1 质点运动学习题详解

合集下载

质点运动学试题与答案讲解

质点运动学试题与答案讲解

质点运动学试题与答案一.选择题:1.一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ] 2.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m .(C) 0. (D) -2 m .(E) -5 m. [ ] 3.某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来? (A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°. [ ] 4.下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ ] 二.填空题1.一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI)则 (1) 质点在t =0时刻的速度=0v__________________;(2) 加速度为零时,该质点的速度=v ____________________.2.一物体作斜抛运动,初速度0v与水平方向夹角为θ,如图所示.物体轨道最高点处的曲率半径ρ为__________________.3.设质点的运动学方程为j t R i t R r sin cos ωω+= (式中R 、ω 皆为常量)则质点的v=___________________,d v /d t =_____________________.4.轮船在水上以相对于水的速度1v 航行,水流速度为2v,一人相对于甲板以速度3v 行走.如人相对于岸静止,则1v 、2v和3v 的关系是___________________.2. -12三.计算:一人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m .求在这50 s 内, (1) 平均速度的大小和方向; (2) 平均速率的大小.有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点. 四.证明:一艘船以速率u驶向码头P ,另一艘船以速率v 自码头离去,试证当两船的距离最短时,两船与码头的距离之比为:()()ααcos :cos v v ++u u 设航路均为直线,α为两直线的夹角.答案:一.选择题: BBCC二.填空题:1 5m/s 17m/s2 ρ =v 02cos 2θ /g3 -ωR sin ω t i+ωR cos ω t j4 0321=++v v v三.计算题:1解:(1) BC AB OA OC ++=)45sin )45cos (18)10(30j i j i ︒+︒-+-+=j i73.227.17+=OC ,方向φ =8.98°(东偏北)2分 =∆=∆∆=t OC t r //v 0.35m/s方向东偏北8.98° 1分(2) (路程)()181030++=∆S m=58m, 16.1/=∆∆=t S v m/s 2分2解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,B Px y u lαOCAB东y 北φπ/4西 南x由题意可得u x = 0u y = a (x -l /2)2+b令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u 0,代入上式定出a 、b,而得 ()x x l luu y --=204船相对于岸的速度v(v x ,v y )明显可知是 2/0v v =x y y u +=)2/(0v v , 将上二式的第一式进行积分,有t x 20v=还有,xy t x x y t y y d d 2d d d d d d 0v v ====()x x l l u --20042v 2分 即 ()x x l l u x y--=020241d d v 1分因此,积分之后可求得如下的轨迹(航线)方程:'3020********x l u x l u x y v v +-= 2分到达东岸的地点(x ',y ' )为⎪⎪⎭⎫⎝⎛-=='='=003231v , u l y y l x l x 2分四.证明:证:设任一时刻船与码头的距离为x 、y ,两船的距离为l ,则有αcos 2222xy y x l -+= 2分 对t求导,得()()txyt y x t y y t x x t l l d d cos 2d d cos 2d d 2d d 2d d 2αα--+= 2分 将v , =-=t y u t x d d d d 代入上式,并应用0d d =tl作为求极值的条件, 则得 ααcos cos 0yu x y ux +-+-=v v()()ααcos cos u y u x +++-=v v 3分由此可求得 ααcos cos v v ++=u u y x 1分即当两船的距离最短时,两船与码头的距离之比为y 45 °v 0 u 0xl()()ααcos+uu2分:cos vv+。

大学物理习题详解:1 质点运动学习题详解

大学物理习题详解:1 质点运动学习题详解

习题一一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C[ ](A) (B) (C) (D) 答案:C解:加速度方向只能在运动轨迹内侧,只有[B]、[C]符合;又由于是减速运动,所以加速度的切向分量与速度方向相反,故选(C )。

2. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。

则前三秒内它的 [ ] (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。

答案:D 解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dxdt=,得2t =。

即2t =时x 取极值而返回。

所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=3. 一质点的运动方程是cos sin r R ti R tj ωω=+,R 、ω为正常数。

从t =/πω到t =2/πω时间内(1)该质点的位移是 [ ](A ) -2R i ; (B )2R i; (C ) -2j ; (D )0。

(2)该质点经过的路程是 [ ](A )2R ; (B )R π; (C )0; (D )R πω。

答案:B ;B 。

解:(1)122,t t ππωω==,21()()2r r t r t Ri ∆=-=; (2)∆t 内质点沿圆周运动了半周,故所走路程为πR 。

或者:,x y dx dy v v dt dt==,21,t t v R S vdt R ωπ====⎰4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 [ ](A )大小为/2v ,方向与B 端运动方向相同;(B)大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。

(完整版)大学物理01质点运动学习题解答

(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。

解:答案是 D。

2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。

简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。

3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。

简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。

4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。

大学物理第一章 质点运动学-习题及答案

大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。

又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。

故该质点作变速直线运动。

1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。

(B )只有(2)、(4)是对的。

(C )只有(2)是对的。

(D )只有(3)是对的。

[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。

1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。

大学物理第一章 质点运动学-习题及答案

大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。

又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。

故该质点作变速直线运动。

1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。

(B )只有(2)、(4)是对的。

(C )只有(2)是对的。

(D )只有(3)是对的。

[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。

1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。

华理工大学大学物理习题之质点运动学习题详解

华理工大学大学物理习题之质点运动学习题详解

习题一一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度 [ ](A) (B) (C) (D) 答案:C解:加速度方向只能在运动轨迹内侧,只有[B]、[C]符合;又由于是减速运动,所以加速度的切向分量与速度方向相反,故选(C )。

2. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。

则前三秒内它的 [ ] (A )位移和路程都是3m ; (B )位移和路程都是-3m ;(C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。

答案:D 解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dxdt=,得2t =。

即2t =时x 取极值而返回。

所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=3. 一质点的运动方程是cos sin r R ti R tj ωω=+v v v,R 、ω为正常数。

从t =/πω到t =2/πω时间内(1)该质点的位移是 [ ](A ) -2R i ϖ; (B )2R i ϖ; (C ) -2j v; (D )0。

(2)该质点经过的路程是 [ ](A )2R ; (B )R π; (C )0; (D )R πω。

答案:B ;B 。

解:(1)122,t t ππωω==,21()()2r r t r t Ri ∆=-=r r r r ;(2)t 内质点沿圆周运动了半周,故所走路程为R 。

或者:a ϖCA BaϖCABaϖCAB a ϖCAB,x y dx dy v v dt dt==,21,t t v R S vdt R ωπ====⎰4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v ϖ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度(A )大小为/2v ,方向与B 端运动方向相同;(B )大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。

质点运动学习题详解

质点运动学习题详解

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度V 0为5m -s '1,则当t 为3s 时,质点的速度 v= ________________________ 。

[答案:23 ms -1]⑶ 轮船在水上以相对于水的速度 V 航行,水流速度为v 2, 一人相对于甲板以速度 V 3行走。

如人相对于岸静止,则V 、V 2和V 3的关系是。

[答案:V 1 V 2 V 30]习题1A /选择题(1) 一运动质点在某瞬时位于矢径r(x, y)的端点处,其速度大小为dr(A) — dtdr (B) —— dtd |r |(C)dt1[答案:D]:,dx 、2,dy 、2(D)W dt )V(2) 一质点作直线运动,某时刻的瞬时速度 v 2m/s ,瞬时加速度a 2m/ s 2,则 一秒钟后质点的速度 (A)等于零 (C)等于 2m/s [答案:D] (B)等于-2m/s (D)不能确定。

(3) 一质点沿半径为 速度大小和平均速率大小分别为 2 R 2 R (A) - t tR 的圆周作匀速率运动,每 t 秒转一圈,在2t 时间间隔中,其平均 (C) 0,0 c 2 R (B) 0,-p 2 R c (D) —,0 [答案:B]/填空题 (1) 一质点,以 m 1 的匀速率作半径为 5m 的圆周运动,则该质点在 5s 内,位移的大小是 _____________________ [答案:10 m ; ;经过的路程是 5 n m]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研 究问题的性质决定。

F 面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3; ( 2)x=-4t 3+3t 2+6; ( 3)x=-2t 2+8t+4; ( 4)x=2t 2-4/t 。

大学物理质点运动学习题(附答案)

大学物理质点运动学习题(附答案)

第1章 质点运动学 习题及答案1.||与 有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.r ∆r ∆t d d r dr dt t d d v dv dt解: ||与 不同. ||表示质点运动位移的大小,而则表示质点运动时其径向长度的r ∆r ∆r ∆r ∆增量;和不同. 表示质点运动速度的大小,而则表示质点运动速度的径向分量;t d d r dr dt t d d r dr dtt d d v 和不同. 表示质点运动加速度的大小, 而则表示质点运动加速度的切向分量.dv dt t d d v dv dt2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么?解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为,式中各量均采用国际单位制,求:(1)第二秒2362x t t =-内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。

解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==-所以:(1)第二秒内的平均速度:1(2)(1)4()21x x v ms --==- (2)第三秒末的速度: 21(3)1236318()v ms -=⨯-⨯=- (3)第一秒末的加速度:2(1)121210()a ms -=-⨯= (4)物体运动的类型为变速直线运动。

5.一质点运动方程的表达式为,式中的分别以为单位,试求;(1)质点2105(t t t =+r i j ),t r m,s 的速度和加速度;(2)质点的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C[ ](A) (B) (C) (D) 答案:C解:加速度方向只能在运动轨迹内侧,只有[B]、[C]符合;又由于是减速运动,所以加速度的切向分量与速度方向相反,故选(C )。

2. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。

则前三秒内它的 [ ] (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。

答案:D 解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dxdt=,得2t =。

即2t =时x 取极值而返回。

所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=3. 一质点的运动方程是cos sin r R ti R tj ωω=+,R 、ω为正常数。

从t =/πω到t =2/πω时间内(1)该质点的位移是 [ ](A ) -2R i ; (B )2R i; (C ) -2j ; (D )0。

(2)该质点经过的路程是 [ ](A )2R ; (B )R π; (C )0; (D )R πω。

答案:B ;B 。

解:(1)122,t t ππωω==,21()()2r r t r t Ri ∆=-=; (2)∆t 内质点沿圆周运动了半周,故所走路程为πR 。

或者:,x y dx dy v v dt dt==,21,t t v R S vdt R ωπ===⎰4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 [ ](A )大小为/2v ,方向与B 端运动方向相同;(B )大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。

答案:D解:设细杆的长度为2l ,对C 点有 位置:sin ,cos C C x l y l θθ==;速度:cos ,sin Cx Cy d d v l v l dt dt θθθθ==;所以,2cos C d v v l dt θθ===.(B 点:2sin ,2cos ,2cos B B d d vx l v l v dt dt l θθθθθ===∴=)。

5. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

实际风速与风向为 [ ] (A) 4km/h ,从北方吹来; (B) 4km/h ,从西北方吹来;(C),从东北方吹来; (D) ,从西北方吹来。

答案:D解:0v v v v v v '=+⇒=+风人风地人地 0v v v '+''=,002v v '= 0cos v v θ=,0tan v v θ'= v v '='' 45sin 0t a n v v θ'''=222220000002222200002cos 42.2cos cos cos 442tan cos2v v v v v vv v v v v v v θθθθθθ⎛⎫''''=+-=+- ⎪⎝⎭=+-=vv 'θv 'v θ45︒22sin 1sin 45θθθ︒===0cos v v θ==(从西北方吹来)。

二、填空题1.一物体作如图所示的斜抛运动,测得在轨道P 点处速度大小为v ,其方向与水平方向成30°角。

则物体在P 点的切向加速度a τ = ,轨道的曲率半径ρ= 。

答案:12g -2。

解:j g a-=, a g = 1c o s ()s i n 3022a a gg τπθ=+=-=-cos cos30n a a g θ==。

又因 2n v a ρ= ,所以222c o s 30n v v a g ρ==2. 一质点在xy 平面内运动,其运动学方程为j t i t r )2(22-+=,其中t r ,分别以米和秒为单位,则从t = 1秒到t = 3秒质点的位移为 ;t =2秒时质点的加速度为 ;质点的轨迹方程是 。

答案:23i j -;2j -;224x y =-。

解: (2)(1)23r r r i j ∆=-=- , 22222d x d ya i j j dt dt =+=-22,2x t y t ==-,消去时间t 得 224xy =-。

3. 一质点沿半径为R 的圆周运动,运动学方程为2021bt t v s -=,其中b v ,0都是常数,t 时刻,质点的加速度矢量=a;加速度大小为b 时,质点沿圆周运行的圈数为 。

答案:20()v bt n b R τ--;024v Rbπ。

Pxna a τa解:(1)bt v dt ds v -==0,b dtsd a -==22τ 20()n v bt a a n a n b Rτττ-=+=-(2)令0(v a b ⎡-=⎢, 得 b v t 0= 2200001()(0)()22v v v s s t s v b b b b ∆=-=-=, 得0224v sn R Rbππ∆==4在相对地面静止的坐标系内,A 、B 二船都以2ms -1的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与该坐标系方向相同的坐标系(xy 方向的单位矢量为j i ,),那么在A 船上的坐标系中,B 船的速度(以ms -1为单位)为 。

答案:22i j -+ 解:如图地地地地A B A B BA v v v v v -=+=j v B2=地 i v A2=地答案(B)j i v BA22+-=5.一质点沿半径为0.1m 的圆周运动,其用角坐标表示的运动学方程为342t +=θ,θ的单位为rad ,t 的单位为s 。

问t = 2s 时,质点的切向加速度 法向加速度 ;θ等于 rad 时,质点的加速度和半径的夹角为45°。

答案:24Rt ;2230.4m/s ;2.67rad 。

解:(1)212d t dtθω==,2224d t dt θα==;24144n a R Rt ω==,24a R Rt τα==。

t = 2s 时,2230.4m/s n a =,24.8m/s a τ=(2)设t '时,a 和半径夹角为45°,此时n a a τ=,即414424Rt Rt ''=,得31/6t '= 所以3()24 2.67rad t t θ''=+=iv A2=地jv B2=地oy xBA题图三、计算题1.一质点由静止开始做直线运动,初始加速度为0a ,以后加速度均匀增加,每经过τ秒增加0a ,求经过t 秒后质点的速度和位移。

答案:2002a v a t t τ=+;2300126a x a t t τ=+。

由题意可知,角速度和时间的关系为0a a a t τ=+根据直线运动加速度定义dva dt=20000000()2t t a a dvv v dt adt a t dt a t t dt ττ-===+=+⎰⎰⎰0t =时刻,00v = 所以 2002av a t t τ=+又dxv dt=,所以 22300000001()226t t a a dx x x dt vdt a t t dt a t t dt ττ-===+=+⎰⎰⎰0t =时刻,00x = 所以 2300126a x a t t τ=+2.一质点以初速度0v 作一维运动,所受阻力与其速率成正比,试求当质点速率为v n(1)n >时,质点经过的距离与质点所能行经的总距离之比。

答案:11n-。

解:质点作一维运动。

初始条件:0t =时,0x =,0v v =。

又由题意,质点的加速度可表示为a kv =-式中,k 为大于零的常数。

解法一:由加速度的定义有dva kv dt==- 分离变量dvkdt v=- 由初始条件0t =时0v v =,有00vt v dvk dt v =-⎰⎰ 积分得0e (1)kt v v -=所以0e kt dxv v dt-== 由初始条件0t =时0x =,积分得00e (1e )tkt kt v x v dt k--==-⎰ 上式可写为m (1e ) (2)kt x x -=-其中,0m v x k=为质点所能行经的最大距离。

联立式(1)和式(2),得m 00()xx v v v =- 故m 0(1)x v x v =- 将0v v n=代入上式,得 11m x x n=- 解法二:由加速度的定义,并作变量替换有dva vkv dx==- 即dv kdx =-由初始条件0x =时0v v =,有vxv dv k dx =-⎰⎰积分得0 (3)v v kx =-由上式得0v vx k-=。

故当0v v n =时,01(1) (4)v x k n=-又由dxv dt=及式(3),有0dxdt v kx=-由初始条件0t =时0x =,积分得00lnv kxkt v -=-Br即(1e )kt v x k-=- 可见,质点所能行经的最大距离为 0m v x k=故当0v v n=时,由式(4)及上式得 11m x x n=-23.6,48()1n xy x t y t SI t s a a τ==-=一质点在平面内的运动方程,求时,质点的切向加速度与法向加速度。

228.4,4.6--==ms a ms a n τ答案:解:t dtdy v dt dx v y x 8,6====26436t v += 216932ttdt dv a +==τ 214.6-==ms a t τ28,8,0-===ms a a a y x2228.4-=-=ms a a a n τ4.如图,一超音速歼击机在高空 A 时的水平速率为1940 km/h ,沿近似于圆弧的曲线俯冲到点B ,其速率为2192 km/h ,所经历的时间为3s ,设圆弧 AB 的半径约为3.5km ,且飞机从A 到B 的俯冲过程可视为匀变速率圆周运动,若不计重力加速度的影响,求:(1)飞机在点B 的加速度;(2)飞机由点A 到点B 所经历的路程。

答案:(1)2109m s a -=⋅,与法向成12.4角;(2)m 1722=s 。

解:(1)因飞机作匀变速率运动,所以t a 和α为常量t d d v a t=,t t 0d d tB A v a t v v a t =⇒-=⎰⎰BAv v ,已知11940km h v -=⋅A ,12192km h v -=⋅B3s t =, 3.5km r =,所以 2t 23.3m s B Av v a t--==⋅ 在点 B 的法向加速度 22n 106m s Bv a r-==⋅在点 B 的总加速度大小2109m s a -==⋅a 与法向之间夹角tnarctan12.4a a β== (2)在时间t 内矢径r所转过的角度为 212A t t θωα=+ 飞机经过的路程为2t 11722m 2A s r v t a t θ==+=5.如图所示,一条宽度为d 的小河,已知河水的流速随着离开河岸的距离成正比地增加,靠两岸边河水的流速为零,而在河中心处流速最大,为0v 。

相关文档
最新文档