉.(3)复杂问题分类分步法:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.在解题过程中,常常既要分类,也要分步,其原则是先分类,再分步.(4)相离问题插空法:某些元素不能相邻或要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.(5)相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.(6)相同元素隔板法:将n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法,等价于将n个相同小球串成一串,从间隙里选m-1个结点,剪截成m段,共有C m-1n-1种放法.这是针对相同元素的组合问题的一种方法.(7)定序问题用除法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.4.解组合问题时应注意(1)在解组合应用题时,常会遇到“至少”“至多”“含”等词,要仔细审题,理解其含义.(2)关于几何图形的组合题目,一定要注意图形自身对其构成元素的限制,解决这类问题常用间接法(或排除法).(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者则即使两组元素个数相同,但因元素不同,仍然是可区分的.对于这类问题必须先分组后排列,若平均分m组,则分法=取法m!.1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.56B.65C.5×6×5×4×3×22D.6×5×4×3×2 解:因为每位同学均有5种讲座可供选择,所以6位同学共有5×5×5×5×5×5=56种选法.故选A.2.A32n=10A3n,n=()A.1 B.8 C.9 D.10 解:原式等价于2n(2n-1)(2n-2)=10n(n-1)(n -2),n>3且n∈N*,整理得n=8.故选B.3.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种解:从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.4.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有C24种方法,然后进行全排列A33即可,由乘法原理,不同的安排方式共有C24×A33=36种方法.故选D.5.(2016·郑州二模)某校开设A类选修课2门;B 类选修课3门,一位同学从中选3门,若要求两类课程中至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种解:可分以下两种情况:①A类选修课选1门,B 类选修课选2门,有C12C23种不同选法;②A类选修课选2门,B类选修课选1门,有C22C13种不同选法.所以根据分类加法计数原理知不同的选法共有:C12C23+C22C13=6+3=9(种).故选C.6.(2017·江西新余第一中学调研)西部某县将7位大学生志愿者(4男3女) 分成两组,分配到两所小学支教,若要求女生不能单独成组,且每组最多5人,则不同的分配方案共有()A.36种B.68种C.104种D.110种解:分组的方案有3、4和2、5两类,第一类有(C37-1)A22=68(种);第二类有(C27-C23)A22=36(种),所以共有68+36=104种不同的方案.故选C.7.(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答) 解:本题分两类:一类是一个数字是偶数,三个数字是奇数的四位数有C14C35A44=960(个),二类是四个数字都是奇数的四位数有A45=120(个),所以共有 1 080个.故填1 080.8.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)解:第一步,选出4人,由于至少1名女生,故有C48-C46=55种不同的选法;第二步,从4人中选出队长,副队长各1人,有A24=12种不同的选法.根据分步乘法计数原理知共有55×12=660种不同的选法.故填660.9.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?解:(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得到所求点的个数是6×6=36个.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限的点的个数是3×2=6个.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.结合(1)可得不在直线y=x上的点共有36-6=30个.10.将9个人以下列三种方式分为三个小组,完成三项不同的任务,则不同的分配方法各有多少种?(1)将9个人以2,3,4分为三组;(2)将9个人以2,2,5分为三组;(3)将9个人以3,3,3分为三组.解:(1)先将9个人以2,3,4分为三组,有C29·C37·C44=1 260种分法,再把三项不同的任务分给这三个组,有A33=6种分法,因此共有1 260×6=7 560种分配方法.(2)先将9个人以2,2,5分为三组,有C29·C27·C55A22=378种分法,再把三项不同的任务分给这三个组,有A33=6种分法,因此共有378×6=2 268种分配方。

江苏高考数学一轮复习《计数原理与排列、组合》 教程学案

第二章计数原理与概率____第5课__计数原理与排列、组合____1. 理解分类计数原理与分步计数原理,理解排列和组合的意义.2. 运用计数原理分析、处理问题,但不机械套用公式.同时,应避免繁琐的、技巧性过高的计数问题.1. 阅读:选修23第5~25页.2. 解悟:①分类计数原理;②分步计数原理;③分类计数原理的“类”与分步计数原理的“步”之间的关系是怎样的;④理解排列数公式A m n,组合数公式C m n.3. 践习:在教材空白处,完成第9页习题第5题,第17页练习第1、2题;第21页练习第7题.基础诊断1. 有5本不同的外语书,4本不同的数学书,3本不同的物理书.(1) 从中任取一本,有________种不同的取法;(2) 若取外语、数学、物理各一本,有________种不同的取法.2. 从5名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有________种.3. 高二(1)班有4位同学,从甲、乙、丙3门课程中选一门,则恰好有2人选修甲课程的不同选法有________种.4. 将3封信投入6个信箱内,不同的投法有______种.范例导航考向直接利用分类计数、分步计数原理解决问题例1已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1) P可表示平面上多少个不同的点?(2) P可表示平面上多少个第二象限的点?(3) P可表示多少个不在直线y=x上的点?某班共有男生28名,女生20名,从该班选出学生代表参加学生代表大会.(1) 若学校分配给该班1名代表,则有多少种不同的选法?(2) 若学校分配给该班2名代表,且男、女各一名,则有多少种不同的选法?考向区别分类、分步问题,合理选用计数原理解题例2海岛上信号站的值班员用红、黄、白三色各三面旗向附近海域出示旗语,在旗标上纵排挂,可以是一面、两面、三面,则这样的旗语有多少种?在5天内安排3次不同的考试,若每天至多安排一次考试,则有________种不同的方法;若不限制每天考试的次数,则有________种不同的方法.考向综合利用两个计数原理解题例3有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法(不一定六名同学都能参加)?(1) 每人恰好参加一项,每项人数不限;(2) 每项限报一人(每项均有人参加),且每人至多参加一项;(3) 每项限报一人(每项均有人参加),但每人参加的项目不限.自测反馈1. 某外商计划在4个候选城市中投资3个不同项目,且在同一城市投资的项目不超过2个,则该外商不同的投资方案有________种.2. 甲有3本不同的书,乙去借阅,至少借1本的方法有________种.3. 将4封信投入3个信箱中,则不同的方法共有________种.4. 4个同学,争夺3项竞赛的冠军,冠军获得的可能情况有________种.1. 要分清分类和分步原理:前者针对“分类”问题,后者针对“分步”问题.2. 解决复杂问题时,需要灵活运用两个原理进行解题,即可先分类,在某一类中再分步,在某一步中再分类.3. 你还有哪些体悟,写下来:第5课计数原理与排列、组合基础诊断1. (1) 12解析:任取一本,则外语书5种,数学书4种,物理书3种,则共有5+4+3=12(种).(2) 60解析:各取一本时的共有5×4×3=60(种).2. 25解析:从7人中任选3人共有C37种方法,如果选出三人无女生,有C35种方法,因此至少选1名女生的共有C37-C35=25(种)方法.3. 24解析:分步计数,恰有2人选修课程甲,共有C24=6种结果,因此余下的两人各有两种选法,2×2=4种结果,因此共有6×4=24(种)结果.4. 216解析:每一封信都有6种投法,则共有6×6×6=216(种)投法.范例导航例1解析:(1) 确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得到平面上的点的个数是6×6=36(个).(2) 确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限的点的个数是3×2=6(个).(3) 点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30(个).解析:(1) 选出1名代表有2类方式:第1类从男生中选1名,有28种选法;第2类从女生中选1名,有20种选法.根据分类计数原理,共有28+20=48(种)不同的选法.(2) 可分两个步骤完成:第一步:选出1名男生代表,共有28种不同的选法;第二步:选出1名女生代表,共有20种不同的选法.根据分步计数原理,共有28×20=560(种)不同的选法.例2解析:悬挂一面旗共有3种旗语;悬挂两面旗共有3×3=9(种)旗语;悬挂三面旗共有3×3×3=27(种)旗语.由分类计数原理,共有3+9+27=39(种)旗语.60125解析:若每天至多安排一次考试,先安排第一场考试,有5种方法;再安排第二场考试,有4种方法;最后安排第三场考试,有3种方法,共有5×4×3=60(种)方法.若不限制每天考试的次数,先安排第一场考试,有5种方法;再安排第二场考试,有5种方法;最后安排第三场考试,有5种方法,共有5×5×5=125(种)方法.例3解析:(1) 每人都可以从这三项比赛项目中选报一项,各有3种办法,由分步计数原理,知共有报名方法36=729(种).(2) 每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,由分步计数原理,共有报名方法6×5×4=120(种).(3) 由于每人参加的项目不限,因此每个项目都可以从这六人中选出一人参赛,由分步计数原理,得共有不同报名方法63=216(种).【变式题】某校艺术节期间欲举办一台大型文艺演出,需在2名老师,6名男生和8名女生中挑选节目主持人.(1) 若只需1人主持,有多少种不同的选法?(2) 若需老师、男生、女生各一人共同主持,有多少种不同的选法?(3) 若需师、生各一人主持,有多少种不同选法?解析:(1) 若只需一人主持,有2+6+8=16(种)不同的选法.(2) 若需老师、男生、女生各一人共同主持,有2×6×8=96(种)不同的选法.(3) 若需师、生各1人主持,有2×(6+8)=28(种)不同的选法.自测反馈1. 60解析:投资方案可分为两类情况,一是在一个城市投资两个项目,在另一个城市投资1个项目,将项目分成2个与1个,有3种;项目在4个城市选两个有4×3=12(种),则这种情况有3×12=36(种);二是在三个城市各投资一个项目,获得投资的城市有C34=4(种),安排项目与城市对应,有3×2×1=6(种),则这种情况有4×6=24(种).由分类计数原理共有36+24=60(种)方案.2. 7解析:借书方法可分为3类,第1类只借1本,有3种不同方法;第2类借2本,有C23=3(种)不同方法;第3类将3本书全部借走,有1种方法.根据分类计数原理可知有3+3+1=7(种)不同的借书方法.3. 81解析:由于每封信都有3种不同的投法,故由分步计数原理可得,4封信共有34=81(种)投法.4. 64解析:由于每项竞赛的冠军都有4种情况,故由分步计数原理可得,3项竞赛共有43=64(种)冠军获得的情况.。

高考数学计数原理知识点

高考数学计数原理知识点数学是高考中的一门重要科目,其中计数原理是数学中的一个重要知识点。

计数原理用于解决计数问题,是数学中的基础工具。

在高考中,计数原理常常出现在复合概率、组合数学等题目中。

掌握计数原理的知识点对于高分通过高考数学是非常重要的。

下面将介绍一些常见的计数原理知识点。

一、排列和组合排列是指从一组元素中选取若干元素进行有序排列的方式。

对于n个元素,从中选取k个元素进行排列,可以得到 nPk 种不同的排列,其中P表示排列。

组合是指从一组元素中选取若干元素进行无序选择的方式。

对于n个元素,从中选取k个元素进行组合,可以得到 nCk 种不同的组合,其中C表示组合。

排列和组合的计算公式如下:nPk = n! / (n-k)!nCk = n! / (k!(n-k)!)其中n!表示n的阶乘,即n! = n(n-1)(n-2)...3*2*1。

通过排列和组合的计算公式,我们可以快速计算出排列和组合的结果,而不用逐个枚举。

二、乘法原理和加法原理乘法原理是指若一个事件发生的方式有m种,而另一个事件发生的方式有n种,且这两个事件的发生方式相互独立,那么这两个事件同时发生的方式有m * n种。

加法原理是指若一个事件发生的方式有m种,而另一个事件发生的方式有n种,且这两个事件的发生方式互斥(即两者不能同时发生),那么这两个事件发生的方式有m + n种。

乘法原理和加法原理是解决计数问题的基本原理,它们在计数原理中有着广泛的应用。

通过灵活运用乘法原理和加法原理,我们可以简化计数问题的解决过程,提高解题效率。

三、重复排列和重复组合重复排列是指从n个元素中选择k个元素进行有序排列,允许元素重复出现的方式。

对于重复排列,共有 n^k 种不同的排列方式。

重复组合是指从n个元素中选择k个元素进行无序组合,允许元素重复出现的方式。

对于重复组合,共有C(n+k-1, k)种不同的组合方式。

通过重复排列和重复组合的计算公式,我们可以快速计算出重复排列和重复组合的结果,进而解决相关的计数问题。

2020版高考江苏数学大一轮精准复习精练:20.1计数原理与排列组合含解析

专题二十计数原理【真题典例】20.1计数原理与排列组合挖命题【考情探究】分析解读江苏高考对两个计数原理、排列、组合的考查往往与集合、数列、概率等进行综合,难度较大,主要考查学生的逻辑推理能力.破考点【考点集训】考点一加法原理与乘法原理1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有种.答案182.如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求有公共边的两部分颜色互异,则共有种不同的涂色方法.答案260考点二排列1.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为.答案642.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是.答案183.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数有个.答案28考点三组合1.四位学生,坐在一排有7个位置的座位上,有且只有两个空位是相邻的不同坐法有种.(用数字作答)答案4802.用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法有种.答案4323.有六名同学按下列方法和要求分组,各有不同的分组方法多少种?(1)分成三个组,各组人数分别为1、2、3;(2)分成三个组去参加三项不同的试验,各组人数分别为1、2、3;(3)分成三个组,各组人数分别为2、2、2.解析(1)=60(种).(2)=60×6=360(种).(3)=15(种).炼技法【方法集训】方法一两个计数原理应用的基本策略1.(2018江苏靖江中学调研)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).答案4802.(2019届江苏海门中学调研)从0,8中任取一个数字,从3,5,7中任取两个数字组成无重复数字的三位数,其中奇数的个数为.答案18方法二排列组合及其应用的解题策略1.(2019届江苏金陵中学调研)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有种.答案182.(2018江苏吴江中学月考)将甲、乙两人在内的7名医生分成三个医疗小组,一组3人,另两组每组各2人,则甲、乙不分在同一组的分法有种.答案803.(2018江苏常州二中调研)桌面上有形状大小相同的白球、红球、黄球各3个,相同颜色的球不加以区分,将此9个球排成一排共有种不同的排法.(用数字作答)答案 1 6804.(2019届江苏太湖中学月考)从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(x,y,z),若x+y+z是3的倍数,则满足条件的点的个数为.答案252方法三集合中的计数问题1.(2019届江苏赣榆中学月考)设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.解析(1)110.(2)集合M有2n个子集,不同的有序集合对(A,B)有2n(2n-1)个.若A⫋B,并设B中含有k(1≤k≤n,k∈N*)个元素,则满足A⫋B的有序集合对(A,B)有(2k-1)=2k-=(3n-2n)个.同理,满足B⫋A的有序集合对(A,B)有(3n-2n)个.故满足条件的有序集合对(A,B)的个数为2n(2n-1)-2(3n-2n)=4n+2n-2×3n.2.(2019届江苏扬州中学月考)已知非空有限实数集S的所有非空子集依次记为S1,S2,S3,…,集合S k中所有元素的平均值记为b k.将所有b k组成数组T:b1,b2,b3,…,数组T中所有数的平均值记为m(T).(1)若S={1,2},求m(T);(2)若S={a1,a2,…,a n}(n∈N*,n≥2),求m(T).解析(1)S={1,2}的所有非空子集为{1},{2},{1,2},所以数组T为1,2,.因此m(T)==.(2)因为S={a1,a2,…,a n},n∈N*,n≥2,所以m(T)=--…- -…=- - …- -…a i . 又因为 - - =· - - - = - - = · - =,所以m(T)=… …a i = a i .过专题 【五年高考】A 组 自主命题·江苏卷题组1.(2016江苏,23,10分)(1)求7 -4的值;(2)设m,n ∈N *,n ≥m,求证:(m+1) +(m+2) +(m+3) +…+n - +(n+1) =(m+1) . 解析 (1)7 -4 =7×-4×=0. (2)证明:当n=m 时,结论显然成立.当n>m 时,(k+1)=·· -=(m+1)·· -=(m+1),k=m+1,m+2,…,n. 又因为 + = ,所以(k+1) =(m+1)( - ),k=m+1,m+2,…,n. 因此,(m+1) +(m+2) +(m+3) +…+(n+1) =(m+1) +[(m+2) +(m+3)+…+(n+1) ] =(m+1) +(m+1)[( - )+( - )+…+( - )]=(m+1) .2.(2018江苏,23,10分)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s<t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数,例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k)为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).解析 本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力. (1)记τ(abc)为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3, 所以f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=--.因此,当n≥5时,f n(2)=--.B组统一命题、省(区、市)卷题组考点计数原理与排列组合1.(2018课标全国Ⅰ理,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案162.(2018浙江,16,4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)答案 1 2603.(2017山东理改编,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是.答案4.(2017课标全国Ⅱ理改编,6,5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有种.答案365.(2017浙江,16,4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案6606.(2017天津理,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案 1 0807.(2016课标全国Ⅱ理改编,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为.答案188.(2016课标全国Ⅲ理改编,12,5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有个.答案149.(2016四川理改编,4,5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为.答案72C组教师专用题组1.(2015广东,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 5602.(2015四川改编,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有个.答案1203.(2014四川改编,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有种.答案2164.(2014重庆改编,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是.答案1205.(2014安徽改编,8,5分)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有对.答案486.(2014北京,13,5分)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.答案367.(2011江苏,23,10分)设整数n≥4,P(a,b)是平面直角坐标系xOy中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a-b=3的点P的个数,求A n;(2)记B n为满足(a-b)是整数的点P的个数,求B n.解析(1)点P的坐标满足条件:1≤b=a-3≤n-3,所以A n=n-3.(2)设k为正整数,记f n(k)为满足题设条件以及a-b=3k的点P的个数.只要讨论f n(k)≥1的情形.由1≤b=a-3k≤n-3k 知f n(k)=n-3k,且k≤-.设n-1=3m+r,其中m∈N*,r∈{0,1,2},则k≤m.所以B m=f n(k)=(n-3k)=mn-=--.将m=--代入上式,化简得B n=----.所以B n=-是整数--不是整数【三年模拟】一、填空题(每小题5分,共15分)1.(2019届江苏太仓中学月考)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有种.答案752.(2018江苏太湖中学月考)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有种.答案103.(2018江苏泰兴中学月考)用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有种.答案240二、解答题(共60分)4.(2019届江苏前黄中学月考)四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?解析(1)每个盒子放一球,共有=24种不同的放法.(2)第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有种选法;第三步:三个元素放入三个盒中,有种放法.故共有4×=144种放法.5.(2017江苏南通、扬州、泰州第二次调研)设S4k=a1+a2+…+a4k(k∈N*),其中a i∈{0,1}(i=1,2,…,4k).当S4k除以4的余数是b(b=0,1,2,3)时,数列a1,a2,…,a4k的个数记为m(b).(1)当k=2时,求m(1)的值;(2)求m(3)关于k的表达式,并化简.解析(1)当k=2时,m(1)表示数列a1,a2,a3,…,a8中有1个1或5个1,其余为0,所以m(1)=+=64.(2)依题意,m(3)表示数列a1,a2,…,a4k中有3个1,或7个1,或11个1,……,或(4k-1)个1,其余为0,所以m(3)=+++…+-.同理,得m(1)=+++…+-.因为=-(i=3,7,11,…,4k-1),所以m(1)=m(3).又m(1)+m(3)=+++…+-+-=24k-1,所以m(3)=24k-2=42k-1.6.(2019届江苏苏州实验中学月考)记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈N*).性质T:排列a1,a2,…,a n中有且只有一个a i>a i+1(i∈{1,2,…,n-1}).(1)求f(3);(2)求f(n).解析(1)当n=3时,1,2,3的所有排列为(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),其中满足仅存在一个i∈{1,2,3},使得a i>a i+1的排列为(1,3,2),(2,1,3),(2,3,1),(3,1,2),所以f(3)=4.(2)在1,2,…,n的所有排列(a1,a2,…,a n)中,若a i=n(1≤i≤n-1),从(n-1)个数1,2,3,…,n-1中选(i-1)个数按从小到大的顺序排列为a1,a2,…,a i-1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为--.若a n=n,则满足题意的排列个数为f(n-1).综上,f(n)=f(n-1)+---=f(n-1)+2n-1-1.从而f(n)=----(n-3)+f(3)=2n-n-1.7.(2018江苏南师附中考前模拟)设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.解析(1)若集合B含有2个元素,即B={a1,a2},则A=⌀,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=⌀,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n-1).若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为(-1)+(-1)+(-1)+…+(-1)=()2+()2+()2+…+()2-(+++…+).又(x+1)n(x+1)n的展开式中x n的系数为()2+()2+()2+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以()2+()2+()2+…+()2=.又因为+++…+=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为-2n.所以A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为---=-.8.(2017江苏苏州期末)如图,由若干个小正方形组成的k层三角形图阵中,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k层有k个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k层的每个小正方形用数字进行标注,从左到右依次记为x1,x2,…,x k,其中x i∈{0,1}(1≤i≤k),其他小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为x0.(1)当k=4时,若要求x0为2的倍数,则有多少种不同的标注方法?(2)当k=11时,若要求x0为3的倍数,则有多少种不同的标注方法?解析(1)当k=4时,第4层标注的数字依次为x1,x2,x3,x4;第3层标注的数字依次为x1+x2,x2+x3,x3+x4;第2层标注的数字依次为x1+2x2+x3,x2+2x3+x4;所以x0=x1+3x2+3x3+x4.因为x0是2的倍数,x i∈{0,1},所以x1,x2,x3,x4中取值为1的个数为偶数个.其不同的取法总数为++=8.故所求的不同的标注方法有8种.(2)当k=11时,第11层标注的数字依次为x1,x2,x3,x4,…,x10,x11;第10层标注的数字依次为x i+x i+1,i=1,2, (10)第9层标注的数字依次为x i+(+)x i+1+x i+2=x i+x i+1+x i+2,i=1,2, (9)依此规律,第1层标注的数字为x0=x1+x2+…+x10+x11.计算得==1,==10,当i=2,3,4,…,8时,均是3的倍数.若要求x0是3的倍数,等价于x1+x2+x10+x11是3的倍数,即x1+x2+x10+x11是3的倍数.所以x1,x2,x10,x11中,取值为1的个数为0个或3个.所以x1,x2,x3,…,x10,x11的不同的取法总数为(+)·27=640.故所求的不同的标注方法有640种.9.(2019届江苏无锡天一中学月考)当n≥3,n∈N时,对于集合M={1,2,3,…,n},集合M的所有含3个元素的子集分别表示为N1,N2,N3,…,N M(n)-1,N M(n),其中M(n)表示集合M的含3个元素的子集的个数.设p i为集合N i中的最大元素,q i 为集合N i中的最小元素,1≤i≤M(n),记P=p1+p2+…+p M(n)-1+p M(n),Q=q1+q2+…+q M(n)-1+q M(n).(1)当n=4时,分别求M(4),P,Q;(2)求证:P=3Q.解析(1)当n=4时,M(4)==4,4个子集分别为{1,2,3},{1,2,4},{1,3,4},{2,3,4},则P=3+4+4+4=15,Q=1+1+1+2=5.(2)证明:显然3≤p i≤n,p i∈Z,并且以3为最大元素的子集有个,以4为最大元素的子集有个,以5为最大元素的子集有个,……,以k(3≤k≤n)为最大元素的子集有-个,……,以n为最大元素的子集有-个,P=p1+p2+…+p M(n)-1+p M(n)=3×+4×+…+n-,①因为k-=k--=3(k=3,4,…,n),所以P=3(++…+)=3(++…+)=3(++…+)=3(++…+)=3.显然1≤q i≤n-2,q i∈Z,以1为最小元素的子集有-个,以2为最小元素的子集有-个,以3为最小元素的子集有-个,……,以k(1≤k≤n-2)为最小元素的子集有-个,……,以n-2为最小元素的子集有个.Q=q1+q2+…+q M(n)-1+q M(n),则Q=(n-2)+(n-3)+…+k-+…+-,②①+②得P+Q=(n+1)(+++…+-)=(n+1)(+++…+-)=(n+1)(+++…+-)=(n+1)(+++…+)=(n+1)=4.-所以P=3Q.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由分类和分步计数原理知总共有4×(12+6)=72种不同的涂色方法.
解法二:按所用颜色种数分类涂色. 第一类,4种颜色全用,则1,3号区域同色,且2,4号区域不同色;或1,3号区域 不同色,且2,4号区域同色,故有2×4×3×2=48种不同的涂色方法.
第二类,只用3种颜色,则1,3号区域同色,且2,4号区域也同色,故有A 4 =24
的个数,叫做从n个不同元素中取出m个元素的排列数,用①
m An (3)排列数公式: =② n(n-1)…(n-m+1) .
m A n
表示.
(4)全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的一个
m n A An 全排列, =n· (n-1)· (n-2)· …· 3· 2· 1=n!.于是排列数公式写成阶乘形式为 n
先把一般元素排列好,然后把特定元素插排在它们之间和两端的空中. 例4 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的 排列种数为 . 解题导引 把1,3,5,7作全排列→把6插空排好,再把2,4插空排好 →用分步计数原理得结论
A44=24种排法,再排数字6,由于数字6 解析 先把数字1,3,5,7作全排列,有
解析 先把8、9捆绑,有2种方法,再把它与1排列,有2种排法,此时共有3 个空供字母A、Y插入,有6种方法,故可构成的号牌个数是2×2×6=24.
.(用
答案 24 评析 本题考查“相邻”与“不相邻”问题,考查捆绑法和插空法.把 相邻元素当成一个元素时,一定要注意这些相邻元素要作全排列.
3.相间问题插空法
=③
n! (n m)!Fra bibliotek,规定0!=1.
4.组合
(1)定义:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不 同元素中取出m个元素的一个组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合个数,
m 叫做从n个不同元素中取出m个元素的组合数,用 表示. Cn
Anm n(n 1)(n m 1) 0 (3)计算公式: C = m = = n! .由于0!=1,所以 = Cn Am m (m 1) 1 m!(n m)!
不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排 数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩
4 2 下的4个空隙中排上2,4,有 × 3× =864种排法. A42种排法,共有 A4 A 4
例1 如图,要给1,2,3,4,5五块区域分别涂上四种颜色中的某一种,允许
同一种颜色使用多次,但相邻区域必须不同颜色,则不同的涂色方法数 为 .
解析 解法一:按区域顺序分步涂色. 先涂5号区域,有4种不同的涂法;涂剩下的4个区域要分两种情形: 若1,3号区域同色,则1,3号区域有3种涂法,此时2,4号区域各有2种涂法, 由分步计数原理知有3×2×2=12种涂法. 若1,3号区域不同色,则1,3号区域有3×2=6种涂法,此时2,4号区域各只有 1种涂法,由分步计数原理知有6×1×1=6种涂法.
A32 种方法,则另一个字母在第 解析 从a,b,c中任选两个排在第一行,有
1 1 C2 C A32 · 二行有 种方法,其余则确定,共有 2 =12种方法.
答案 12 评析 遇到有相同元素的排列问题时,一般应画出图表,这样比较直观, 还能避免出现重复计数.
2.相邻问题捆绑法
在特定条件下,将几个相关元素当成一个元素来考虑,待整个问题排好 之后再考虑它们“内部”的排列,它主要用于解决相邻问题. 例3 用字母A、Y,数字1、8、9构成一个字符不重复的五位号牌,要求 字母A、Y不相邻,数字8、9相邻,则可构成的号牌个数是 数字作答)
种不同的涂色方法. 由分类计数原理知总共有48+24=72种不同的涂色方法. 答案 72
3
方法 2 排列、组合及其应用的解题策略
求解排列、组合问题的基本思路是“排组分清,加乘明确;有序排列,无
序组合;分类相加,分步相乘”.
1.简单问题直接法 直接列式计算. 例2 将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的 字母也互不相同,则不同的排列方法共有 种.
高考数学
第二十章
§20.1
计数原理
两个计数原理、排列与组合
知识清单
1.分类计数原理、分步计数原理 (1)完成一件事有几类办法,各类办法相互独立,每类办法中又有多种不 同的方法,则完成这件事的不同方法数是各类办法中不同方法种数的 和,这就是分类计数原理.
(2)完成一件事需要分成n个步骤,每一步的完成有多种不同的方法,则完
成这件事的不同方法种数是各步不同的方法种数的乘积,这就是分步计 数原理.
2.分类计数原理与分步计数原理都涉及完成一件事的不同方法的种数. 它们的区别在于:分类计数原理与分类有关,各种方法相互独立,用其中 任意一种方法都可以完成这件事;分步计数原理与分步有关,各个步骤 相互依存,只有各个步骤都完成了,这件事才算完成了. 3.排列 (1)定义:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一 列,叫做从n个不同元素中取出m个元素的一个排列. (2)排列数定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列
m n
1. 5.组合数的性质
m Cn (1) =④
n m C n
m m C Cn ,(2) = +⑤ n 1
m 1 C n
.
方法技巧
方法 1 两个基本原理应用的解题策略
1.分类计数原理与分步计数原理的区别 一个与分类有关,一个与分步有关.在综合运用这两个计数原理时,既要 会合理分类,又能合理分步,一般情形是先分类后分步.分类计数原理中 无论是哪一类方法都能单独完成这件事;分步计数原理的每一个步骤都 依次完成后,这件事才完成. 2.计数原理与涂色问题 涂色问题是计数原理应用的典型问题.由于涂色本身就是策略的一个运 用过程,能较好地考查学生的思维连贯性与敏捷性,加之涂色问题的趣 味性,自然成为高考的热点之一.
相关文档
最新文档